
Dissertation for the degree of Master of Science

University of the Witwatersrand

Johannesburg

Dynamic bulk freight train scheduling in an

uncongested rail network

Robert Andrew Bennetto

April 2013

Supervisor: Prof. D. Lubinsky

Declaration

I declare that this dissertation is my own unaided work. It is being submit-
ted for the degree of Master of Science at the University of the Witwater-
srand, Johannesburg. It has not been submitted before for any degree or
examination in any other University.

R.A. Bennetto
25 April, 2013

1

Abstract

Many academic works in the train scheduling environment concentrate on
optimizing movements of resources through the physical network. To opti-
mize bulk freight lines, algorithms must provide a feasible schedule given the
available resources, basic operational constraints and varying demand while
ensuring resource allocations that minimise total cost. To be usable the al-
gorithm must run within reasonable time limits. This dissertation focuses on
the bulk freight train scheduling problem of full loads without track conges-
tion but extends to cover operational constraints as well as flexible resource
allocation and hubs. A problem outline is given wherein the constraints and
decision variables are well defined followed by a review of current literature.
An exact formation of the problem is given with benchmarking on small data
sets. A genetic algorithm is used to solve for schedules on larger problem
data sets. The algorithm was successfully implemented on the 60Mt Coal
Line in South Africa which provided notable improvements in efficiencies.
Discussion and results are provided.

Acknowledgements

I would like to thank David Lubinsky, my supervisor and employer at OPSI
Systems for the opportunity to work on a project of this scale, for his in-
sights and guidance as well as the time off to put the required pen to paper
for this dissertation.

To Transnet Freight Rail, in particular Hennie Muller and Deon van Niek-
erk, for their continuous feedback and suggestions that drove the prototypes
into production with great success.

To my family for their unrelenting support.

Contents

List of Figures 2

List of Tables 3

1 Introduction 4
1.1 Export Coal in South Africa 4
1.2 Freight Railway Features and Landscape 7
1.3 Bulk Freight . 11
1.4 Solution Approach . 17
1.5 Dissertation Outline . 18

2 Literature Review 19
2.1 Train Timetabling Problem 22
2.2 Locomotive Assignment Problem 32

3 Problem Formulation 41
3.1 Model Formulation . 41

3.1.1 Decision Variables . 46
3.1.2 Constraints . 47
3.1.3 Objective . 54

4 Test Data 55
4.1 Exact Search Results . 57
4.2 Heuristic Branch and Bound 59
4.3 Genetic Algorithm . 61
4.4 Implementation Results . 72

5 Conclusion 74

6 Bibliography 76

A Test Data 80

1

List of Figures

1.1 South Africa’s Rail Network and Coal Export Line 5
1.2 Single and double line workings 7
1.3 Problem Type 1 . 11
1.4 Problem Type 2 . 12

3.1 Space-time network example 42
3.2 Empty wagon set flow in the space-time network 43
3.3 Example of site collections for sites and hubs 48

4.1 Site Lane connectivity and relative position 56
4.2 Resource flow across all sites 58
4.3 Depth First Search with a ‘Look Ahead Heuristic’ 59
4.4 LAH Computational Results, small test data set 60
4.5 The Cycle of a Generational Genetic Algorithm 62
4.6 Model and Genetic Algorithm Interaction Diagram 64
4.7 GA run results, small test data set 66
4.8 GA run results, medium test data set 67
4.9 GA run results, large test data set 68
4.10 Large GA run, all objective function evaluations against av-

erage wagon makespan . 68
4.11 Large GA run, best solution train diagram 69
4.12 Multiple GA runs, average and best performance 70
4.13 GA improvement against starting objective values 71
4.14 Solution distribution at Generation 0 and 100 71
4.15 Coal Line tonnage: 3 week moving average from 2008/09 to

2011/12 financial year . 73

2

List of Tables

2.1 Courdeau [19] model grouping 19
2.2 BPMJSS Notation . 27
2.3 Booler’s Notation for the multiple class LAP 33
2.4 Wright’s Notation for the LAP 35

3.1 Notation used for the BFTSP 45

4.1 Test Data Set Summary . 55
4.2 Data attribute summary . 57
4.3 Exact search statistics . 57

A.2 Locomotive Set Class, ECP and Region Constraints 81
A.1 Site slot intervals . 82
A.3 Wagon Set Class, Size and ECP properties 83
A.4 Site pair allowable wagon configurations 84
A.5 Site-Site Travel Times . 85
A.6 Site Closure Times . 86
A.7 Demand breakdown for all test data sets 87

3

Chapter 1

Introduction

Rail networks provide a rich supply of mathematical problems of great va-
riety and scale. This dissertation focuses on the problems associated with
bulk freight, as opposed to general freight or passenger rail, with a particu-
lar problem instance in the South African context being described, modeled,
optimized and implemented.

1.1 Export Coal in South Africa

Transnet Freight Rail (TFR) is South Africa’s (SA) primary heavy haul
freight rail company responsible for 99% of all freight moved by rail. The
coal export line accounts for 30% of all volumes moved by the company at
around 70mta (million tons per annum). Coal exports are delivered to the
Richards Bay Coal Terminal (RBCT), the second largest coal terminal in
the world and largest in the southern hemisphere.

The railway line is broken into three portions, RBCT to Vryheid, Vry-
heid to Ermelo and North of Ermelo. The majority of loading sites are
situated north of Ermelo. Through the network more than 1000km separate
the farthest loading site and RBCT.

In order to move coal through this network, locomotives and wagons are
used. Locomotives are active rail vehicles which are able to pull wagons.
Wagons are used to transport coal from a loading site or loading terminal
to RBCT. Several classes of locomotives and wagons are found on the coal
line. Wagons come in two sizes; Jumbo (83 ton load) and Small (57 ton load).

Locomotive classes are differentiated by their power source. There are
AC, DC, Diesel and AC/DC locomotives used on the coal line. Within some
of these classes there are additional types which have different power ratings.

4

Figure 1.1: South Africa’s Rail Network and Coal Export Line

Diesel locomotives are used on portions of track which are not electrified.
The main line between RBCT and Ermelo is electrified with AC current and
the electrified sections north of Ermelo operate on DC current. Ermelo acts
as a staging yard where wagons are transferred from DC to AC locomotives
or vice versa.

The term train is used to describe locomotives which move wagons
through the network, between sidings, stations or yards. Trains vary in
size across the coal line. Trains on the main line can be between 100 and
200 wagons long while north of Ermelo they may be at most 100 wagons
when loaded. There are operational constraints that determine the maxi-
mum size of trains that may be operated on a line. This is largely governed
by the holding power of the brakes on the train given the track gradients
that will be encountered. It may be that a 200 wagon train may be operated
if the wagons are empty, but not if they are loaded.

TFR have been in the process of upgrading the braking system used
on their wagons, from the standard air-brake system to Electronically Con-
trolled Pneumatic Braking System (ECPBS or abbreviated ECP). The ECP
brakes allow for safer operation of trains. Incompatibility between the sys-
tems mean that one cannot mix ECP and non-ECP wagons in the same
train. This becomes a problem when creating larger trains out of smaller

5

ones, i.e. two 100’s combine to give a larger main line train. If their braking
systems are incompatible both will have to wait until another 100 wagon
train arrives before meeting the departure requirements.

Each of the yards on the coal line have limited capacity. The biggest,
Ermelo, can handle at most 2200 wagons simultaneously. Yard processing
times are affected by current inventory levels since space to place incoming
wagons may be limited and delays begin to occur. Only a few loading sites
can take more than 100 wagons at a time while others can take at most 50
small wagons.

The weekly demand at the 50 active loading sites is not static. Several
factors ranging from the mining schedules to the previous week’s demand
determine the demand mix for the coming week. Loading sites have hetero-
geneous wagon requirements, loading and travel times from their respective
hubs. Track and loading site maintenance impose additional constraints
on when trains may travel between sites as well as when trains may arrive
at certain loading sites. Determining feasible times at which trains should
service different loading sites, given the constraints above, is the primary
scheduling problem for the export coal line.

6

1.2 Freight Railway Features and Landscape

In most settings the primary focus in railway optimisation is the problem
of moving resources through the network in such a way as to minimise the
delay of trains. There are often many resources occupying the line (such as
passenger railways in Europe) producing complicated situations which re-
quire advanced heuristics to solve [19]. Congested networks are those which
operate trains with a high frequency and mix of train speeds often over
single line track where train movements need to be carefully planned. The
schedule is usually repeatable over some fixed period (typically a day or
week) and integration of both freight trains and passenger trains needs to
be taken into account.

Figure 1.2: Single and double line workings

Figure 1.2 illustrates a schematic view of the differences between sin-
gle and double line workings. In the single line example, there is only one
potential location where trains could pass one another between locations
A and B when traveling in opposite directions. However, if all trains are
traveling in the same direction, the network would support a maximum of 5
trains in section between A and B. The reason for this is the general safety
requirement that only one train may be permitted to occupy a section at
a time. A section is often defined by the signalling system that monitors a
particular section. If a train is occupying a section, a red light will be shown
at its starting location, indicating that a following train may not enter. An
orange light is shown if there is only one section between the current section
and an occupied section.

In the double line working example, a total of 9 trains may simultane-
ously exist in the network, four in either direction with one stationary in

7

the siding. Crossing points are provided to enable trains to navigate the
network should there be some kind of obstruction (such as a broken down
train or track maintenance taking place) on the line.

Railways typically use time slots at stations to indicate the times that
trains should depart. In some instances, slots represent the physical con-
straints of the spacing required between trains leaving a siding (for safety/
signaling reasons) or even the electrical grid constraints1 which play a bigger
role in bulk freight than passenger rail. In figure 1.2, station A has a set of
departure times in which trains may leave for station B.

In general, a slot will be defined between a pair of sidings or stations.
The Service Design is the set of all siding pair - slot combinations for a given
network, characterising the allowable movement times between all pairs of
sidings. In addition to the allowable departure times, the slots may have
additional constraints such as the maximum number of consecutive or total
slots which may be used in a period of time. The allocation of trains to slots
forms the first set of decision variables in the problem.

A task to be performed is triggered by the activation of a slot and is
interchangeably referred to as a job or load. The target number of loads to
be completed (also referred to as the demand) is an input to the problem
and failure to complete the demand in a given time frame will result in the
appropriate penalties being incurred in the objective function.

Historically, the process of selecting slots for departure (which trains
will run) has been dealt with independently of the locomotive assignment
problem. This is generally referred to as the Train Timetabling Problem
(TTP) and is concerned with selecting a set of slots for a particular period
in which trains may depart from different points. This generates a sched-
ule of planned departure times coupled with accurate arrival times created
by calculating the movements of trains through sections and their required
passing movements.

In passenger car scheduling, the scheduling is often done in such a way
as to take account of the expected demand at different stations and to max-
imise the profitability of the schedule. In freight networks, the total demand
and demand mix can vary significantly from period to period making a fixed
weekly schedule impractical.

1There is often only enough electricity to support a maximum number trains in a
collection of sections. The constraint is met by restricting the rate at which trains may
depart a section.

8

In instances where the demand and departure destination sequence for
a set of active slots is known (i.e. the timetable to execute is fully specified)
the difficulty in the optimisation is that of assigning locomotives to different
departures so as to minimise the cost. This problem is referred to as the
Locomotive Assignment Problem (LAP) and may present itself as a single
or multiple locomotive type variant. In general, the LAP is formulated as a
multi-commodity flow problem and is solved using mixed integer program-
ming (MIP) taking into account all the constraints, such as meeting the
traction requirements for each load as well as regional constraints.

Yard or hub2 operations are generally considered separately from the
TTP and LAP. The operations around processing incoming wagons3 into
categories are referred to as the grouping or blocking policy. This is often
used in freight networks for processing incoming wagons into different yards,
each of which has a common destination. Trains are then dispatched on fixed
slots once operational requirements such as a minimum or maximum num-
ber of wagons in a yard have been met.

Routing and makeup models [3] are used to determine the train frequency
required to meet customer demand given the blocking policies in a network
of yards. Integer programming models have been successfully used to model
this process in isolation. More recently, models have begun to accommodate
solving the TTP and Routing/Makeup Models simultaneously [27].

There are three common domains in which freight related problems are
classified:

1. Routing/Makeup Problem (RMP): Determining the required frequency
of trains between capacitated siding-destination pairs to meet cus-
tomer demands (wagon flows)

2. Train Timetabling Problem (TTP): The detailed movements of trains
through sections of track given the required frequencies between sid-
ings and tentative departure times from 1 above.

3. Locomotive Assignment Problem (LAP): Allocating locomotive re-
sources in the most efficient way to minimise the cost of executing
the schedule provided in 2 above.

Bulk freight refers to environments where resources are dedicated to the
task of supporting a particular line or network. Resources are allocated to
fixed sets and all wagon sets are loaded to their maximum capacity at a

2A yard is the common term for freight station
3In American literature, wagons are often referred to as ‘cars’

9

single siding. The bulk freight problem is not well studied in the literature
and requires solving several aspects of existing problems simultaneously to
achieve reasonable results. This is discussed further in Section 3.

This list is not exhaustive and there are several related problems per-
taining to empty wagon distribution, multiple carrier models and capacity
estimation. These related issues will not be covered in detail but may be
mentioned where applicable.

10

1.3 Bulk Freight

Railways that are designed for bulk freight distribution may have centralized
hubs or crossdocks where wagons are recombined (or broken up), in line with
grouping/blocking policies, into larger (or smaller) sets before completing
their next journey. Some reasons for this behavior could be due to differ-
ent electrical configurations on different sections of track and geographic or
loading site constraints which limit the length of trains. The makeup rules
involved are generally much simpler as large sets of resources are normally
maintained as units.

Figure 1.3: Problem Type 1

By its very nature, bulk freight generally deals with quantities on a much
larger, fixed scale. For example, a customer may order wagons in units of
100 equating to thousands of tons for a single train.

Sidings where goods are loaded are often referred to as ‘feeder sites’. In
bulk export the final destination of goods is generally a port or terminal.
Here goods are transferred from the wagons either directly onto shipping
vessels or, more generally, onto stockpiles organised by commodity grade
which are later loaded onto vessels using reclaiming equipment. Figure 1.3
illustrates the layout of the simplest instance type described in the literature
[38] and is described as the Coal Line Scheduling Problem.

The more complicated scenario that will be discussed is shown in Figure
1.4 where sets of feeder sites are serviced from different hubs with the service
being planned globally for the whole system. Trains which can be sent to
feeder sites are a function of the resources available at the source hub which
are in turn a function of prior trains which have been planned. A fully
integrated resource schedule is required to avoid infeasible plans. Different
train configuration rules are often required between different hubs and their
associated feeder sites.

11

Figure 1.4: Problem Type 2

The general constraints of the bulk freight scheduling problem are listed
below:

• Site - Locomotive Class exclusions
Feeder sites may exclude certain locomotive types due to operational
constraints. An example of this is when sites are not electrified, in
which case diesel locomotives would need to be dispatched.

• Site - Wagon exclusions
Wagon types may also be excluded from certain sites, this may be due
to the site being unable to accommodate larger wagons due to axle load
constraints on the track or have incompatible shunting locomotives at
the site itself. Certain locomotives may be unable to couple with
wagons due to different braking systems. Similarly, wagons may be
incompatible with one another.

• Site operating and maintenance hours
Sites may have specific operating hours in which loading may occur.

• Site reclaiming times
After loading has taken place at a site it will be unable to commence
loading again for a fixed amount of time. This is referred to as the
reclaiming time.

12

• Site specific loading/reclaiming times
Each site has a specific loading and reclaiming times. The loading
equipment available at each site generally drives the efficiency of the
loading and reclaiming time. More efficient equipment generally re-
quires greater capital investment and as a result is generally correlated
with larger customer demand.

• Multiple loading points within a site
This allows for more than one train to be loaded at a time.

• Loading sites may share a siding
This prohibits more than one train being loaded at a time between
multiple sites.

• Rapid vs mechanically loading sites
Mechanically loaded site are generally allowed to perform drop loads
where wagons are left at a siding to be loaded (due to the long loading
time) and locomotives return at a later stage to collect the wagons.
Locomotives and wagons do not decouple at rapid loading sites since
loading is normally completed quickly.

• Resource states
Locomotive empty (coupled with empty wagons), loaded (coupled with
loaded wagons) and light (no wagons coupled) travel speeds between
all pairs of sites4.

• Regional locomotive constraints
Individual locomotives may be bound to operate within certain areas
regardless of their class for convenience. For example, a diesel loco-
motive has no operational constraints prohibiting it from traveling to
any area. The locomotive may be required to remain within a certain
area (and be potentially under-utilized as a result) so that it can be
relied upon should another train break down in the area and require
assistance.

• Locomotive - Wagon exclusions
Locomotives may have incompatible braking systems with certain wagon
sets.

• Wagon - Wagon exclusions
Wagon sets may have incompatible braking systems with one another.

• Minimum headways between dispatches or arrivals
Safety regulations require a minimum distance be kept between trains.

4The travel time matrix is not typically symmetric in this setting

13

The time between trains is referred to as the headway and is the min-
imum time that needs to be kept between trains running in the same
direction either departing or arriving at a station.

• Maximum slot usage constraints
In order to treat the problem space of a bulk freight network inde-
pendently of all other network activities, there may be restrictions on
the number of slots that may be used in order to accommodate other
traffic passing through a common area. For example, a maximum of
3 consecutive slots may be used before at least one gap must be left
to accommodate other traffic that may be leaving from a particular
yard or station. The spare slots may also be required as “catch up”
capacity.

• Planned track occupations
The term occupation is commonly used in South Africa to describe
maintenance that is being performed on a section of track between
sidings. A Total Line Occupation refers to the full closure of a section
of track, prohibiting any movement of resources until a certain time, as
opposed to a fixed delay. As such, a single occupation may impact the
travel between several sidings. In practice, a train would not depart
a station knowing it was running into a total line occupation unless
there was significant confidence that the occupation will be lifted by
the time the train arrives at that section of track.

• Hub capacity constraints
Congestion within hubs/yards is common in practice. Due to the large
volume of resources that are being moved around, hubs may not have
the capacity to absorb all trains entering the hub if for some reason
they are unable to depart trains. A total line occupation on one side
of a hub would cause this to happen. The physical constraints of hub
capacity need to be respected to ensure that the schedule being pro-
duced is executable. There are certain feeder sites which may exhibit
the same property whereby there may be multiple loading stations in
which case the number of wagons in the siding may be constrained to
a certain total. The capacity constraint has been defined to handle
the maximum total number of wagons as well as the maximum total
number of empty and loaded wagons.

• Different possible train configurations between feeder-hub, hub-hub
and hub-terminal legs
Due to the track configuration and geographic constraints, different
train types are operated on different sections of track. A typical ex-
ample of this would be between the feeder sites, hub and terminal.
Smaller trains are used on the feeder leg and larger trains on the ter-

14

minal leg. This results in the hub combining the wagons arriving from
feeder sites into larger groupings which are then sent to the terminal.
Similarly, the hub will also split wagons coming up from the terminal
into smaller, empty sets, which are then sent to the feeder sites. In
instances such as this, it might be that certain locomotives can operate
on both the terminal and feeder site legs, but this is not generally the
case.

• Locomotives and wagons retained as sets of units
In many problems, such as the LAP, due to the variation in the size
of trains that are departed, much time is spent selecting locomotives
that best suit a particular load. In bulk freight scheduling, the size of
the loads is largely fixed over particular corridors. This enables the
operations to run more smoothly as the there is less un-coupling and
re-coupling of locomotives to create the best possible locomotive set
(or consist) for a load. Similarly, wagons are generally kept together
in sets whose smallest size generally matches the smallest number of
wagons that may be requested by a customer or moved through a par-
ticular corridor. The problem of assigning resources to trains can then
be handled at a set level rather than an individual resource level. This
has computational implications which are very favorable.

Bulk freight lines such as that illustrated in Figure 1.4 and described in
Section 1.1 exhibit a unique characteristic in that the schedule is not as much
a function of the capacity of the line but rather of the resources themselves.
The majority of the railway lines support traffic in both directions and in
some places even have an additional passing loop. Due to the uniformity
of the sizes of the trains (in terms of mass, not actual resource mix) most
trains move at the same speed, so orchestrating the passing of a slower train
only occurs when deviations occur due to unplanned resource failures.

There are many instances in which trains may deviate from a perfect
plan. Trains may not depart when planned because of drivers not being
available, equipment not being present or even resource failure to name a
few. The moment a train is unable to depart as planned (to a certain degree)
the current schedule becomes invalid.

A heterogeneous fleet of locomotives and wagons and the variable de-
mand means that having a periodic schedule is not possible in a setting
where the tightest constraint are the resources themselves. The volume of
commodity being moved is typically the chosen Key Performance Indicator
(KPI) resulting in trains being dispatched on a run when ready basis. This
means that if a train is ready prior to its planned departure time that it will
depart rather than wait in the interests of freeing those resources sooner for

15

another trip. A schedule that supports this behavior is required that can
utilize different slots in different periods and take advantage of the avail-
ability of different resource classes at different times given their prior trip
allocations.

Finally, the different travel, loading and reclaiming times and resource
constraints at feeder sites have a large impact on the slots which can be fea-
sibly selected to run on any day in the planning period. Greedily selecting
sites which process trains quicker will result in resources bottlenecking in
the future. Demand also needs to be consumed in a manner that matches
the tightness of different constraints and future expected constraints, based
on the current decisions, since resources will be recycled several times within
a single planning period.

16

1.4 Solution Approach

A model was built to describe the constraints, relationships and objectives
of the bulk freight train scheduling problem. Initially an exact approach
using branch and bound to solving the model was tried but did not scale to
larger problem sizes.

A heuristic method was developed in an attempt to solve larger prob-
lem instances. While the performance of the heuristic seemed acceptable
for medium sized problems, the Genetic Algorithm implemented as the final
solution was able to outperform it in a few minutes on much larger problem
instances and provide schedules which expert train planners could not find
fault with.

Due to the ease with which infeasible schedules could be produced, a
direct meta-heuristic approach was not used. Instead, a graph builder or
scheduler was used to interpret the permutations produced by individuals
in the population and create schedules that best matched the order of jobs
while still maintaining a feasible schedule. This indirect approach is not
uncommon in the literature and saves having to develop problem specific
constraints at the chromosome level as well as concentrating the search on
feasible regions of the search space.

17

1.5 Dissertation Outline

The literature review, Chapter 2, covers the areas where the majority of
academic research has been conducted with respect to two scheduling prob-
lems; the train timetabling problem and the locomotive assignment problem
(Sections 2.1 and 2.2 respectively).

Section 3 provides a formulation of the mathematical model for the bulk
freight scheduling problem. Section 4.1 outlines the computation complex-
ity of solving the formulated model and attempts to solve small problem
instances. Benchmarks provided by the exact search are used in Section 4.2
to test a heuristic branch-and-bound procedure.

The details of the Genetic Algorithm used to solve bulk freight schedul-
ing problem for realistic problem sizes are given in Section 4.3. Comparison
to smaller data sets and performance on larger data sets is provided.

Implementation details of the solution at TFR, resulting volume in-
creases and discussion are provided in Section 4.4.

18

Chapter 2

Literature Review

There is a plethora of different sub-problems in railway optimisation. Prob-
lems are commonly considered to fall into one of three horizons [3] of opti-
mization, namely:

• Strategic (>1 year)

• Tactical (1 week - 6 months)

• Operational (< 1 week)

The strategic domain is often concerned with large capital expenditure,
such as purchasing locomotives or constructing new sections of track, which
requires a long lead time on the decisions being made. Tactical decisions
relate to the time table for the next period and the operational tier is con-
cerned with the immediate window of execution. Within each of these do-
mains there exist several sub-problems which are often specific to particular
case studies.

Courdeau [19] provide an excellent survey of the freight railway schedul-
ing landscape up to and including 1998. Major works were classified by their
planning horizon, problem type, model structure and solution approach.
Models are grouped into major categories either falling under the freight
routing or scheduling domain as given in Table 2.1.

Freight Routing Scheduling

Analytic Yard Models Analytic Line Models
Blocking Models Train Dispatching Models

Routing and Makeup Models Locomotive Assignment Models
Freight Car Management Models

Table 2.1: Courdeau [19] model grouping

19

Freight routing models focus on the movement of wagons through the
network rather than the trains themselves [19]. The objective is generally to
minimise the cost associated with moving freight through the network given
that it will need to be classified into blocks of similar freight at different
yards that have a common destination. There are limits on the amount of
work that can be done in different yards.

Bodin et al [6] (1980) were the first to formulate the blocking problem
as a mixed integer programming problem (multi-commodity flow problem)
with the additional constraints of yard capacity and block size constraints.
It is noted that solving for the optimal blocking strategy within a yard can
lead to a globally sub-optimal solution due to yard congestion. As a result,
the formulation across all yards in the network is solved yielding the distri-
bution of classification work to be done at different yards throughout the
network. Since the work of Bodin et al [6], many variants have been solved
using dynamic programming, branch-and-bound, Lagrangian relaxation and
other heuristics. In the context of bulk freight scheduling these models are
not applicable in their traditional form as there is no wagon reclassification
or blocking required in bulk freight, since all resources already operate in
fixed sets.

Train dispatching models are concerned with minimizing train delays or
deviations that occur due to the required meet/pass movements of trains
in the network according to a planned schedule. It is common to represent
the problem as a MIP and to solve this using a heuristic decomposition.
The models have been extended to cover variable velocity trains and gener-
ally incorporate the required headway between trains. Carey and Lockwood
(1995) [17] modeled a relatively small single line network consisting of 10
trains and 10 links and reported good results using a branch-and-bound
procedure. Recent works have modeled this problem more generically using
the Job-Shop Scheduling framework [37].

The assumption of independence between problem landscapes leads to
suboptimal solutions for problems which in reality lie across multiple do-
mains. Many of the works prior to the work of Gormon (1998) [27] dealt
with the optimization problems related to freight rail in isolation from one
another. Not only was Gorman the first to tackle reasonably sized com-
pound problems but also the first to do so using evolutionary algorithms
with hybrid schemes.

Gorman’s [27] approach to solving the weekly routing and scheduling
problem was to discretise the time horizon into hours and use a simple ge-
netic algorithm (SGA), with binary encoding, to determine the selection of
trains to operate. Once an individual in the population has been generated,

20

its objective function value is determined by solving the traffic-assignment
problem for the resulting selection of services. Gorman notes a result from
Davis [21] is that problem specific operators or directed operators can be
used in genetic algorithms without loss of generality. As such, Gorman uses
a tabu search (TS) to increase the search performance.

Gorman [27] also implements a bit slide mutation operator in the genetic
algorithm (GA) which randomly moves an existing bit to the left or right
of its current position, analogous to moving an existing train to either an
hour earlier or later. The TS is implemented by copying an existing solu-
tion in the population, modifying it using the TS, and then re-evaluating
the objective function. Both solutions are added back to the population
with the normal selection operators determining which individuals will be
preserved in the following iteration of the GA. The TS takes advantage of
the information in the demand-flow aspect of the problem such as adding in
additional trains when demand has gone un-serviced.

It was reported that as the problem size grew, the performance of the
genetic algorithm degraded when used on its own. The convergent perfor-
mance of the GA was matched by the GA-TS within 6% of the original
number of iterations and instances which had never seen a feasible solution
under the pure GA were experiencing 100% success rates under the GA-TS.
Gorman notes that the solution quality under the GA-TS also deteriorates
slightly as the problem sizes increase. A 3.8% decrease in operating cost
was reported when compared to existing operating plans to the results of
the GA-TS solutions.

The remainder of this literature review deals with the TTP and LAP as
separate problems which is a reflection of the way it has been handled in the
literature. There is one exception when the LAP does not need to be solved
in practice, namely the coal train scheduling problem as coined by Liu and
Kozan [38] where resources maintain a fixed 1-to-1 mapping with trains in
the network. This paper has some characteristics that closely resemble the
bulk freight scheduling problem and is discussed extensively at the end of
the TTP section.

21

2.1 Train Timetabling Problem

Line activities refer to general traffic between different locations, normally
some distance apart. This includes overtaking/priority rules for passing and
dispatching conditions. The dispatching decision is similar to a machine
scheduling problem where trains correspond to jobs and machines to track
sections1 [2]. It is possible to formulate this problem as an integer program
but this is limited to only being able to solve problems with a small number
of sections with the objective on minimizing the total travel time [43]. Many
works have been published in recent years using different heuristics to solve
the Job Shop Scheduling Problem (JSSP) which include genetic algorithms
[40], guided local search [4], memetic algorithms (MA) [18], hybrid genetic
algorithms [31] and hybrid ant-colony optimisation [33].

More complicated, problem-specific heuristics have been built up over
many years to solve the timetabling problem starting with the benchmarks
set by Cai and Goh (1994) [13] in terms of performance. The authors found
that they experienced O(NK) 2 average running time where N is the num-
ber of trains and K is the number of passing loops. The algorithm presented
did not extend to cover double line workings. Cai and Goh (1998) [14] pre-
sented an extension of this algorithm that was implemented as a real time
train dispatching system in an Asian railway.

Higgins et al [30] (1997) model the single line scheduling problem us-
ing a non-linear MIP and solve it to optimality in several instances using a
branch and bound approach. Their model is targeted mostly for use in the
live environment as a decision support tool to train monitors. They however
demonstrate the capability of the procedure for evaluating the strategic im-
plications of additional trains given a network of stations.

The model is later extended to iteratively determine the number and lo-
cation of sidings on a single track corridor given a fixed demand [32]. In the
same year, Higgins et al [31] examined the use of different heuristics such
as GAs, TS and two hybrid algorithms to solving the train scheduling prob-
lem by comparing the results of the heuristics to the optimal obtained from
the methods presented in [30]. They reported that the genetic and hybrid
algorithms were within 5% of the optimal for at least 90% of the test cases.
The GA found the optimal solution 50% of the time with the TS being less
successful only finding the optimal 10% of the time but performed better
on larger problem sizes when time constraints were enforced. The hybrid
algorithms performed the best on average but at a computation cost of 7

1The machine scheduling problem is referred to as the Job Shop Scheduling Problem
(JSSP) in current literature.

2The worst case performance is given as max{O(N4K), O(N3K2)}.

22

times more than the GA.

Caprara et al (2002) [16] present a particularly well cited paper on the
train timetabling problem in which they present a proof that any TTP can
be transformed into a Max-Independent Set Problem (MISP) demonstrat-
ing that it is NP-hard. Two graph theoretic models are presented in this
paper, the first of which is not solved for two reasons; firstly, it would not
scale to large size problems without heuristic decompositions, and secondly,
the heuristic decomposition resulted in too many lagrangian profit variables
making it impractical for real world instances.

The second graph model presented models the track constraints through
the nodes of the graph instead of the arcs, resulting in far fewer lagrangian
profits in the decomposition. The model presented allows for the removal
of trains from the schedule. An iterative two phase heuristic is applied.
Firstly, trains are ranked in descending order of their lagrangian profit and
are scheduled one by one. Since all other existing trains in the solution are
fixed, the optimal insertion for each preceding train (Tp) that is scheduled
can be found by finding the set of minimum cost arcs to accommodate Tp.

The second phase is a refinement heuristic which, in an arbitrary or-
der, compares the actual schedule times to the ideal schedule times for each
train in the schedule. If any of the scheduled times do not correspond, a new
path is calculated which is maximal with respect to the actual profit (not
the profit which was maximal with respect to the lagrangian weights). The
old path is then updated with the new one. The heuristic then attempts
to add back any unscheduled trains which may have been left off due to
previously negative lagrangian multipliers which may now be positive due
to the updates in the previous phase of the heuristic. A complicated sub-
gradient optimization procedure updates the lagrangian multipliers in the
next relaxation to be solved.

The model allowed for different penalties on lateness for different trains.
As a result, high speed passenger trains received higher penalties than freight
trains in their computational experiments. They reported gains of between
0.3% and 20.8% over a greedy heuristic. Run times were very acceptable on
the hardware of the time (500Mhz Workstation) taking at most 11 minutes
on real world data. Not surprisingly, the largest gains over the heuristic were
on artificial data sets which were designed specifically to test large congested
instances. The largest data sets took around 92 hours to solve.

Caprara et al (2006) later present an updated model which uses a simi-
lar formulation but with stronger constraints on overtaking which dominate
existing constraints in the model by assuming that trains move at a con-

23

stant speed between stations [15]. Argument is given that the finer grained
details of train movements in the operational landscape do not need to be
incorporated in the planning model and that the schedule produced is still
feasible. The benefit of the additional constraint set is that the dominated
constraints can be excluded and the subgradient optimization procedure
has a much improved running time as a result without affecting the solution
quality significantly.

Kwan and Mistry [34] (2003) present a co-evolutionary strategy for solv-
ing the timetabling problem for the UK passenger network. Train Operating
Companies (TOC’s) bid for track time and their objective is to produce a
schedule that best accommodates all of the role players through their soft
constraints whilst meeting all hard constraints. An example of a soft con-
straint is that of arriving at a particular station within a certain window.
Train schedules are revised on a 6 monthly basis and the bidding for new
trains to operate on the network commences around 18 months prior to the
schedule being published.

The strategy employed in solving the problem stems from there being
three sets of decision variables in the problem, namely: departure times,
scheduled run times and resource options at a station. Each of these deci-
sion variables is deemed a species and is evolved while holding other decision
variables fixed. Collaborating species, against which the individual species
is being evolved, are chosen using tournament selection with a tournament
size of two. Other species are then selected for evolution. The type of al-
gorithm used to evolve individual species is a function of the underlying
data structure used to encapsulate the decision variables. A simple genetic
algorithm [26] is used for species that implement a binary encoding. Depar-
ture time decision variables are represented as an integer array with each
increment representing a 30 second period. An adaptive step-size mutation
Evolutionary Strategy (ES) [29] with a gaussian mutation operator is used
to solve for the departure time decision variables.

At the time of publication, UK division Railtrack were using custom train
software which implemented a Simulated Annealing (SA) meta-heuristic
to solve the timetabling problem. Results on the co-evolutionary strat-
egy showed that it outperformed the SA significantly and bested it on all
evaluation criteria except for one which was a soft constraint. Run times
were fractionally slower than the SA but negligible when compared to the
cost savings achieved. The strategy used was not tested against an exact
formulation on a small test instance.

Semet and Schoenauer (2005) [42] present a memetic algorithm to solve
the problem of handling small perturbations in real world scheduling prob-

24

lems. The memetic algorithm is a hybrid algorithm consisting of an evolu-
tionary strategy with a mathematical programming tool, namely, CPLEX3.
A mapping function, or scheduler, is used to translate the permutation of
requested trains within the evolutionary algorithm into a valid schedule,
by inserting the trains in their requested priority into an initially empty
schedule, one by one. This means that each train that is inserted is locally
optimal but the train itself could have a sub-optimal route overall. The
authors note that implementing a more complicated method to insert trains
optimally would have come at far larger computational cost but also that
optimal schedules may exist in a portion of the solution space which is in-
accessible by the permutation coupled with the heuristic insertion. They
cite development and computational cost as well as a larger search space as
motivation for not extending the heuristic insertion algorithm.

The Evolutionary Algorithm (EA) proceeds as normal but after the pop-
ulation reaches a convergence criterion the best solution is passed to CPLEX
as an initial starting solution. This high quality starting solution allows
CPLEX to start from an area of the search space which allows its branch-
and-bound algorithms to prune much larger portions at a time. There is no
iterative feedback between CPLEX incumbent solutions and the EA. Using
the EA as a seed to CPLEX allowed for achieving near optimal results in 4
as opposed to 24 hours. The authors reported that the average performance
of the hybrid algorithm was superior to CPLEX alone in almost all instances
by approximately 14%.

Tormos et al (2008) [44] constructed a GA to solve the TTP for the Span-
ish Manager of Railway Infrastructure (ADIF) which was packaged and is
being used successfully by ADIF. Unlike the indirect GA representation used
by Semet and Schoenauer [42] (which uses a scheduler to interpret the genes
and construct feasible schedules) Tormos et al [44] use a direct chromosome
representation widely used in project scheduling. A list of activities with
precedence constraints is used as the gene structure and parsed into feasible
schedules by resolving conflicts according to the priorities specified in the
genes. The authors note that many permutations are equivalent in that they
will produce the same schedule since differences only arise when conflicts are
resolved.

A feasible initial population is formed by a novel heuristic scheme. Each
next activity to be added to the schedule across all trains is biased according
to the regret of not including that activity. The bias is calculated by mea-
suring the current deviation against the optimal running time of the train.

3CPLEX is IBM’s ‘High-performance mathematical programming solver for linear pro-
gramming, mixed integer programming, and quadratic programming’

25

Thus, trains which are deviating as the schedule is being built get their move-
ments probabilistically prioritized over other trains. This method is referred
to in the literature as Regret-Based Biased Random Sampling (RBRS).

Uniform crossover operators are used but modified to keep the relative
precedence constraints when merging activities from two parents. The mu-
tation operator randomly selects a new position for an activity within the
allowable portion of the gene that will not violate the precedence constraints.
Standard tournament selection with a tournament size of 2 is used as the
selection operator.

Tormos et al [44] present their results by comparing the final solutions
obtained by the GA against two seeding mechanisms, the RBRS scheme
presented, and a pure random train selector. Both run for an equivalent
amount of time. The RBRS outperformed the random selection scheme by
around 5.7% across all test cases. Since the GA uses the RBRS scheme as
part of its initial seeding we would be very surprised if it performed worse
than the RBRS on average. However, the authors report that the improve-
ment of the GA over the RBRS scheme is proof of its efficiency in solving
railway problems, a claim which is not fully substantiated or supported. The
authors did not compare the performance of the GA, given a RBRS gener-
ated population, against a hill-climbing or random search algorithm given
the same starting solution. The GA reduced deviation in the schedule by
an average of 8% over the best of the RBRS results across the test instances
reported.

Kozan and collaborators have been working on the train dispatching
models over many years. Staring with optimal branch-and-bound techniques
already mentioned (1996) [30] for single line workings, heuristic benchmark-
ing (1997) [31], capacity determination (2006) [9], modeling the problem as a
JSSP (2008) [10], extending the model to a Blocking Parallel-machine Shop
Scheduling Problem (BPMJSS) (2009) [37], inserting trains in an existing
timetable (2009) [11] and addressing the adjusting of timetables to handle
perturbations and unnecessary overtaking (2009) [12].

More recently, Liu and Kozan [38] (2011) have addressed the problem of
“optimizing a coal rail network under capacity constraints”. This paper is of
particular interest to us as it most closely resembles a subset of the problems
we face in bulk freight scheduling. The model presented is an extension of
that presented in [37] where jobs are represented by trains, single line tracks
are modeled as machines and double line sections as parallel machines. A
constructive heuristic inspired by the shifting bottleneck procedure (SBP) is
described in [36] which constructs a feasible initial solution to the BPMJSS
problem. The feasible solution is then improved through the use of the Tabu

26

Symbol Definition

n number of jobs

m number of machines

Ji job i (i = 1, 2, ..., n)

Mk machine k (k = 1, 2, ...,m)

hk the number of units on machine k

ukl the lth unit of machine k (l = 1, ..., hk)

o index of sequence position of operation in one job (o = 1, 2, ...,m)

silk the starting time of job i on the lth unit of machine k

pilk the processing time of job i on the lth unit of machine k

Cmax the maximum completion time or makespan

riolk = 1, if the oth operation of job i requires the lth unit of machine k
= 0, otherwise

xilk = 1, if job i is assigned to the lth unit of machine k
= 0, otherwise

yijlk = 1, if both jobs i and j are assigned to the lth unit of machine k
and job i precedes job j (not necessarily immediately)
= 0, otherwise

wijolk = 1, if the oth operation of job i requires the lth unit of machine
k and job j is scheduled on this same unit as its successor (not
necessarily immediately)
= 0, otherwise

L a very large positive number

Table 2.2: BPMJSS Notation

Search (TS) meta-heuristic.

The notation (Table 2.2) and mathematical formulation for the BPMJSS
is given as follows:

27

Minimise Cmax. (2.1)

Equation (2.1) is the objective function which is to minimise the makespan.

hk∑
l=1

m∑
k=1

riolk(silk + pilk) ≤
hk∑
l=1

m∑
k=1

ri,o+1,l,ksilk o = 1, 2, ...,m− 1, ∀i. (2.2)

Equation (2.2) ensures the starting time of the (o + 1)th operation is no
earlier than the finish time of the oth operation of job i.

silk ≥ sjlk + pjlk + L(yijlk − 1) ∀i, j, k, l. (2.3)

Equation (2.3) restricts that both jobs i and j are processed on the lth unit
of machine k and job i precedes job j (not necessarily immediately).

sjlk ≥ silk + pilk + L(yjilk − 1) ∀i, j, k, l. (2.4)

Equation (2.4) restricts that both jobs i and j are processed on the lth unit
of machine k and job j precedes job i (not necessarily immediately).

yijlk + yjilk ≤ 1 ∀i, j, l, k. (2.5)

Equation (2.5) restricts that the conditions in (2.3) and (2.4) are exclusive.

hk∑
l=1

m∑
k=1

xilk = 1 and xilk + xjlk − 1 ≤ yijlk + yjilk ∀i, j, k, l. (2.6)

Equation (2.6) restricts that each unit can process at most one job at a time.

hk∑
l=1

m∑
k=1

rimlk(silk + pilk) ≤ Cmax ∀i. (2.7)

Equation (2.7) restricts the completion time of the mth (i.e. last) operation
of each job to be no earlier than the makespan.

silk, pilk ≥ 0 ∀i, l, k. (2.8)

Equation (2.8) satisfies non-negativity condition.

n∑
j=1

hk∑
l=1

m∑
k=1

rjolksjlkwijolk ≥
hk∑
l=1

m∑
k=1

ri,o+1,l,ksilk, i 6= j; o = 1, 2, ...,m−1; ∀i.

(2.9)
Equation (2.9) defines the blocking conditions and satisfies the starting time
of successors on the same machine should be greater than or equal to the
starting time of successors of the same job, for each operation.

28

The authors note that that a key aspect of this model is that is has the
ability to block a machine if it cannot start the next job on another machine
immediately after its current job. This is required to correctly model the
true nature of line capacity when scheduling trains through a network.

Liu and Kozan [38] describe the Tabu Search operations used in their
computational experiments as an exchange (an E-Move) and remove/re-
insert operator (an I-Move). The E-Move swaps two jobs in the permutation
sequence while the I-Move moves a job from position a to b. The sets of
moves between these two operators are not mutually exclusive and redun-
dancy checks are performed to avoid spurious operations. The unrestricted
neighborhood of the TS is defined as a function of the possible operations
with respect to a pre-specified job sequence, the computational complexity
of which is O(n2) since there are (n−1)2 possible E-Moves and I-Moves, not
taking into account duplicates. The authors note that this neighborhood is
too large and they reduce it to only consider E-moves between adjacent jobs
in the current sequence. This reduces the neighborhood size to O(n) with
reasonable constants.

The algorithm developed was used to determine the feasibility of a dedi-
cated export line in Australia. The line modeled had 41 sections and demand
from 3 mines (with 9, 24 and 10 loads each) totalling 43 trips that needed
to be made. The loading time at the mine was assumed to be 4.3 hours
and 5 hours offloading at the terminal. Seven trains were made available to
complete the work. A train is defined in this context as a fixed allocation of
locomotives (4) and wagons (280) which remain as a unit for the duration
of the whole schedule4. Headway between trains is ignored, presumably due
to the limited number of sections.

There is a problem in the way in which results are presented in this pa-
per. The authors present a “random” permutation for the order in which
the mines will be serviced by the terminal which is not random at all. The
authors concede that there is no doubt that the initial random train sched-
ule is not ideal but do nothing to rectify the situation. Results stating
the ‘increase in capacity’ (stated at 38.81%) of the algorithm are compared
against the ‘not ideal’ baseline solution. This is an attempt to overstate the
performance of the algorithm and perhaps the difficulty of the problem faced.

Given the estimate of the lower bound on the makespan assuming no
track, terminal or mine conflicts occur is 135.12 hours, we can calculate, on
average, the time spent loading or unloading as 43

7 (4.3 + 5) = 57.12 which

4This assumption is relaxed in the bulk freight scheduling model presented in Section
3.

29

suggests that around 42% of a train’s time is spent either in the terminal or
at a mine. The baseline solution used by the authors forces immediate queu-
ing at the mines in an absolute worst case scenario since all trains depart
immediately after one another (within their section constraints) having been
allocated to do all the work for the first, second and then third mine. As a
result, trains arrive at an interval governed by the longest section traversal
time between the trains en route from the terminal to mine 1. This means
that the second train which arrives waits for the first to load5, the third
waits for the second and first to load and so forth. It can be seen from the
train diagrams presented their paper that the queue length grows to a size
of 7 at the first mine with the first train actually offloading and returning
for its second load from mine 1 to find a queue of 4 trains still waiting to be
loaded. There are two offloading points in the terminal which allow for the
faster processing of trains than at any individual mine.

There is no simple way to derive an accurate estimate of how over-inflated
the baseline solution is given the information provided by the authors. A
more thorough analysis would have measured the performance of the algo-
rithm against a sufficiently large sample of random permutations.

It is also unfortunate that the authors did not consider a hot start6 of
resource positions. It is clear that conflicts at the mine are the tightest con-
straint in this problem space given that there are 7 trains moving through
the network and only 3 mines to send them to. The moment 4 trains are
en route to mines we would expect at least 1 conflict (since the travel time
to a mine is less than the loading time at the mine). The authors did not
comment on the systematic waves of resources queuing to load and then
queuing to offload throughout the period as a result of the poor resource
starting positions. Instead they chose to state that a ‘near-optimal’ result
had been achieved with massive efficiency increases over what was a worst
case scenario baseline example. There is no question that the timetable pro-
vided may be ‘near-optimal’, however, it is far from the actual capacity of
the line being studied due to careless data configuration.

The problem presented in this last paper most resembles the bulk freight
scheduling that is examined in greater detail in this dissertation. Real-world
bulk lines need to take consideration of additional penalties caused when ex-
cessive queuing takes place. Due to the size of the trains, stopping several
resources on the line back-to-back due to poor scheduling does allow for
the resources to complete the remainder of their tasks in the time originally

5Since the loading time at the mine is far greater than any single section traversal time
6It is not realistic to expect all resources to start in exactly the same location at the

same time. A typical solution is to iteratively take the positions at the end of one schedule
and use them as the starting positions of the next until a steady state is reached.

30

planned.

As an example, if a train is forced to be delayed by a few hours outside a
mine, this will cause the crew to run out of working hours on the return leg
to a hub or terminal. Strict labour laws govern that drivers may not work
beyond a set number of hours and as a result this will require a new set of
crew to be dropped off at the mine, potentially causing a further delay in
the trains departure back to the hub or terminal.

In a less ideal (but not uncommon) situation, the same crew return with
the train from the mine, resulting in a crew exchange being performed on
the main line potentially blocking other trains moving through the network.
The model presented in Section 3 attempts to address some of the more
practical constraints which are required when modeling a bulk freight net-
work.

31

2.2 Locomotive Assignment Problem

Another area of railway optimisation which has received great attention is
that of locomotive assignment. This problem is concerned with providing
enough locomotive power for a particular train and allocating locomotives in
such a way as to minimise the deadheading or light locomotive movements,
thus reducing costs and increasing utilization. Locomotives are the single
most expensive rolling stock item and as such, poor utilization is heavily
frowned upon.

A consist is the term used to describe a collection of locomotives coupled
together. Light locomotives are locomotives which are traveling through the
network without any freight cars or wagons attached. A Deadheading loco-
motive is a locomotive which is part of a consist but it not actively involved
in the hauling of freight. This may occur when locomotives are being repo-
sitioned in the network and are ‘hitching a ride’ with another train to get to
their destination at small cost to the railway. Additional time and opera-
tional costs may be required to add deadheading locomotives to an existing
consist (before departure and then on arrival).

Light locomotive movements may be required to balance the distribution
of locomotives in the network in order to meet future planned trains if the
service is imbalanced, which may be a result of tonnage moving more in one
direction than another [23]. Light locomotives are also used when picking
up loads from sidings that may have long loading or processing times; like-
wise, light locomotives would have returned to a hub after dropping the load
off. Intelligent assignment of locomotives would increase the utilization of
light locomotives by ensuring that if a locomotive dropped off a load in one
siding, that there would be another load nearby that it could collect, thus
reducing the time spent running light.

Florian et al (1976) [23] formulated the Locomotive Assignment Prob-
lem (LAP) as a mixed integer program and achieved satisfactory results for
medium sized problems and disappointing results for larger problems us-
ing Benders decomposition [5]. A critical assumption made in the model
proposed by Florian is that a fixed schedule of departure/arrival slots for
the period already exists, i.e. the train timetable has already been solved
independently of the LAP as well not having to select locomotives from an
existing fleet.

Given a set of jobs (movements between various stations and depots) to
be completed on a day7 Booler [7] describes the locomotive scheduling prob-

7To be repeated cyclically

32

Symbol Definition

n number of jobs

m number of locomotive classes

Ak be the set of jobs which can be worked by locomotive of class k

yki = 1, if job i is allocated to a locomotive of class k
= 0, otherwise

xkij = 1, if a locomotive of class k works job j immediately after com-
pleting job i
= 0, otherwise

ckij the cost incurred when xkij = 1

Table 2.3: Booler’s Notation for the multiple class LAP

lem as one of “finding the set of working locomotives which can complete
these jobs at a minimum cost”. In Booler’s formulation, each job may have
a fixed starting time or a range of starting times. Other characteristics of
the job must also be specified, such as an arrival and destination point, the
duration and type of job. A range of starting times must be specified as a
list of starting times with fixed intervals. The type of the job determines
the compatibility with different locomotive types.

Booler’s notation is given in Table 2.3 and the formulation is summarised
below:

33

Minimise

z =

m∑
k=1

∑
i∈Ak

∑
j∈Ak

ckij .xkij . (2.10)

Subject to ∑
j∈Ak

xkij − yki = 0 (i ∈ Ak) , k = 1, 2, ...,m. (2.11)

∑
i∈Ak

xkij − ykj = 0 (j ∈ Ak) , k = 1, 2, ...,m. (2.12)

m∑
k=1

ykj = 1, j = 1, 2, ..., n. (2.13)

where
xkij = 0 or 1 and yki = 0 or 1. (2.14)

For the given values of the variables yki, the equations (2.10) - (2.12) form
m assignment problems, one for each locomotive class. The assignment
problems are linked by the n equations (2.13) which ensure that each job is
allocated to a locomotive.

Booler uses a similar formulation to [23] except that a heuristic method is
used whereby feasible integer components of the formulation are first found
by choosing arbitrary values for variables yki and the resulting m assignment
problems (2.10) - (2.12) is solved optimally. The values of yki are then tested
for improvements by solving the dual of the existing model. Booler reported
that the results were encouraging and perhaps worth pursuing. Booler later
proposed Lagrangian Relaxation (1995) [8] as an effective alternate means
to solving the same formulation.

Wright [47] built on the works of Florian et al and Booler by applying
stochastic heuristics to solving the locomotive scheduling problem. A more
elegant formulation was developed by Wright which does not consider the
complex costs associated with allocating a locomotive to a single train, but
rather the cost of connecting two trains i and j, cij .

Three heuristics were tested for the given formulation. Wright does not
allow for a range of departure times and uses a cost function which penalizes
missed departures by a constant for each midnight that is passed before the
trip is made. The number of minutes taken to travel light is weighted by a
constant allowing for specification of the variable cost of the schedule. Of
the three algorithms tested by Wright the Simulated Annealing approach
yielded the best results, outperforming his deterministic methods (Wright’s
variation of the standard Hungarian Algorithm [46]) on all but one problem
instance.

34

Symbol Definition

i, j train indicies

t is a locomotive type index

cijt is the cost of train j following train i, with train i assigned loco-
motive type t

xijt is a zero-one variable which is one if train j follows train i and
train i is assigned locomotive type t

δit = 1, if train i may legally be operated by locomotive type t
= 0, otherwise

Table 2.4: Wright’s Notation for the LAP

An exact solution is derived for the locomotive scheduling problem by
Forbes et al [24]. This was done through the same methodology developed
for the multi-depot bus scheduling problem [25]. Forbes et al [24] show
that the bus scheduling problem with one depot and multiple depots are
equivalent to the locomotive assignment problem with one and multiple
locomotive types respectively.

The multiple-depot bus scheduling problem has been formulated as a spe-
cialized form of the transportation problem with side constraints, namely
the multi-commodity flow problem where the commodities are locomotive
types and each train is represented by two nodes, for the start and end of a
trip. The problem is solved directly as an integer programming problem and
the authors present their results on the same data used by Wright [47]. The
notation used by Forbes et al is given in Table 2.4 and formulation provided
below:

35

Minimise ∑
i,j,t

cijtxijt. (2.15)

Subject to ∑
j,t

xijt = 1, ∀i. (2.16)

∑
j

xijt −
∑
j

xjit = 0 ∀i, t for which δit = 1. (2.17)

xijt and cijt exist only when δitδjt = 1. (2.18)

Constraints (2.16) ensure that each train is assigned to a unique successor.
Constraints (2.17) then ensure that a train is assigned the same locomotive
type as its successor.

Two sets of directed arcs, within train i from its start node to the end
node, and between trains from the end node of train i to the start node
of train j, ensure that the flow of locomotive types, xijt, given constraints
(2.16), service all trains only once. Forbes et al specify a cost function that
takes into account key factors such as; running light, the cost of operating
train i with locomotive type t and the cost of operating locomotive type t.

The authors note that the problem is NP-Hard in its integer form but
by relaxing the integrality requirements of (2.15) the resulting linear pro-
gram is solved and then transformed back to an integer solution using a
branch-and-bound procedure with five prioritized strategies. To solve the
relaxed version of (2.15) Forbes et al use the same method as Wright [47] by
dropping the locomotive class restrictions, leaving a much easier assignment
problem to solve.

Forbes et al [24] solved the model on the same data used by Wright [47].
It is interesting to note that in almost half of the problem instances tested,
that the gap between the solution found by the linear relaxation and the
final optimal solution was zero. In the remaining instances, the optimal was
within 1.1% for all instances.

Ziarati et al (1997) [48] present a model driven by a case study for Cana-
dian National Railway Company. The model is complex in that it requires
multiple locomotive classes to be assigned to meet power requirements for
each train as well as meeting other constraints such as: critical service stops
that need to be made, time windows and power requirements for the coming
week. The complexity of the problem was added to by 26 locomotive types,
each with different power ratings. The solution approach presented is two
fold; a Dantzig-Wolf decomposition [20] followed by heuristic branch-and-

36

bound based on a depth first search.

In order to accommodate the large problem size (1249 locomotives and
1988 train segments) the authors split the week into a sequence of overlap-
ping two-day periods and solved the resulting 7 problems individually. The
authors note that the average gap between the integral relaxation and the
final solution was quite high at 5.46%. Run times for each of the two-day
overlaps were around 30 minutes. A three day rolling solution was attempted
but with much longer run times at 4 hours per solution, resulting in around
21 hours of computation for a week’s schedule.

The results were compared with the current allocations in use at Cana-
dian National Railways and resulted in 7% and 7.5% savings in locomotives
and power consumption for the 2-day and 3-day overlap scenarios respec-
tively. The additional runtime of the solution for the 3-day overlap is well
justified as a 0.5% improvement equated to $2million in annual savings at
the time of writing. Several years later, Rouillon et al (2006) [41] present an
improved branching strategy over the depth first search originally used by
Ziarati et al and was able to find solutions which had savings of an additional
$20,000 per day over the solution of Ziarati et al at triple the computation
time.

Noble et al [39] present a variant of the LAP which has similar prob-
lem aspects to those already discussed [23] [48] except that in the instance
solved for PTC (Public Transport Corporation) no light locomotive move-
ments were permitted for operational reasons. The authors acknowledge
the attempts of others to solve the problem but note that formulations used
required complicated decompositions to solve heuristically. The authors at-
tempted to solve the problem using a straight-forward formulation but found
that the optimality gap of 30% could only be reduced to 20% by using sev-
eral tactics.

The locomotive allocations are expressed as as special ordered sets (SOS18)
of type 1, converting the problem from selecting the number of each locomo-
tive class to assign to a train, to a problem where the locomotive permutation
from the SOS1 must be chosen. Sets are expressed in the order of their min-
imal coverage to satisfy the train requirement up to the maximum number
of 4 locomotives permitted on any particular train. Binary variables were
provided for each train service representing the number of valid permuta-
tions for that service. By reformulating the problem the resulting relaxation
provided a solution within 0.5% of the optimal which was found within a

8SOS1 is a set of ordered variables where at most one can take on a strictly positive
value.

37

second of CPU time.

Ahuja et al (2005) [1] present a richer model for solving the LAP. Their
model considers the cost of splitting a consist of locomotives and having
to reform them, an operational complexity which is not only time consum-
ing but causes logistical difficulties as well. The consistency of allocations
throughout the period is also taken into account, meaning that a train that
departs between a origin/destination pair every day of the week at the same
time should ideally be allocated the same locomotive consist. This makes it
easier for the dispatching manager to remember the rules of the schedule.

The MIP model presented encapsulates the preferences of keeping loco-
motives together in direct train-to-train connections by adding additional
arcs directly between trains that bypass ground nodes in the model which
represent the busting of locomotives into a pool from which they are then
later rebuilt into consists. The model is a multi-commodity flow problem
where the locomotives are commodities with several side constraints. The
authors note that for real world problem sizes of around 8800 nodes and
30200 arcs (resulting in 200000 decision variables and 67500 constraints),
CPLEX 7.0 was unable to solve the integer relaxation of the problem with-
out incorporating the weekly allocation consistency constraints.

An analysis of the scheduling requirements for the week revealed that
94% of trains being run were either 5, 6, or 7 day a week trains. The authors
accordingly chose to solve the problem in two stages by assuming that all
trains than run with a frequency greater than 4 by creating a representative
day in which all run on that day. The solution is then translated back into
a weekly problem where trains that are not required on those days specif-
ically can then be assigned to the lower frequency trips in a second stage
solve which may require that additional locomotives be added in order to
generate a feasible solution.

The integer relaxation of the daily representative problem was solved
in a few seconds but a feasible integer solution could not be obtained even
after a substantial amount of time (72 hours). The authors suggest that the
problem complexity lies with the fixed charge variables associated with light
travel and connection arcs. To solve the problem, two heuristics were used
to approximate the desired behavior on the train-to-train connections and
light travel movements.

In the first heuristic, the constraints related to fixed charge variables
were removed from the problem and the IP-relaxation solved. Costs were
inflated on certain arcs to discourage consist busting. The arc with the
highest number of locomotive flows on a train-to-train connection was then

38

fixed and the resulting relaxation re-solved. If the solution is feasible and
the cost increase less than a fixed parameter amount, then the arc is fixed
and the process repeated, otherwise the connecting arc is rejected and the
next largest tried. The iterative selection of train-to-train connections stops
when either there are none remaining to choose from or the desired number
has been reached (a parameter specified in line with the business rules).

To solve the problem of light locomotive movements, the authors first
solve a minimum-cost flow problem (a reduced version of the larger space-
time network) by ignoring the time dimension to establish candidate arcs
between pairs of locations (arcs) where light movements may be required
to restore balance. If a positive flow of light locomotives is found on an
arc then candidate arcs are introduced into the main space-time model at 8
hourly increments. As with the first heuristic, the fixed charge variables are
ignored and the relaxed IP solved with all candidate light arcs. Any arcs
with zero locomotives after the first solve are deleted from the model. The
smallest flow is then removed and the resulting LP relaxation solved again.
If the cost increases by more than a fixed parameter the arc is fixed in the
solution, failing which, it is permanently deleted. The process repeats until
all light arcs have been examined.

A final MIP is solved sub-optimally to determine which locomotives are
active and which will deadhead as a result of the current allocations. Al-
though finding an optimal solution was not possible in a reasonable amount
of time, the authors noted that very good solutions were found early on in
the CPLEX run and as a result they could terminate the procedure without
confirming optimality in favor of commencing a very large-scale neighbor-
hood (VLSN) search algorithm.

VLSN is done through CPLEX by defining the neighborhood; for each
locomotive type as the set of moves for which the schedule for all other lo-
comotive types does not change. The stopping criterion is thus when for all
locomotive types within the current solution, no local change can be made
that results in a better solution keeping all other locomotive type schedules
fixed. Even though this produces a large MIP, the authors report that a
local optimum is converged to within a few seconds.

Once the set of allocations has been obtained for all high frequency
trains, the remaining daily problem can be solved. As already mentioned,
the representative daily problem (of the whole week) is transformed back
into a week. The lower frequency trains are then added to the solution iter-
atively by type, starting with the most available in descending order, each
time solving a single-commodity flow problem on the full weekly space-time
network. Finally, VLSN is again applied to the weekly space-time network

39

for each locomotive type (solving, again, the single-commodity flow prob-
lem) until no improvement can be found holding all other locomotive type
schedules fixed.

The results of a study conducted at CSX Transportation (a major U.S
railroad company) are presented in which over 400 locomotives9 could be
saved over the solution provided by the in house software used at CSX. The
CSX solutions did not consider any light locomotive movements and had
much higher levels of consist busting. Ahuja founded Innovative Schedul-
ing in 2000, a company specializing in the operations research domain by
developing custom solutions, and by 2007 had designed three locomotive-
orientated decision support tools for CSX.

Vaidyanathan et al (2007) [45] extended their work using a subtle mod-
ification to the model presented in 2005 [1]. The formulation used is very
similar except instead of modeling each individual locomotive as a commod-
ity in the multi-commodity flow formulation they model the consist in the
network. This has several advantages, namely the reduction of consist bust-
ing (a preferred characteristic) as well as a massive reduction in decision
and constraint variables, allowing previously unsolvable instances (due to a
failure to converge) to be solved in a matter of minutes. The authors ar-
gue that although this reduced problem complexity may produce solutions
which are at a greater cost than their previous formulation, the robustness
of the schedules produced and ease of implementation are much higher.

Consists to choose from are added as decision variables to the model
with at most p of each consist being allowed in the model. From an imple-
mentation perspective, the number and variation of consists should be kept
lower as it makes for a more practical and easier schedule to implement.
Other constraints such as locomotive region restrictions as well as special
locomotive unit requirements within the consist (for signaling systems) are
also taken into account.

The authors present the details of several case studies where key variables
were modified such as train speed, connection time and transport volume.
The impact on the cost of the schedules produced were measured and pre-
sented.

9CSX had a fleet of 3316 locomotives at the time

40

Chapter 3

Problem Formulation

The following sections will detail the data requirements and model structure
for solving the Bulk Freight Train Scheduling Problem (BFTSP).

3.1 Model Formulation

The BFTSP and all associated constraints are formulated as a multi-commodity
flow problem, where locomotive and wagon sets are the commodities, using
an MIP model similar to that presented by Ahuja et al [1] [45]. Two major
differences in the model presented here are firstly, not all train arcs have to
be selected and secondly, wagons and locomotives are modeled as separate
commodities. Constraints govern the minimum number of trains that need
to be run in the period. A number of additional constraints are added to
ensure that the resulting selection of slots is executable.

We start by defining the space-time network which is used to model the
flow of resources. The network consists of arcs and nodes. We denote the
set of all nodes to be N and all arcs to be A. Each arc has an associated
cost Cij , indicating the cost of moving from node i to node j.

As presented by Ahuja et al, we use five types of nodes, ground nodes,
train departure nodes, train arrival nodes, source nodes and sink nodes. We
use three types of arcs in this model; train arcs, ground-train arcs and
ground-ground arcs. Each arc is defined between two nodes. As the names
suggest, train arcs, denoted TrArc, link a train departure and train arrival
node (or vice versa), ground train arcs connect ground nodes to train de-
parture or arrival nodes and ground-ground arcs connect two ground nodes,
denoted GTrArc and GGArc respectively.

It is worth emphasizing that each node i has a specific time and loca-
tion associated with it, denoted N t

i and N loc
i . Ground nodes represent a

41

Figure 3.1: Space-time network example

collection of flows through the network (such as in a yard or hub) whereas
ground departure and ground arrival nodes are specific to a particular train.
Ground nodes therefore directly model the capacity of locations and the
ground departure and arrival nodes serve to either decrease or increase the
total commodities in these absorbing locations.

Figure 3.1 provides an illustration of a sample space-time network. Each
of the nodes has a location and time in the network. The horizontal axis in
Figure 3.1 represents time and the vertical axis a relative ordering of con-
nectivity of nodes. Arcs are all directed and no arcs travel back in time,
unlike the models presented in [1] and [45] as we do not wish to create a
cyclic schedule, the reason for the addition of source and sink nodes.

Source and sink nodes indicate the starting and potential end positions
of resources in the network. The sink nodes provide a selection of exit points
from the network for resources. Source nodes and sink nodes are the only
nodes on the network that do not have both incoming and outgoing arcs.
Source nodes have exactly one outgoing arc and sink nodes have exactly one
incoming arc.

42

Figure 3.2: Empty wagon set flow in the space-time network

We adapt the models presented in the literature [1] [45] which deal with
the locomotive allocation problem to extend to wagon set allocation. Loco-
motives do not change state (empty to loaded or loaded to empty) in the
course of the schedule. Wagons may change state several times. In order
to still correctly model the flow of both empty and loaded wagons in the
network, each wagon will be represented by two instances, one loaded and
one empty. Node constraints will enforce that the same resource must be
used throughout the network, except at particular nodes where the opposite
state will be required.

Figure 3.2 gives an illustration of the flow of an empty wagon set in the
network. It is important to note that in this diagram there are two distinct
resources that are being used, since empty wagons sets and loaded wagon
sets are modeled separately. Specific arrival nodes carry the constraint of
enforcing a state switch to the alternate resource, labeled A and B in the
diagram. Wagons change from an empty to loaded state at A and from the
loaded to empty state at B. All nodes in Figure 3.2 except A and B have
the constraint specified by Equations (3.6) and (3.7). A and B are subject
to Equations (3.8) and (3.9) which enforce the resource switching. These
equations are elaborated on in the constraints section of this chapter.

Locomotives do not contribute to the capacity constraints since they re-

43

quire very little space to be placed. The sum of wagon set sizes over any
single ground node are considered in order to ensure capacity constraints are
adhered to. When creating the space-time network, ground-ground nodes
are sorted in ascending order by their times for each location and are linked
sequentially using GGArc. This ensures that all flows within a site have to
pass through the same arc from one time point to the next. This can be seen
in both Figures 3.1 and 3.2 as all ground nodes and linked sequentially in
increasing time order at the same location. The ground nodes enable wagon
capacity constraints to be placed on a location.

44

Symbol Definition

i, j node indices

σ site indicies

N the set of all nodes (excluding source and sink nodes)

N t
i the time associated with the ith node, t ∈ Z+

Nσ
i the site σ associated with the ith node

k train configuration index, representing all distinct valid train com-
binations

A the set of all arcs, a ∈ A⇒ a = (i, j, k)

cijk is the cost associated with the kth type of train between nodes i
and j

I[i] the set of arcs entering node i

O[i] the set of arcs leaving node i

Sσ the σth site

SPσ the processing time1 at the σth site,∈ Z+

SRσ the reclaiming time at the σth site,∈ Z+

SBσ the number of parallel processes permitted at the σth site, ∈ Z+

Seσ the maximum empty wagon capacity at site σ, ∈ Z+

Slσ the maximum loaded wagon capacity at site σ, ∈ Z+

Stotσ the maximum wagon capacity at site σ, ∈ Z+

Sdσ the demand requested by site σ

Sloadσ the amount loaded at site σ in tonnes per train

n the number of locomotives

L the set of locomotives L = {l1, l2, ..., ln}
m the number of wagon sets

We the empty wagon sets We = {we1 , we2 ..., wem}
Wl the loaded wagon sets Wl = {wl1 , wl2 ..., wlm}
‖Wm‖ the size of wagon set m in number of wagons

W cap
m the capacity of wagon set m in tonnes

Scp an ordered set of all nodes associated with sites in the pth collec-
tion, defined in the Slots constraints section

M slots
pq the maximum number of consecutive slots between site collections

p and q, ∈ Z+, defined in the Slots constraints section

Hmin the minimum headway required between trains, ∈ Z+

Table 3.1: Notation used for the BFTSP

45

3.1.1 Decision Variables

There are four types of decision variables in the model; namely, the arc
that is selected for activation (3.1), the locomotive set (3.2) assignments
to arcs and finally, empty (3.3) and loaded (3.4) wagon set assignments
to arcs. These resource assignments to the particular arcs (or slots) cause
the greatest complexity in the model as the greatest number of constraints
require validation around these decision variables. We denote the decision
variables as follows:

TrArcijk =

{
1 if the kth arc is active between nodes i and j
0 otherwise.

(3.1)

lxijk =

{
1 if locomotive set x is assigned to TrArcijk
0 otherwise.

(3.2)

weyijk =

{
1 if empty wagon set y is assigned to TrArcijk
0 otherwise.

(3.3)

wlzijk =

{
1 if loaded wagon set z is assigned to TrArcijk
0 otherwise.

(3.4)

46

3.1.2 Constraints

Resource Flow

In order to ensure that resources flow uniquely through the network from
arc to arc, we add a constraint that the flow at each node is balanced for
every locomotive set, given in Equation (3.5). Each resource is treated as a
unique commodity in the multi-commodity formulation. It should be noted
that shorthand is used in this context such that: a⇔ (x, i, j, k)∑

a∈I[i]

la =
∑
a∈O[i]

la ∀i ∈ N and a⇔ (x, i, j, k). (3.5)

Modeling the wagon flows requires some additional attention. Wagon
sets change states at certain nodes. We define the set of nodes at which
wagons change from an empty to loaded state as NEL and from a loaded to
empty state as NLE where NEL ∩NLE = ∅. All other nodes where wagons
do not change state fall into No such that No ∩ (NEL ∪ NLE) = ∅ and
No ∪NEL ∪NLE = N .∑

a∈I[i]

wea =
∑
a∈O[i]

wea ∀i ∈ No and a⇔ (y, i, j, k). (3.6)

∑
a∈I[i]

wla =
∑
a∈O[i]

wla ∀i ∈ No and a⇔ (y, i, j, k). (3.7)

Flow constraints (3.6) and (3.7) govern the flow constraints over wagons
in the same way as for locomotives where no state changes do occur.∑

a∈I[i]

wea =
∑
a∈O[i]

wla ∀i ∈ NEL and a⇔ (z, i, j, k). (3.8)

∑
a∈I[i]

wla =
∑
a∈O[i]

wea ∀i ∈ NLE and a⇔ (z, i, j, k). (3.9)

Flow constraints (3.8) and (3.9) govern the flow constraints over wagons
where state changes occur. The constraint enforces that the same wagon set
is used but from the the opposite set.

47

Wagon configuration

There are multiple allowable wagon configurations between nodes i and j,
indexed by k. Each configuration has its own total wagon requirement given
by Λijk. The constraint across all train arcs is given in (3.10).

m∑
y=1

(weyijk + wlyijk) = Λijk ∀i, j, k. (3.10)

Λijk = 0 for configurations related to light locomotive movements.

Slots

Each pth site collection Scp gives the sites (and hence ordered nodes) which
represent some geographic constraints. For example, only one departure
may occur at a time between Scp and Scq but another simultaneous departure
could occur between Scp and Scqq (perhaps a northbound and southbound
train both leaving from Scp). Figure 3.3 gives an example of site collections
used in the test data given in Section 4.2. In this example trains may arrive
or depart at Sc2 from Sc1 or Sc3 simultaneously.

Figure 3.3: Example of site collections for sites and hubs

48

The constraint for the maximum number of slots, M slots
pq , that can be

consecutively used, is given in Equation (3.11) and is expressed in terms of
the slot collection pairs (Scp, S

c
q).

i+Mslots
ij∑

b=i

∑
∀k∈TrArcbj

TrArcbjk ≤M slots
ij ∀(i, j) ∈ (Scp, S

c
q). (3.11)

The slot usage constraint only works when used in conjunction with
Equation (3.12) since we need to ensure that each TrArc between i and j
is used at most once across all possible configurations k. This prohibits the
simultaneous departure of two trains with different configurations traveling
to the same destination.

∑
∀k∈TrArcij

TrArcijk ≤ 1 ∀i, j ∈ N. (3.12)

Windows

A site exclusion window can easily be translated to the set of nodes that fall
into that window for the time period at a particular site. Once the set of
nodes has been identified, constraints can be placed on the arcs restricting
their use. For αth exclusion window at site σ, SW (σ,α), with start SW s

(σ,α)

and end SW e
(σ,α), we have Equation (3.13) constraining all departures from

the site during that time.

TrArcijk = 0

where N t
i ∈

[
SW s

(σ,α),SW e
(σ,α)

]
and Nσ

i = SW σ, ∀i, j, k, σ, α, .
(3.13)

Similarly for arcs which lead into site σ we also set their decision variables
to zero where the arrival node (j) falls within the window. We extend this
further to cover the processing time (SPσ) at the site. The reason for this is
that we would not want a resource arriving and then being loaded if the site
is closed. A track occupation window would exclude this additional offset.
Equation (3.14) gives the set of arcs that are excluded based on their arrival
nodes.

TrArcijk = 0

where N t
j ∈

[
SW s

(σ,α) − S
P
σ ,SW e

(σ,α)

]
and Nσ

j = SW σ, ∀i, j, k, σ, α, t.
(3.14)

49

Loading, processing and offloading

When resources arrive at a particular site they may perform one of three
possible actions; Loading, processing and offloading. Loading and offloading
both result in resource switching for wagons. Processing of wagons and all
locomotive transactions do not alter their state. Resource state changes are
handled as part of the constraints on the nodes. As a result we will keep
discussion the processing time, SPσ , for site σ which may cover any of the
three possible actions which may take place.

The minimum amount of time which must be spent at a particular lo-
cation is handled by placing a constraint on the resource allocation to arcs
entering and leaving a location. For all arcs entering a location at node Nσ

i ,
we define the set of all outgoing arcs which fall within the processing time at
the same location to be A0

i . Given that any one of the incoming arcs may be
selected, we wish to ensure that none of the outgoing arcs is selected until
the required time has passed for a resource. We require this constraint to
be applied across the resource allocation variables for locomotives and both
empty and loaded wagon sets together since resource switching could take
place.

The constraints on the locomotive dwell times are given in Equation
(3.15) below: ∑

∀(j,k)∈A0
i

lxijk ≤ 1 for x = 1, ..., n and ∀i ∈ N. (3.15)

The constraint that covers both loaded and empty wagon sets is given
in Equation (3.16):∑

∀(j,k)∈A0
i

(weyijk + wlyijk) ≤ 1 for y = 1, ...,m and ∀i ∈ N. (3.16)

Equations (3.15) and (3.16) ensure that resources cannot be allocated to
outgoing arcs within the prescribed processing time. It should be obvious
that resource specific processing times can easily replace SPσ to define a
new set of restricted outgoing arcs A0

i . This enables locomotives to have
a different processing time to wagons when arriving at certain sites. This
leads to improved efficiencies when wagons have very long dwell times at
certain sites as the locomotives can perform other tasks and return to the
wagons at a later stage.

Reclaiming

Each train that is sent to a loading site results in a reclaiming time con-
straint, i.e. another train may not be sent until the reclaiming time has

50

elapsed after the processing time of the first train. Some sites may have
multiple dedicated loading sidings and can process the loading of trains in
parallel as a result. We refer to this maximum number of parallel tasks as
SBσ . The constraint is given in terms of the arrival node j for all train arcs
in Equation (3.17) since we wish to restrict the arrival of trains at a siding
regardless of their origin.

∑
i

Nt
j+S

p
j+S

R
j∑

v=Nt
j

∑
k

TrArcivk ≤ SBj ∀j, t. (3.17)

Headway

Headway is required from a safety perspective to ensure that trains do not
depart or arrive within a minimum required interval, Hmin. For simplicity,
we will assume that the design of the outgoing slots has already taken care
of the constraints on departure nodes, i. However, we need to ensure that
trains arriving at destination j are meeting the headway requirements, given
in Equation (3.18).

m∑
y=1

TrArcyjk ≤ 1 where y ∈
[
N t
j , N

t
j +Hmin

]
∀i, j, k. (3.18)

Region

The region constraint applies to locomotive or wagon set assignments to
train arcs. We define two new sets of indicator variables in Equations (3.19)
and (3.20) for locomotive and wagon movement restrictions.

ln,ij =

{
1 if locomotive ln may travel between nodes i and j
0 otherwise.

(3.19)

wm,ij =

{
1 if wagon wm may travel between nodes i and j
0 otherwise.

(3.20)

Equation (3.21) ensures that when travel between any pair of points is
prohibited by a resource that the assignment variable will remain zero. It
follows that other kinds of constraints (such as resource specific constraints)
can be represented by a similar constraint.

lxijk ≤ lx,ij ∀i, j, k and x = 1, ..., n. (3.21)

weyijk ≤ wy,ij ∀i, j, k and y = 1, ...,m. (3.22)

51

wlzijk ≤ wz,ij ∀i, j, k and z = 1, ...,m. (3.23)

Several different types of real world constraints such as axle size con-
straints, resource class restrictions, AC/DC power availability and opera-
tional workings can be modeled through such equations.

Site Capacity

For each Site Sσ we define the maximum number of empty, loaded and total
wagons permissable in that site: Seσ, S

l
σ and Stotσ ∈ Z+

It follows that we need to restrict the flow of commodity across all ground
nodes, denoted NG. Due to the flow constraints already provided in (3.6)
and (3.7) we can arbitrarily restrict either the outgoing or incoming flow as
given in (3.24) and (3.25)

∑
a∈O[i]

‖wea‖.wea ≤ Seσ where Sσ = Nσ
i , ∀i ∈ NG. (3.24)

∑
a∈O[i]

‖wla‖.wla ≤ Slσ where Sσ = Nσ
i , ∀i ∈ NG. (3.25)

∑
a∈O[i]

(‖wea‖.wea + ‖wla‖.wla) ≤ Stotσ where Sσ = Nσ
i , ∀i ∈ NG. (3.26)

ECP

The ECP constraints between resources and sites are quite specific. They
exist in four forms:

• ECP Wagons may not be moved to Non-ECP sites

• Non-ECP Locomotives may not be coupled with ECP Wagons

• ECP Wagons can only be coupled with other ECP wagons

• Non-ECP Wagons can only be coupled with other Non-ECP Wagons

The first item above is easily dealt with in the creation of the train arcs
by simply not creating ECP arcs for sites which cannot support ECP. In
Equation (3.1) we have the kth arc between sites i and j. Each of the k arcs
represents a feasible resource mix in terms of the ECP constraints given

52

above. We define a variable for each kth arc which indicates if the arc is an
ECP or arc or not, given in Equation (3.27).

TrArcecpijk =

{
1 TrArcijk is ECP
0 otherwise.

(3.27)

We then apply constraints to the resource allocation decision variables
(3.2) - (3.4) to ensure feasible combinations are generated. We extend the
ECP property to locomotives and wagons and denote the respective sets of
ECP locomotives and wagons Lecp and W ecp and non-ECP sets Lnecp and
Wnecp where Lecp ∩ Lnecp = ∅, W ecp ∩Wnecp = ∅, Lecp ∪ Lnecp = L and
W ecp ∪Wnecp = W :

weyijk + wlyijk = 0 where y ∈W ecp and TrArcecpijk = 0, ∀i, j, k. (3.28)

weyijk + wlyijk = 0 where y ∈Wnecp and TrArcecpijk = 1, ∀i, j, k. (3.29)

lxijk = 0 where x ∈ Lnecp and TrArcecpijk = 1, ∀i, j, k. (3.30)

While ECP and non-ECP wagons must remain mutually exclusive as per
Equations (3.28) and (3.29). ECP locomotives can be used with non-ECP
wagons which is why we only have one constraint for locomotives, Equation
(3.30) which prohibits the use of non-ECP Locomotives with ECP wagons.

Demand

The final constraint on the decision variables is that of meeting the requested
demand for each site, Sdσ. Due to the structure of the space-time network,
we can easily translate this requirement to be that of having a minimum
number of incoming arcs selected for each site, given in Equation (3.31).

∑
i

∑
j′

∑
k

TrArcij′k ≥ Sdσ where j′ ∈
{
j|Nσ

j = Sσ
}
∀σ. (3.31)

53

3.1.3 Objective

The objective is to simultaneously select train arcs and allocate resources in
such a way as to maximise the resource utilization by minimising the dwell
time of wagon sets, resulting in the maximum throughput for the network
in the minimum amount of time. Since wagon sets are not active resources,
a good locomotive allocation will result in good utilization of wagons. The
objective function simply consists of the sum of all arcs over which resources
flow. We specify the cost of each arc, cijk, as:

cijk = τijk.(N
t
j −N t

i). (3.32)

where τijk is the inflation factor for the kth configuration between nodes
i and j.

Light locomotive movements have a τ > 1 as we want to discourage their
use in the final solution unless the benefits are sufficiently large. τiik may
also be increased to penalize dwell times at hubs or offloading sites (between
ground nodes), encouraging more efficient resource utilization.

Another aspect of achieving maximum throughput is that of measuring
the amount that is loaded at different sites. Lane selection can result in
larger wagons being sent to a location where smaller ones would have suf-
ficed. There is a trade off between the increased resource utilization and the
potential dwell time that would be incurred to ensure a perfect allocation.
The amount of wagon under-utilization will be weighted with the β and the
final objective function defined as:

Minimise f(x) where :

f(x) =
∑
i

∑
j

∑
k

TrArcijk.
cijk + β

m∑
y=1

weyijk .
(
|wem |.wcapem − S

load
Nσ
j

) .

(3.33)

54

Chapter 4

Test Data

Three data sets are configured and the algorithms given in Table 4.1 applied
to the relevant data set. Data configuration in terms of locomotive region
constraints, sites, allowable slots, headway requirements, loading, process-
ing, offloading and reclaiming times remain unchanged throughout the data
sets. The number of resources available in each scenario (locomotive and
wagon sets) as well as total demand and demand mix will vary. The re-
sources will vary in proportion to the increased demand, the final Large
data set giving a reasonable representation of the amount of data required
to complete a practical real world schedule for one week.

Data Set Size Exact Search Heuristic B&B Genetic Algorithm

Small (4 loads) Y Y Y

Medium (30 loads) N Y Y

Large (204 loads) N N Y

Table 4.1: Test Data Set Summary

Figure 4.1 gives the relative position of all sites being considered for
Problem Type 2. The thickness of the connecting arcs between sites is an
indicator of the number of allowable resource configurations in term of pos-
sible wagon set combinations. The associated travel times Tij for all lanes
are given in Appendix A.5.

55

●
●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●
●

●

●

●
●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●
●

●

●

Hub 1

Hub 2Hub 2Hub 2

Site 36
Site 35

Site 34

TerminalTerminal

Hub 1Hub 1Hub 1

Site 1

Site 2

Site 3
Site 4

Site 5
Site 6

Site 7

Site 29

Site 8

Site 9

Site 10

Site 11

Site 13

Site 15

Site 16

Site 17

Site 18Site 18

Site 20

Site 21

Site 22

Site 23
Site 24

Site 25

Site 26

Site 27
Site 28

Site 29

Site 30

Site 31

Site 32

Site 33

Site 37

Site 30

Hub 2Hub 2

Site 12Site 12

Site 19

Site 13

Site 8

Site 23
Site 24

Site 5
Site 6

Site 14

Hub 2

Site 38

Hub 2Hub 2

Hub 1Hub 1

Figure 4.1: Site Lane connectivity and relative position

56

Concept Description

Site 38 loading sites, 2 hubs, 1 terminal

Region 8 regions in total. Each hub and terminal having their own region

Slot Slots between pairs of sites are given in A.1. All slots start at
midnight

Locomotive Set 50 locomotive sets in total. ECP and class properties are given in
A.2

Locomotive Set
Region Inclusion

The inclusions for the 8 regions is given in A.2. A diagrammatic
representation is given in Figure 4.2

Wagon Set The 84 wagon sets and attributes given in A.3. Two wagon classes
are used, denoted J and S, with 83 and 58 ton capacities respec-
tively

Headway A 15 minute headway between trains is required when arriving or
departure from any site

Wagon configu-
ration

The available wagon configurations between Sites i and j are given
in A.4. 103 pairs in total

Travel Time The 80 distinct travel times (Tij)between sites given in A.5

Site Window 9 Sites with 19 windows (for the period of one week) are given in
A.6

Table 4.2: Data attribute summary

4.1 Exact Search Results

A program was written in C# 1 to handle the building of a schedule and
the exact search. A recursive depth-first strategy was used to traverse the
solution space, with constraints being validated at each node of the tree to
ensure only feasible solutions are considered. The results of 4 runs, each
with more loads are given in Table 4.3. The loads chosen in the small prob-
lem set can be found in A.7.

Number of Loads Nodes Pruned Leaves Inspected Objective Value

1 4 1 1 803

2 591 517 88 087

3 10 946 4 360 91 385

4 234 471 70 516 98 522

Table 4.3: Exact search statistics

An exponential function of the form f(n) = βn was fitted to the data

1C# is an object orientated language which uses the Microsoft .Net Framework.

57

Figure 4.2: Resource flow across all sites

of leaves inspected to estimate the growth in problem complexity for small
values of n. A significant parameter estimate was obtained where β =
16.3. The exact search for 4 loads took approximately 90 minutes to solve.
Extrapolating suggests that 5 loads would take around 24 hours to find the
optimal solution. This is clearly not a viable method for realistic problem
sizes. In addition, the function f(n) will only hold for small values of n
since there is a factorial component, related to the order in which loads are
completed, which we would expect to dominate for large enough values of
n.

58

4.2 Heuristic Branch and Bound

A common problem with depth-first strategies is that a disproportionately
high amount of search time is spent searching the bottom portion of the
tree. As the tree size grows (exponentially in terms of number of leaves to
explore), it becomes less likely that initial decisions in the search are mod-
ified. Understanding the future cost of initial decisions made in the tree
can be very difficult, especially when dependencies exist between decision
variables.

Figure 4.3: Depth First Search with a ‘Look Ahead Heuristic’

We describe a ‘Look Ahead Heuristic’ (LAH) [35] which searches the
immediate sub-tree from the current node and finds the best local decision.
The depth of the sub-tree is limited to ensure that the “look ahead” is fast.
We limit the depth of the local search by parameter a where 1 < a < n− 1.
The case where a = 1 can be considered a greedy search and a = n − 1
an exact search, emphasizing the trade-off between computation time and
solution quality.

Once the best path for the sub-tree has been found, the first decision
of the path is traversed and the next sub-tree searched as a result of the
new decision made. This is repeated until the maximum depth of the tree is

59

reached, at which point the solution is returned. A fundamental assumption
of this approach is that two decisions, adequately far from one another in
the tree, are sufficiently independent.

Figure 4.4: LAH Computational Results, small test data set

The results of the LAH heuristic are given in Figure 4.4. The largest
value of a in the LAH managed to get to within 12.5% of the known op-
timal solution in 2% of the time of the exact search. Interestingly, for low
values of a the heuristic performs very badly, making immediately appealing
decisions without taking account of the long term cost implications. The
maximum depth of the tree in this instance is 45. The nature of the long
term dependence between tree nodes makes this heuristic less useful than
originally anticipated, but still very interesting in terms of understanding
the extent of dependence between decision variables.

As with the depth first search, as the problem complexity increases, the
amount of work required at each node of the tree also increases, and total
work increases exponentially. This means that although a reasonable bound
was obtained quickly for a small problem such as this - for bigger problems
a will have to be decreased to bring the running time down to a reasonable
value and hence the upper bound is also increased. We would argue that

60

this heuristic does not scale well enough for large problem sizes and is thus
not useful in practice.

4.3 Genetic Algorithm

Genetic Algorithms (GA) are a meta-heuristic approach that use a popu-
lation of candidate solutions to search the solution space. The operations
performed by the GA take inspiration from natural processes and fall into
three categories, namely:

• Selection

• Crossover

• Mutation

GAs do not require the assumptions of continuity, differentiability or uni-
modality and as a result have been shown quite robust in several domains
[22]. The Simple Genetic Algorithm (SGA) as described by Goldberg [26]
uses a binary chromosome encoding which is then mapped to a real number
using the formula in equation (4.1).

x = a+
b− a
2l − 1

l∑
n=1

yn2n−1 ε[a, b]

where yn ε{0, 1} ∀n ε{1, 2, ..., l}.

(4.1)

Greater values of l (the number of bits per variable) will increase the
precision of the encoding, the size of l should be chosen to be small enough
to sufficiently model the domain. In a classical GA setting, an array of real
values is produced from the binary encoding which is then used as input to
an objective function. The number of parameters in the objective function
determines the size of the chromosome required. The objective function re-
turns a real valued number which determines the fitness of the candidate
solution.

When comparing different solutions the fitness is used as the criterion on
which selection takes place. There are several types of selection that could be
used, the most common being “roulette-wheel selection” and “tournament
selection”. The selection operator is used to choose chromosomes of supe-
rior quality for use in the subsequent population. Chromosomes selected are
then combined using the crossover operator in an attempt to ‘blend’ genetic
material between chromosome pairs. Tournament selection was chosen as
the selection operator (with a tournament size of 2) as it provides slower

61

convergence and less emphasis on superior individuals, this assists on explo-
ration of the solution space.

The uniform crossover operator is a common choice when working with
binary strings for performing crossover. A new uniform random variable is
generated, R, the same length as the original chromosome. The probabil-
ity of performing crossover at point i in the chromosome, also called the
crossover rate, is equal to pc. If Ri ≤ pc then the bits at position i are
swapped between two parent solutions. This process produces two new off-
spring which form part of the new population.

Figure 4.5: The Cycle of a Generational Genetic Algorithm

The mutation operator is applied to the new population of candidate
solutions once crossover has taken place. This operator is very important
for maintaining diversity in the population or even introducing new ‘genetic
material’. We use the uniform mutation operator which flips a bit in the
chromosome with a very small probability pm. The cycle of an iteration
of the SGA is given in Figure 4.5. The elitism operator ensures that if the
best solution from the current population is not improved or not selected for
reproduction, then it is persisted to the following population. A GA scheme
that uses Elitism will never have an objective value that decreases over the
course of the run if the objective function is deterministic.

When working with GA’s, there are generally three different approaches
to handling problem constraints which restrict the feasible search space. The
first is to use a parametrization other than a binary encoding which will
support the constraint validation of the problem through the data structure
itself. This also needs to be extended to cover all GA operations concerned

62

with crossover and mutation.

The second approach is to include penalty terms for any constraints
that are broken which outweigh all other cost terms. The criticism of this
method is that it increases the sensitivity of the GA and makes it difficult to
move through the feasible space of solutions in an efficient way. The third
approach is to have a validation step which takes a proposed solution and
converts it to a feasible one before evaluation.

Both the first and third approach were tried when solving this particular
problem. In the first approach, all resources and tasks were represented in
the chromosome structure of the SGA. This meant that the genetic algo-
rithm would have to specify which resources were being assigned to which
tasks, as well as the order in which those tasks would be taking place.

Precedence constraints were required on the parameter sets to ensure
that resources were not assigned in such a way as to produce a deadlocked
schedule. Due to complexity in both the job sequence, resource allocation
and unexpected interactions between parameters, the GA produced results
with a schedule makespan around double that of the observed operational
makespans. So while the schedule was feasible, the representation was too
complicated for the GA to produce competitive results.

The second approach was not attempted due to the high number of con-
straints in the problem. Any infeasibility in the schedule would mean unus-
able results and given the complexity of a feasible and optimized resource
allocation (demonstrated in the first approach) aligned with our intuition
that this would not produce good results.

The approach used in the final implementation is in line with the third
option above. Control of the permutation component of the problem (the
order in which jobs are executed) is given to the GA, a second layer is used
to handle the allocation of resources and validation of the schedule by work-
ing with the feasible set of possible options. The operators and encoding
already discussed were used in this implementation of the SGA. Figure 4.6
gives an overview of the interaction between the model (schedule) and GA
(abstract) layers.

Feasibility of the schedule is thus maintained by the schedule builder in
the model layer rather than in the GA layer. At a high level, the validation
step attempts to adhere to the job sequence provided by the GA and when
an infeasible job is requested, the next job in the permutation is attempted.
Once a feasible move has been found, the algorithm starts at the beginning
of the remaining jobs list and will re-process previously skipped jobs in the

63

Figure 4.6: Model and Genetic Algorithm Interaction Diagram

event they are now feasible. The SGA used is outlined in Algorithm 1 and
the validation step falls within the evaluation procedure called in lines 2 and
7.

This process allows the GA to deal with the priority of tasks at a high
level without the complexity of resource allocation for each job. In order for
the schedule builder to do this feasibly the schedule is built up incremen-
tally, tracking the movements of all resources through their assigned tasks.
Resources are allocated to jobs as part of the evaluation scheme and when
no more assignments can be completed, the time horizon is moved forward
potentially freeing up resources (from their current tasks). The evaluation
procedure stops when the time line cannot be moved up (as all resources
have processed their current tasks) and no more jobs can be assigned to
resources, potentially due to no more remaining jobs.

Heuristic resource assignment is used in the validation algorithm. While
multiple resource combinations may exist, the resource combination that
satisfies all constraints for a particular job with the lowest dwell time is se-

64

lected for the job. While this may lead to sub-optimal results in the resource
allocation it does fall in line with the operational principle (first-in-first-out)
that is used in practice.

1 initialise population pop;
2 Evaluate(newPop);
3 while i ≤ Generations do
4 newPop ← Select(pop);
5 Crossover(newPop);
6 Mutation(newPop);
7 Evaluate(newPop);
8 UpdateElite(pop,newPop);
9 pop ← newPop;

10 i = i+ 1;

11 end

Algorithm 1: Simple Genetic Algorithm Pseudo Code

A very successful heuristic scheme to restrict the validation step to only
consider the top 90th percentile of options, ranked by their waiting time be-
fore the job may begin, was deployed in the final GA. The idea behind this
is that while certain jobs can be completed exactly according to the priority,
we would want to avoid very costly decisions in the hope that they can be
deferred to later on. This repair of the chromosome was able to drastically
improve the quality of starting solutions (where there are many bad deci-
sions) as well as avoid fewer bad decisions in the final solutions which would
have taken several iterations to be ironed out.

The average improvement was approximately 8% and 2% in the initial
population and final solutions respectively. Only a fifth of the original num-
ber of iterations were required to achieve better final solutions on average
using this restricting repair operator. These improvements suggest that the
GA was very likely to generate bad priorities in solutions throughout the run.

Using the default parameters recommended by Grefenstette [28] we present
the results of the SGA run on the small test data set in Figure 4.7.

The SGA was able to out-perform the LAH in terms of the best solution
found in an equivalent amount of computation time with the solution found
being within 5% of the known optimal within 10 iterations.

The second problem set consists of 30 loads, which represents a signif-
icant step up on the small test set. Doing an approximate extrapolation

65

Figure 4.7: GA run results, small test data set

of the expected amount of time the depth first search would run for, given
the parameters fitted in the previous model and that the complexity stays
approximately the same with a larger mix of demand, the search will take
around 1.7× 1027 years. We will compare the best objective value obtained
by the LAH for varied small values of a to the GA for these larger data sets.

The results of the run shown in Figure 4.8 illustrate the variability in
the solutions obtained. The LAH performed around 40% better than the
random solutions on average. However, there were some random starting
solutions in the GA which were able to outperform the LAH, suggesting
that it did not scale very well with the problem size. The GA improved
the initial solution found by a further 9.2% before converging on a single
solution. Due to the amount of search required by the LAH on this problem
size, the GA easily outperformed it in terms of solution quality and time
taken to generate the solution.

The third test set consists of 204 loads, in line with what we would expect
when dealing with realistically sized problems where a schedule is required
for a week. A single run of the GA is illustrated in Figure 4.9. The mean
and best individuals in the GA population at each iteration are shown in
the left diagram. The right diagram plots the average wagon makespan in
the schedule, a metric closely related to minimising wagon waiting time. We

66

Figure 4.8: GA run results, medium test data set

show the values for each objective function evaluation in this right diagram
to contrast it with the objective curve in the left diagram. We find that
there is an improvement over the initial population of around 22%, which is
substantially larger than that of the medium sized problem. This is not a
surprising result considering the larger complexity of the problem.

While the objective function does not explicitly measure the average
makespan of the resources it does measure the total waiting time in the
schedule. By minimising this term the GA manages to reduce the average
makespan for the whole fleet. It is interesting to note that the minimum
average makespan in each generation is reduced from 6.8 to 6.3 from the
initial to final population. In real terms these kind of improvements have
massive cost implications running into the hundreds of millions of Rands in
savings per annum when extrapolated.

The objective is heavily biased towards the total tonnage throughput
(a large β value in the objective function). This bias becomes clear when
looking at the average wagon makespan against the objective cost, shown
in Figure 4.10. It is not surprising that the lowest makespan is associated
with the lowest objective value since we would expect when converging that

67

0 20 40 60 80 100

2e
+

07
4e

+
07

6e
+

07
8e

+
07

Generation

O
bj

ec
tiv

e
V

al
ue

Best Population Individual
Mean Population Value

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●●●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●
●
●

●●●

●
●

●

●

●●

●

●

●

●
●

●

●●

●

●●

●●

●

●

●

●
●

●
●

●
●

●

●●

●
●
●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●
●

●

●

●
●

●●●

●

●

●

●

●
●●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●
●●●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●
●
●

●●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

● ●

●

●

●

●

●
●●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●
●●

●●
●●

●●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●
●
●

●

●●
●●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●
●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●
●

●

●●●●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●
●
●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●
●
●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●
●

●

●
●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●●

●

●

●
●●

●●

●●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●●●
●

●

●

●
●

●

●

●●

●●
●

●
●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●●●

●

●●

●

●

●

●

●

●
●

●●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

● ●

●

●●

●
●

●

●

●

●

●●●

●

●

●●

●

●

●
●

●
●
●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●
●

●●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●●●

●

●

●

●

●●

●

●

●●
●●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●
●●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●
●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●
●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●●

●●●
●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●

●

●

●

●

●

●

●
●

●

●●

●●

●
●●

●
●

●●

●
●

●●
●
●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●
●●

●

●●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●●
●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●
●
●
●

●

●

●

●

●

●
● ●●

●

●

●

●●

●●●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●
●

●

●

●

●

●●
●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●
●●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●
●●
●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●
●

●

●
●

●

●

●
●

●

●

●
●

●

●

●●●

●
●

●●

●
●

●
●

●

●

●

●

●●

●

●

●
●

●

●●●

●

●

●

●
●

●
●

●

●

●

●●
●
●

●
●

●
●

●

●●

●●

●

●

●

●

●●
●
●

●●

●

●

●●

●

●●●

●●●●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●●●
●

●

●

●

●
●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●
●
●

●
●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●●
●●
●●

●

●

●

●

●

●

●

●●●
●
●

●

●

●

●●

●

●

●

●

●

●●●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●●

●

●●
●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

● ●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

●

●

●●

●

●
●
●

●

●
●
●

●

●

●

●●

●

●

●
●
●●

●

●

●●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●
●
●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●●

●
●

●

●

●

●

●
●●

●

●

●●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●●

●●

●

●

●●

●

●
●

●

●

●

●●
●

●

● ●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●●

●●
●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●●●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●●
●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●
●

●

●

●
●●

●
●

●
●

●

●●
●

●

●

●
●
●
●

●

●

●

●

●
●

●

●●
●

●

●
●
●
●
●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●●

●
●
●

●

●●

●●
●

●

●
●

●

●●

●●

●

●

●

●

●

●

●●

●
●
●
●
●

●

●●

●

●
●
●●
●

●●
●●●
●

●

●

●

●

●

●

●
●●●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●●
●
●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●
●

●

●
●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●●
●

●

●

●●●
●

●

●

●

●
●

●

●
●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●
●

●

●

●
●

●

●
●
●

●●
●

●●
●
●

●

●
●

●
●
●●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●●●

●
●

●
●●

●

●
●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●
●

●

●

●

●

●●
●

●●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●●

●

●

●

●●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●●

●

●

●●
●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●
●
●

●

●

●
●
●

●

●

●

●●
●

●
●

●

●

●

●

●●

●●●●

●

●●
●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
●●
●●

●

●

●

●●

●●●
●
●

●

●

●
●

●

●

●

●
●●
●
●

●

●●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

0 20 40 60 80 100

6.
5

7.
0

7.
5

8.
0

8.
5

Generation

A
ve

ra
ge

 W
ag

on
 M

ak
es

pa
n

Figure 4.9: GA run results, large test data set

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

● ●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●
●●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●● ●

● ● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

● ● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●● ●

●

●

●

●
●

●

●

●

●

● ●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●● ●
●

●●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

●

●●

●

●
●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●
●●

●

●

●

●

●●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●●

●
●

●

●
●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●●

●

●
●

● ●
●

●

●
●

●
●● ●

●
●

●●

●

●

●

●
●

●
●

●●

●

●
●

●

●

●
●

●

●

●

●

●●
● ●

●

●
●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●●

●

●

●

● ●

●
●

●
●

●

●
● ●

●
●

●

● ●

●

●

●

●

●
●

●
●

●●

●

●●

●
●

●●

●●
●●

●

●

●

● ●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●●

● ●●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●
●●●

●

●

●

●

●

●●

●
●

●

●
● ●
● ●

●

●
●●●

●

●

●

●
●

●

●

●
●

●

●
●●

● ●

●
●

●

●
●

●

●● ●

●

●

●

●

●●

●

●
●

●

● ●

●

●

●

●

●●

●

●
●●

●
●

●

●

● ●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

● ● ●

●

●

●
●

●
●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●●

●●

●
●

●

●

●

●

●

●

●

●●

●

● ●●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●● ●
●

●
● ●

●

●

●

●

●

●

●

● ●●
●

●

●

●●

●

●●

●

●

●
● ●

●

●●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●●

●
●

●●

●

●
●

●
● ● ● ●

●●●

●

●

● ●

●

●

●

●

●

●
● ●

●

●

●
●

●
● ●●● ●

●

●●

●
●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●●●
●

●

●
●

●
●

●

● ●

● ●

●
●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●●

●● ●

●

●●

●
●

●●

● ●●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●
● ●

●

●
●

●
●

●
●

●

●
● ●●●●

●
●

●

●
●●●

●

●

●

●
●

●

●

●●

●●
●

●

●
●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●●●
●

● ●

●
●

●●
●

●●

●
● ●

●

●●

●

●●

●

●

●

● ●

●
●

● ●
●

●●

● ●

●

●
●

●
●●

●●

●●

●

●
●

●
●

● ●

●
● ●

●●

●

●
●●●

●

●

●

●

●
●

●●

●

●

●● ●
●●

●
●

●

●

● ●
● ● ●

●

●

●

●
●

●
●

●

●
●●

●
●

●

● ●
●

●

●

●

● ●

●

●

●

●

●●

●

●●
●

●
●●●

●

●
● ●

●

●

●

●

●
●

●●

●

●●

●

● ●●●

●

●

●

●

●

●

●

●

●

●
●

● ● ●●

●
●

●●

●

●

● ●●
●

●

●
●

●

●

●

●

●

●
●

●● ●
●

●

●●

●

●●

●

●

●

●

●

● ● ●●●
●

●

●

●
● ●●

● ●
●

●
●

●●
●

●

●

●
●

● ●
●

●

●
●

●●●

●

●

● ●●
●

●●●●

●●
●

●

●

●

●● ● ●
●

●
●●

●

●

●

●

●

●

●

●

●
●●

●● ●●

●

●
●

●

●

●

●

●
● ●●

●
●

●

●
●

●

●

●●

● ●
●

●
● ●●●

●

●●

●

●●

●

● ●
●

● ● ●
●

●

●

●

●

●●

●

●
●

●

●

●● ●●
●●

●
●●●

●

●
●

●
●●●

●●
●

●

●

● ●●
● ●

● ●
●

●

●

● ●●
●●

●

●●

●
●

●
● ●

●

●

●
●

●
● ●

●
●

●

●
●

●

●

●

●● ●

●
●

●
●

●
●

●

●

●
●●

● ●
● ●●

●

●

●
●

●

● ●
● ●●

●
●

●

●

●
●

●

●

●

●

●●●● ●
●

●
● ●

●
●

●

●
●

● ●
●

●

●

●

●
● ●●

●
●
●

●

● ● ●
●

●
●

●

●
● ●

●●
●

●
●

●

●
●

●

●

●
●

●

●
●

● ●
● ●

●

●●
●

●
● ●

●

●

●
●
●

●
●● ●●●

●
●

●

●

●

●
●

●
●

●

●

●
●

●
●

●
● ●●

●

●

●●
●●

●

●

●

●●

●●

● ●
●●●● ●

●

● ●

●

●●
●

●
●●

●

●
● ●●

●
●

●
●

●

●
●●

●
●

●

●

●

●
●●● ●

●●●
● ●

● ●●

●
●●

●●

●●
●● ●●

●

● ●●
●

●
● ●

●
●

●

●
●●

●

●

●●

●

● ●

●

●

●

● ●

●

●

●

● ●
●

●●●

●
● ●
● ● ●

●● ● ●●

●
●

●

●
● ●●

●
● ●

●
●● ● ●

●
●●●

●

●●
● ● ●●●●●

●
●

●●●●
●

●●●
●●●●

●

●

●
●● ●

●

●

●

●
●

●
●

●
●

● ●
●

●

●

●

●

●

●
●

●●●●
●

●

● ●●●
●●

● ●

●

●●
●

●● ● ●●●●

●●●●●
●● ●●

●

●
● ●●●

●

●●
● ●

● ●
●

●

●

●

●

● ●●
●● ●

●
●

●

● ●
●●

●

●

●●
●●

●
●●●

●

●

●
●

● ●
●

●

●
● ●

●

●
●

●

●

●
●

●

● ●●● ●
● ●

● ●
●

●●
●●

● ●

●

● ●●
●

●● ●

●
●●●

●● ●
●

●

●

●●
●● ●● ● ●

●

●

●
●

●
●● ●

●
●

●
●

●●

●

● ●●●
●

●

●

●
●

●

●
●

●●
●●

●

●●
●● ●

●
●

●
●

●
●

●●
● ●

●
●

●

●
● ●

●
●

●
●
●

●● ●●

●●
●● ●● ●

●
●

●● ●●
●●● ●

●

●

●● ●
●●●

●

●
●

●

●
●

● ●
●

●●

●
●●

●

●

●

●

●

●

●
●

●

●
●

●

●

● ● ●● ●
●

●●
●● ●

● ●
● ●

● ●●
● ●

●
●●

● ●
●

●
●

●●
● ●

●

● ● ●
●

●
●

●●●
●

●
●

●

●

●
●

●●
●

●●
●

●

●● ●
●

●

●

●

●● ●
●

●

●

●

●
● ●●●

●
●

●

●

● ●
●

●
●

● ●
●

●

●●
●

●● ●

●

●
●●●● ●● ● ●

●●● ●
● ●

●

●
●●

●●
●

●

●● ●●●●●

●●
●

●

●
●

●

●

●●●●● ●● ●●●
●●●

●

●
●

●
●● ●

●●●●
●

● ●

● ●
●●● ●

●

● ●●
●

●
●

●●● ●●
●

●
●

● ●
●● ●

●
●● ● ●● ●●

●
● ●

●

● ●

●

●

●
● ●

●
●●●● ●

●

●
●

●
●

● ●
● ● ●

●
●

●● ●
●● ●

●
●

●

●
●●●●

●
● ●●

●● ●

● ●
●

●
●

●

●

●●

●

●
●●

● ●

●● ●
●

●
●

●
●

●
●● ●

●●
●● ●●● ●

● ●
●

●●
●●

●

●

●
●

● ●● ●● ● ●●● ●

●

●●●

●
●●

●
●

●●
●

●●
●● ●

● ● ●
● ● ● ●●

●
●

●●

●

● ●

●
●

●●

●●●
●

●
●

●● ●
●

●●

●

● ●●

●
●

●
●

●
●

●●

●

●
●

● ●
●

●●
●

●

●
●

●
●

●
●

●
●

●●

●

● ●

●

●

●

●●

●

●●● ●●

●
●

●
●● ●● ●●●●

●
●

●

●

●●●● ●● ●
●●●●

●
● ●

●● ●●●
●●

●●
●

● ●
●●

●
●●●

●

●● ● ●●●
●

●
●●

●

●

●
●

●
●

●
●

●
● ●●●

●

● ● ●●
● ●

●
●

●

●

●

●

● ●●

●

● ●●●
●

●●
●

● ●
●●

● ●
●

●
●●

●●●
●●●

●
●●● ●●
●● ●

●

●●
●●● ●

●

●
●

● ●●

●

●● ●●●
●

●
●● ●●●●

●

●●●●●
●

●
● ●● ●●● ●

●

●● ● ●●● ●●● ●●

●●

●
●

●
●

● ●
●●●

●
● ●●

●

● ●● ●
●

●

● ●●
●

●
●●

●

● ●
●●● ●

●●●

●
● ●

●

●

● ●
●●

●●

●

●

●●●●
●●●

●
●● ●●

●
● ●●

●●
● ● ●

●

●
●● ● ●●

●
●

● ●
●

● ●
● ●●● ●

●
●

●
●●

●

●

●
●● ● ●● ●●●● ●

● ●● ●●● ●
●

●●
● ●●●

●
●

●
●

●

●

●●
● ●

●
●●●●●

● ●
● ● ●

●●●●
●● ●

●●●
●

●
●

●

●●● ● ●●●●●● ● ●●

●

● ● ●● ●●●

●

●
●

●● ●●

●
● ●

●
●

●
● ●

●
●

●
●

●● ●
●

● ●● ●●
● ●

● ●
● ● ●

●●
●●

●
●

●●●● ● ●●

●
●● ●●●● ●

●

● ●
●

● ● ●●
●

● ●
● ●● ●

●●●● ●
●

● ●● ●●●●

●

●●● ●● ●● ● ●
● ● ●

●● ●●●●
●● ●●●

● ●
●

● ●● ●●● ● ●●
●

●

●

●
● ●●● ●●
● ●●●

●
● ● ●

●
●

●
●

●● ●
●●● ●

●
● ●●

●
● ●●●

●
●●

●
●

●

●
●

● ●
●●●

●●
●

●
●

●● ●● ●
● ●

●●●
●

● ●●
●

●
● ●●● ●

●●
●● ● ●●●

●
●

●● ● ●●● ●●

●
●

● ●●
●

●●● ●●● ●

●

●
● ●● ●● ●● ●●●

●

● ●● ●●
●

● ●

●
● ●●● ●

●
●● ●●

●

●●
●

●

●

●
●●●●

●
●●●●

●
●

● ●
● ●●

● ●●● ● ●
●

● ●●

●
● ●●

●
●

●
●● ●●● ●●●●●●● ●● ●●● ●

●●
●●● ●● ●

●●

●

● ●●●
●

●●
●

●

● ●● ● ●
● ●

●

● ●
●●

●

● ●● ●● ●●●●●
● ●●

●
● ●

●

●●●● ●●● ●● ● ●
● ● ●● ●●

●●

●
●●

●

●●●●
●●

●
●●●

●
●● ●● ●●● ●● ● ●

●
●● ● ●

● ● ●● ●●● ●●

●

● ●● ●●●
●●

● ●

●

●●●●
●

● ●●● ●
●●● ● ● ●

●

● ●●●●
●

●
● ●●●●● ●●● ●●●●

●●
● ●

●●

●

●●
●●

● ●●
●

●● ●●●●●●
●

● ●●
●

● ●● ●●

●

● ●●●

●
●

●
●

● ● ●●
● ●● ●●● ●

●●●

●
●● ●●●●
●

●
●

●● ●●●
●

●
● ●

●●● ● ●●
●

●●●●
● ●● ●

● ●
●

●
● ●

●●
● ●

●●●
●●● ●●

●

●●●●● ● ●
●●
●●

●
●

●
●● ●● ● ●

● ●●

●

●
●

●● ● ●●
●● ●

●

●

●●●●● ● ●●●●● ● ●

●

● ●
●

● ●●●● ●● ●●●● ●
●● ●●● ● ●●

●●
●

●
●

●
●

●

●

● ●● ●
●●●●

●●● ● ●●
● ●

●● ●●
●

●● ●●●● ●●●

●

●
●

● ●●●●
●●●

●●●●
●

●

●

● ●
● ● ● ●● ●●●●

●●● ●
●●● ●

●
●

●

● ●
● ●● ●

●
●●●● ● ●●●

●●● ● ●●● ● ●●●●● ● ● ●● ●●● ●
●

●

●

●

●●
●●●

●
●

●
●

●●● ●
●●

● ●
●

●●
●

●● ●● ●●●
●

●●
●●●●●

●●● ● ●
● ●●●

●
●●● ●●●

●●● ●
● ●● ●●● ●

●
●●●●●

●

●● ●●
●

●●
●● ●●● ● ●● ●● ●

●
● ●

●
●

●
●

●

● ●●●● ●●●

●

●● ●● ●● ●●

●
●

●

● ●●● ● ●●●●● ●●●●
● ●

● ●●
● ●

●
●

● ●●● ●●●●●
●●

●
●

●

● ●●● ● ●
●●

●●

●

●
●

●

● ●●●● ●● ●● ● ● ●●●● ●● ●●●
●●

●

●
● ●●●

●
● ●● ● ●●

●

●

●●●
● ●

●● ● ●● ●●● ●● ●●
●

●●●●●● ●● ●● ●● ●●
●

● ●●● ●● ● ●● ●● ●● ●
●●

●
●● ●

●
● ●● ●● ●●

●

●●
●

●
●

●

●● ●

●

●●●

●●●

●

●
●

●
●● ●● ●

● ● ●●●
●

●

● ●

●●●●
●

●●
●

● ●● ●●●●● ●● ●● ●● ●
●

●● ●
●

●
●● ●● ●● ●● ●● ●●

●

● ●● ●●

●

●

●●

●

● ●
●

●●

●

● ●●● ●
●

● ● ●
●

●
●

●● ●
●● ●●●

●
● ●● ●

●

●● ●● ●● ●

●

● ● ●●
●●

●● ●● ●● ●●●●●● ●● ● ●● ●●● ●● ●
●●●● ● ● ●●●●

●●●●● ●●●● ●● ●●

●

●● ●● ●●
●●

●
●

● ●● ●● ●●●●● ●●●●
● ●●

●

●●●●● ●●● ●● ●●●● ●●●

●

● ●●●● ● ●●● ●
●● ●

●

●
●●● ● ●

● ●
●●

●●● ●●●
●

●● ●● ●●● ● ●
●

●●● ● ●●●● ●● ●●● ●●
●

●●●
●

●●●● ●● ●●●●●● ● ●● ●● ●●
●

● ●●●
●●●● ●● ●●

●● ●
●

● ●
●● ● ●●

●
●●

●
●● ● ●● ●●

●
● ●●

●●●
●

●●●
●● ● ● ●●

●
● ● ●● ●●●●● ●● ●● ●●● ●● ●●

● ●●●● ●● ●● ●●●●● ●●●
●● ● ●●●●● ● ●●● ●● ●●●● ● ●● ●

●
● ●● ● ● ●● ●●● ●

●
● ●●●● ●

●●●●● ●● ●● ●
●● ●

●

●● ●● ● ●●●●● ●●
●

● ● ●
●●

●
● ●

●
● ●● ●●●● ●●● ●● ●● ●●●●

●●● ●●●
●● ●

●●●
●●● ●●

● ●

●

● ● ●●● ● ● ●
● ●

●●● ●
● ●●●● ● ●●● ●

● ●

●●● ●●● ● ●●● ●●● ● ●●●● ●● ●● ●● ●●●● ●●● ●● ● ● ●● ●●● ●●●● ●●
●●●●● ●

● ●

●

● ●●

●

●●●● ●●● ●
● ●●● ●●●● ●● ●● ●●● ● ●

●
● ●●● ●●

●
● ●● ●●●● ●● ●

●
●●

●

● ● ●●●●
●● ●●● ●● ● ● ●

● ●● ● ●● ●●● ●●●

●

●● ●●● ●●● ●●●●● ●● ●●●● ●●●●
● ●

● ●● ●● ●
●

● ●● ●
●

●●●
●

●● ●● ●●●●●●●●● ●● ●● ●● ●●
●● ●●

●
● ●● ●●●●● ● ●●●

●
●● ● ●● ●

●●●● ●●●● ●●●●●●● ●● ●●
● ●● ● ●●● ●● ●●● ●● ●●●● ●●● ●

●●

●●
●● ●●● ●●●● ●

● ● ●●●● ● ●●● ●● ● ●●●●●● ● ●●● ●●● ● ●● ● ●● ●
● ●●● ● ●●●● ●● ●●●

●
●

●
●

● ●●
●

●● ●●●
●

●●●●●● ●●● ●●● ● ●●●● ●●●● ● ●●
●

● ●●●●●●● ●● ● ●●●●●● ●●
●●●●● ●● ●●●● ● ●●● ●● ● ● ●

● ● ●●●● ●●● ●
●

●●●●● ●● ●● ●●●

●

●●●
●●●●● ●● ● ● ●● ●●

● ●● ●●● ●● ●●● ● ●●● ● ●●

●

●● ● ●● ●●● ● ●● ● ●
●● ●●●

●●
●

●●● ● ●●
● ●●●● ●●● ● ●

●●●● ● ●● ●●●
●●●● ● ●●● ●●

●● ●● ●
● ● ●●● ●● ●

●●● ●●
●

●●● ● ●● ● ● ●
●●● ●● ●●●● ●● ●● ● ●●●●● ●● ●●●●●

●
●●● ● ● ●● ●●●●● ● ●●● ●●●●● ● ●● ●●●●●●● ●●●● ●●●● ●●●●● ●● ● ●● ●● ●●

●●● ● ●●● ●●●

●

● ●●●● ●● ●●●●● ● ●●●●●● ●●● ●●●
●

●● ●●●
●

●

●● ●● ●● ●● ●●● ●● ● ●● ● ●● ●●
●

● ●● ● ●● ●●●●● ●
●

●● ●●● ●●● ● ●●● ●● ●●● ●● ●●● ●●
●

●
● ● ● ●●●● ●● ●●●● ● ●

● ●● ● ●
● ● ●● ● ●

● ●● ● ●●●● ● ●●● ●● ●●●●● ● ●● ●● ●● ●●● ● ●●●
●

● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●

●

● ●

●

●●●
●●●●

●● ● ●● ●●●●●●● ●● ●●
●● ●

●
●

●●●● ●● ●● ●●

●

●
●●●●

●
●●● ● ●●●●● ●● ●●● ●

●
● ●●●● ●●

●
●●● ●●●● ●●●

●
●● ● ● ●

● ● ●●● ●●● ● ●●
●

● ●●
● ●● ●● ●●●

●
● ●● ● ●●●●● ●● ●●● ●● ●●●● ●● ●● ● ●●● ●● ●●

●
●

●
●

● ● ●
●

●●● ●
●

●● ●

●

● ●●
●● ●●●●● ●●●● ●● ●● ●● ● ●●● ●● ●● ●●●● ●●●●● ●● ●●●

●● ●●● ● ●●●●●●
● ●● ● ●●●● ●

●

● ●● ●●● ●●●●● ●● ●● ●●● ●●●● ●●● ● ●●●●●●●
● ●●●●● ●● ●● ●●● ●●●● ●

●
●● ●● ●●●●● ●● ●●● ● ● ●

●
● ●● ●

●
●●●● ● ●●● ●● ●● ●● ● ●●●

●

● ●●● ●● ●●● ●● ● ●● ● ●● ●●●● ●
●

●●● ●●● ●●● ●●● ●● ● ● ●
● ●●● ●●●● ● ●●● ●

● ●● ●●

●

●

●

●●● ●● ●●● ● ● ●● ●●●● ●● ●● ●●● ●●● ●● ●
●

●●
●

●
●●●● ●●● ●●● ●●● ●● ●●●

●●●● ●●● ●● ●●● ●● ●● ●●●● ●
●

● ● ●● ●●● ●● ●●●●● ●● ●● ●●● ●●● ● ●●● ●● ●● ●●● ●● ●

●

●
●●● ●●●●● ●● ●●●● ●● ●●●●● ● ●●●● ●● ●● ●

●●● ●●●● ●●●●●● ●● ●●●● ●● ● ●●● ●●● ●● ● ●● ●● ●●● ●
●●● ●● ●● ●● ●● ● ●● ●●●●● ●● ●● ● ●●●● ●●● ●●● ●●●● ● ●●●● ●●●

●
●● ●● ●● ●●●●●

●

●● ●●●●● ● ●●●●●● ●● ●●● ●●●●●● ●● ●●● ●● ●●● ●●● ●●●●● ●● ●● ●●●● ●●● ●● ●●● ●● ● ●● ●●● ●● ● ●●● ●●●● ●●●● ● ●● ●●
●

●●● ●● ● ●●
● ● ●● ●

● ●●●● ●● ● ●
● ●●

●
● ●●●

●●

●

● ●● ●● ●● ●
●

●● ● ● ●●● ●

●

●● ●●
● ●

● ● ●● ●●● ● ● ●●
●

● ● ●● ●● ●●● ● ●●●● ●●●
●●●● ●● ●

●
●

●
●

●
●●●● ●●●● ●●● ●

●●●
●

●●● ●●● ● ●
●

●●● ●●●● ●●● ●●● ●●●●● ●●●●● ●● ●●●●● ●●●●● ●● ●● ● ●●
●

● ●●● ●● ● ●

●

●● ●● ●● ●● ●●● ●●●● ●●●● ●●● ●●●●
●●● ●

●
●● ●

●●● ●●● ●● ● ●● ●●●● ● ●
●●●

●
●●● ●● ●●●●● ●● ●●●● ●● ●●

●
●●

●

●●●●● ● ●● ●●●● ●● ● ●● ●● ●● ●● ● ●●●● ●●● ●●● ●● ●●●● ●
●●●

●

●● ●●● ●●●● ●● ●●●● ●●● ● ●
●● ●● ●● ●●●● ●● ●●●● ●●● ●●● ●● ● ● ●●● ●● ● ●

● ● ●● ●● ●●
●

●●●●● ● ●● ●

●

●●● ●
●

●●●● ●●● ●●● ●● ●●● ●●● ●●●● ●● ●●● ●●● ● ●●● ●● ● ●●

●
●●● ●● ●●● ●● ●●●

●●● ●● ●●●● ● ●●●
●● ●●● ●●● ●● ●●●● ● ●● ●● ● ● ● ●●

●●●
●●●● ● ● ●● ●● ●● ●●● ● ●●

●●● ●●● ●●●● ●● ●●●●● ●●● ● ●● ●● ●● ●● ●●●●● ● ●●●●● ● ●●●● ●●● ●● ●●● ●●●● ●●●●●● ● ●● ● ●● ●●●● ● ●●●● ●●● ● ●●●●●●● ● ●

●

●●
●●●●● ● ●● ●● ●● ●●● ●

●
●● ●●●●

●●● ●●● ● ●●● ●●●● ●● ●● ●● ●●●
●

● ●● ● ●●● ●●●●●●● ●
● ● ●●●●●● ●● ●●● ●● ●●●●● ●● ●

●
●● ●

●

●●● ●●● ●●● ● ●
● ●●● ●●●

●●●●●
●

6.5 7.0 7.5 8.0 8.5

5.
0e

+
07

1.
0e

+
08

1.
5e

+
08

2.
0e

+
08

2.
5e

+
08

Average Wagon Makespan

O
bj

ec
tiv

e
V

al
ue

Figure 4.10: Large GA run, all objective function evaluations against average
wagon makespan

68

0 1 2 3 4 5 6 7

Day

R
el

at
iv

e
P

os
iti

on

Figure 4.11: Large GA run, best solution train diagram

the greatest amount of search takes place within the neighborhood of the
best individual. The distinct bands are the result of the bias towards high
tonnages as they differ by a constant amount. One could argue that the
bias towards the tonnage could be lowered in favor of a more reasonable
tradeoff between tonnage and resource utilization. Often the primary KPI
in railways is the throughput of the network with good resource utilization
being a driver of the ultimate solution.

An illustration of the final output from the GA is shown as a train dia-
gram in Figure 4.11. All arcs used in the schedule are shown as solid lines
and the relative position of sites is given. Points at which wagons are being
loaded are shown as blue horizonal lines. The angle of the lines between
sites gives an indication of the travel time cost to service a site. Since the
relative position is shown, the crossing of arcs should not be interpreted, as
normally the case, as the times when trains are expected to pass one another.

Figure 4.13 illustrates that the GA runs are largely unaffected by the
quality of the initial starting solutions. Poor solutions, high in objective
value, undergo larger improvements from the initial population to the final
solution. The improvement is taken as the percentage reduction from the
best solution in the initial population to the best solution in the final popu-
lation (at 100 generations). A significant regression model (α = 0.001) was
fitted to the data to illustrate the relationship. An average improvement of
14.5% can be expected from a typical GA run on the large data set at 100
generations.

69

0 20 40 60 80 100

1.
8e

+
07

2.
2e

+
07

2.
6e

+
07

3.
0e

+
07

Generation

A
ve

ra
ge

 O
bj

ec
tiv

e
V

al
ue

0 20 40 60 80 100

1.
7e

+
07

1.
8e

+
07

1.
9e

+
07

2.
0e

+
07

2.
1e

+
07

Generation
B

es
t O

bj
ec

tiv
e

V
al

ue

Figure 4.12: Multiple GA runs, average and best performance

The second diagram in Figure 4.13 shows that the starting objective val-
ues do not correlate with the final objective values. This suggests that the
GA is not only robust in this setting but also that sufficient iterations have
been performed to ensure reasonable independence of the final results.

Figure 4.14 affirms earlier comments that the bias term for the scheduled
tonnage needs to be reduced as it is creating a significant local optimum
which is repeatedly being converged to.

70

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

19500000 20000000 20500000 21000000 21500000

10
15

20
25

Starting objective value

%
 Im

pr
ov

em
en

t a
fte

r
10

0
ge

ne
ra

tio
ns

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

19500000 20000000 20500000 21000000 21500000

17
00

00
00

17
50

00
00

18
00

00
00

Best objective value at generation 0

B
es

t o
bj

ec
tiv

e
va

lu
e

af
te

r
10

0
ge

ne
ra

tio
ns

Figure 4.13: GA improvement against starting objective values

1.7e+07 1.8e+07 1.9e+07 2.0e+07 2.1e+07 2.2e+07

0e
+

00
2e

−
07

4e
−

07
6e

−
07

8e
−

07

Objective Value

D
en

si
ty

Generation 0
Generation 100

Figure 4.14: Solution distribution at Generation 0 and 100

71

4.4 Implementation Results

In 2009 Transnet Freight Rail (TFR) went to tender for a solution that could
deal with the dynamic nature of the scheduling required for the Coal Link
servicing the Richards Bay Coal Terminal (RBCT) in South Africa. OPSI
Systems was awarded the tender in late 2009, citing their extensive knowl-
edge in truck scheduling environment and its relationship to the required
coal train scheduling as being a large factor in the adjudication process.

The solution was modeled as described in Chapter 3 and the genetic al-
gorithm described in Section 4.3 bundled within a larger application called
PLATO.Rail. PLATO.Rail is a windows application which provides not
only an intuitive front end for the scheduler but also several diagnostics and
interfaces to provide insights to the solution outputs. The application also
extends to real time resource monitoring, execution and rescheduling which
is out of the scope of this dissertation.

PLATO.Rail had a large impact on the total amount of time and effort
taken to do the planning, or scheduling, for the coming week. Previous
ad hoc systems which were in place would take several hours to create a
schedule, sometimes running into the next day before a relaxed schedule
was returned. The total run time of the schedule is under 10 minutes in
PLATO.Rail which allows planners to tweak the scenario and adjust pa-
rameters until a satisfactory result is obtained.

The application went ‘live’ at TFR in 2011 after a year of prototyping
and development. Figure 4.15 gives the three week moving average on ton-
nages for the Coal Line. The horizonal lines indicate the average weekly
throughput for each financial period.

After three years of stagnant performance the Coal Line saw a significant
increase in throughput which has been sustained through the year. Although
some of the increase is attributed to an increase in resources, previous years
also had resource injections but were not able to achieve an increase in an-
nual volumes, suggesting the in order to unlock the potential of the fleet,
better planning was required.

A joint entry between TFR and OPSI Systems for scheduling excellence
won a gold Logistics Achiever Award in 2012 for the PLATO.Rail project
and implementation on the Coal Line in South Africa.

72

Figure 4.15: Coal Line tonnage: 3 week moving average from 2008/09 to
2011/12 financial year

73

Chapter 5

Conclusion

Many academic works in the train scheduling environment deal primarily
with the optimization of resource movements through the physical network
given an existing train schedule. The task of assigning resources to a train
schedule is often handled as a separate optimization task. Bulk freight en-
vironments often operate without a fixed schedule due to the variability in
demand from one period to the next.

An introduction to the concepts of bulk freight train scheduling in a
South African context is given in Chapter 1. A review of the literature is
given in Chapter 2 with specific attention being given to the Train Timetabling
Problem (TTP) and Locomotive Assignment Problem (LAP).

The optimization difficulty in bulk freight train scheduling is to simulta-
neously determine the train timetable and resource allocation, a combination
of TTP and LAP. This is done with respect to additional operational con-
straints such as reclaiming times, site maintenance, occupations and resource
configuration options to name a few. A formulation of the problem is given
in Chapter 3 which aims to maximise resource utilization and throughput
while minimising the number of light locomotives movements required.

An exact search was written to solve the formulation presented in Chap-
ter 3. The results from the exact search for small problems were used to
benchmark a heuristic branch-and-bound. The same methodology was then
applied to benchmark a Genetic Algorithm using the heuristic branch-and-
bound which is capable of solving realistically sized problems. The final
result was that the Genetic Algorithm is able to strike a good trade off be-
tween solution quality and computation time.

The Genetic Algorithm discussed in Chapter 4 is being successfully used
by Transnet Freight Rail on the Richards Bay Export Line to complete their

74

weekly planning. Implementation details are provided in Section 4.4.

Due to the success of the implementation of the scheduling algorithm em-
ployed on the Richards Bay Export Line; OPSI Systems was commissioned
by Transnet Freight Rail in late 2012 to extend the algorithm to schedule
all coal movements in South Africa. The long term view is to reduce loading
conflicts at mines through a single, integrated and transparent plan.

Scheduling all domestic and export coal requires fundamental changes to
the model presented in this dissertation to support multiple offloading sites,
empty wagon distribution and more complex network related decisions. The
number of decision variables will also be increased in this model by a factor
of approximately 5.

Alternatives to the Genetic Algorithm could be explored for the extended
model. One possibility is a multi-phase approach whereby Constraint Pro-
gramming (CP) is initially used to generate a feasible allocation of trains
to mines given the available slots followed by a mixed integer programming
formulation (similar to that used by Ahuja et al [1]) to provide resource
allocation (of both wagons and locomotives) given the fixed set of slots.

75

Chapter 6

Bibliography

[1] R K Ahuja, J Liu, J B Orlin, D Sharma, and L A Shughart. Solving
Real-Life Locomotive-Scheduling Problems. Transportation Science,
39(4):503–517, November 2005.

[2] A Assad. Models for rail transportation. Transportation Research,
14A:205–220, 1979.

[3] A Assad. Modelling of rail networks: Toward a routing/makeup
model. Transportation Research Part B: Methodological, 14(1-2):101–
114, March 1980.

[4] E Balas, N Simonetti, and A Vazacopoulos. Job shop scheduling with
setup times, deadlines and precedence constraints. Journal of Schedul-
ing, 11(4):253–262, 2008.

[5] J F Benders. Partitioning procedures for solving mixed-variables pro-
gramming problems. Numerische mathematik, 252(4):238–252, 1962.

[6] L D Bodin, B L Golden, A D Schuster, and W Romig. A model for
the blocking of trains. Transportation Research Part B, 14B:115–120,
1980.

[7] J M P Booler. The Solution of a Railway Locomotive Scheduling Prob-
lem. The Journal of the Operational Research Society, 31(10):943, Oc-
tober 1980.

[8] J M P Booler. A Note on the Use of Lagrangean Relaxation in Railway
Scheduling. Journal of the Operational Research Society, 46(1):123–
127, 1995.

[9] R L Burdett and E Kozan. Techniques for absolute capacity determi-
nation in railways. Transportation Research Part B: Methodological,
40(8):616–632, September 2006.

76

[10] R L Burdett and E Kozan. A sequencing approach for creating new
train timetables. OR Spectrum, 32(1):163–193, July 2008.

[11] R L Burdett and E Kozan. Techniques for inserting additional trains
into existing timetables. Transportation Research Part B, 43(8-9):821–
836, 2009.

[12] R L Burdett and E Kozan. Techniques for restricting multiple overtak-
ing conflicts and performing compound moves when constructing new
train schedules. Mathematical and Computer Modelling, 50(1):314–328,
2009.

[13] X Cai and C J Goh. A fast heuristic for the train scheduling problem.
Computers and Operations Research, 21(5):499–510, 1994.

[14] X Cai and C J Goh. Greedy heuristics for rapid scheduling of trains on
a single track. IIE transactions, 30(5):481–493, May 1998.

[15] A Caprara, M Monaci, P Toth, and P L Guida. A lagrangian heuristic
algorithm for a real-world train timetabling problem. Discrete Applied
Mathematics, 154(5):738–753, 2006.

[16] Alberto Caprara, Matteo Fischetti, and Paolo Toth. Modeling and
solving the train timetabling problem. Operations Research, 50(5):851–
861, 2002.

[17] M Carey and D Lockwood. A model, algorithms and strategy for train
pathing. The Journal of the Operational Research Society, 46(8):988–
1005, 1995.

[18] A Caumond, P Lacomme, and N Tchernev. A memetic algorithm
for the job-shop with time-lags. Computers and Operations Research,
35(7):2331–2356, 2008.

[19] J F Courdeau. A survey of optimization models for train routing and
scheduling. Transportation Science, 4(3):380–404, June 1998.

[20] G B Dantzig and P Wolfe. Decomposition principle for linear programs.
Operations research, 8(1):101–111, 1960.

[21] L Davis. Handbook of genetic algorithms. VNR computer library. Van
Nostrand Reinhold, 1991.

[22] Kenneth Alan De Jong. An analysis of the behavior of a class of genetic
adaptive systems. PhD thesis, Ann Arbor, MI, USA, 1975. AAI7609381.

[23] M Florian, G Bushell, J Feland, G Guerin, and L Nastansky. The engine
scheduling problem in a railway network. INFOR, 14(2):121–139, 1976.

77

[24] M A Forbes, J N Holt, and A M Watts. Exact Solution of Locomotive
Scheduling Problems. The Journal of the Operational Research Society,
42(10):825– 831, 1991.

[25] M A Forbes, J N Holt, and A M Watts. An exact algorithm for multi-
ple depot bus scheduling. European Journal Of Operational Research,
72:115–124, 1994.

[26] D E Goldberg. Genetic algorithms in search, optimization, and machine
learning. Artificial Intelligence. Addison-Wesley Pub. Co., 1989.

[27] M F Gorman. An application of genetic and tabu searches to the freight
railroad operating plan problem. Annals of Operations Research, 78:51
– 69, 1998.

[28] J J Grefenstette. Optimization of Control Parameters for Genetic Algo-
rithms. Transactions on Systems, Man and Cybernetics, 16(1):122–128,
1986.

[29] N Hansen and A Ostermeier. Completely derandomized self-adaptation
in evolution strategies. Evolutionary computation, 9(2):159–95, January
2001.

[30] A Higgins, E Kozan, and L Ferreira. Optimal scheduling of trains on
a single line track. Transportation Research Part B: Methodological,
30(2):147–161, 1996.

[31] A Higgins, E Kozan, and L Ferreira. Heuristic techniques for single line
train scheduling. Journal of Heuristics, 3(1):43–62, 1997.

[32] A Higgins, E Kozan, and L Ferreira. Modelling the number and location
of sidings on a single line railway. Computers & Operations Research,
24(3):209–220, March 1997.

[33] K L Huang and C J Liao. Ant colony optimization combined with taboo
search for the job shop scheduling problem. Computers and Operations
Research, 35(4):1030–1046, 2008.

[34] RSK Kwan and P Mistry. A co-evolutionary algorithm for train
timetabling. Computation, 2003. CEC’03. The 2003, (July), 2003.

[35] E Lawler and D Wood. Branch-and-Bound Methods: A Survey. Oper-
ations Research, 14(4):699–719, July 1966.

[36] Shi-qiang Liu and Erhan Kozan. A Blocking Parallel-Machine Job-
Shop-Scheduling Model for the Train Scheduling Problem. The 8th
Asia-Pacific industrial engineering and management systems confer-
ence, pages 10.1 – 10.10, 2007.

78

[37] Shi Qiang Liu and Erhan Kozan. Scheduling trains as a blocking
parallel-machine job shop scheduling problem. Computers & Opera-
tions Research, 36(10):2840–2852, October 2009.

[38] Shi Qiang Liu and Erhan Kozan. Optimising a coal rail network un-
der capacity constraints. Flexible Services and Manufacturing Journal,
23(2):90–110, January 2011.

[39] D H Noble, M Al-Amin, and R G J Mills. Production of locomotive
rosters for a multi-class multi-locomotive problem. Journal of the Op-
erational Research Society, 52(11):1191–1200, November 2001.

[40] Z Othman, K Subari, and N Morad. Job Shop Scheduling with alterna-
tive machines using Genetic Algorithms. Technical Report D, Universiti
Teknologi Malaysia, 2007.

[41] S Rouillon, G Desaulniers, and F Soumis. An extended branch-and-
bound method for locomotive assignment. Transportation Research
Part B: Methodological, 40(5):404–423, June 2006.

[42] Y Semet and M Schoenauer. An Efficient Memetic, Permutation-Based
Evolutionary Algorithm for Real-World Train Timetabling. 2005 IEEE
Congress on Evolutionary Computation, 3:2752–2759.

[43] B Szpigel. Optimal train scheduling on single track railway. OR, pages
343–352, 1972.

[44] P Tormos, A Lova, F Barber, and L Ingolotti. A genetic algorithm for
railway scheduling problems. Studies In Computational Intelligence,
128:255–276, 2008.

[45] B Vaidyanathan, R Ahuja, J Liu, and L Shughart. Real-life locomotive
planning: New formulations and computational results. Transportation
Research Part B: Methodological, 42(2):147–168, February 2008.

[46] W L Winston and J B Goldberg. Operations research: applications and
algorithms. Thomson Brooks/Cole, 2004.

[47] M B Wright. Applying Stochastic Algorithms to a Locomotive
Scheduling Problem. The Journal of the Operational Research Soci-
ety, 40(2):187– 192, 1989.

[48] Koorush Ziarati, Franqois Soumis, Jacques Desrosiers, Sylvie Gelinas,
and Andre Saintonge. Locomotive assignment with heterogeneous con-
sists at CN North America. European Journal of Operational Research,
97:281–292, 1997.

79

Appendix A

Test Data

n Class lecpn R1 R2 R3 R4 R5 R6 R7 R8
∑

1 DC 1 1 1 1 3
2 DC 1 1 1 1 3
3 DC 1 1 1 1 3
4 DC 1 1 1 2
5 DC 1 1 1 1 3
6 DC 1 1 1 1 3
7 DC 1 1 1 2
8 DC 1 1 1 1 3
9 AC 1 1 1 1 3
10 AC 1 1 1 1 3
11 AC 1 1 1 1 3
12 AC 1 1 1 1 3
13 AC 1 1 1 1 3
14 Diesel 0 1 1 2
15 AC 1 1 1 1 3
16 AC 1 1 1 1 3
17 AC 0 1 1 1 3
18 AC 0 1 1 1 3
19 AC 1 1 1 1 3
20 AC 1 1 1 1 3
21 AC 1 1 1 1 3
22 DC 1 1 1 1 3
23 AC/DC 1 1 1 1 3
24 AC/DC 1 1 1 1 3
25 DC 0 1 1 1 3
26 DC 1 1 1 2
27 AC 1 1 1 1 3
28 DC 1 1 1 2
29 AC/DC 1 1 1 1 3

80

30 AC/DC 1 1 1 1 3
31 AC/DC 1 1 1 2
32 AC/DC 1 1 1 2
33 AC/DC 1 1 1 1 3
34 AC/DC 1 1 1 2
35 AC/DC 1 1 1 2
36 AC 1 1 1 1 3
37 AC 1 1 1 1 3
38 DC 0 1 1 1 3
39 Diesel 1 1 1 1 3
40 Diesel 1 1 1 1 3
41 Diesel 1 1 1 2
42 AC/DC 1 1 1 1 3
43 AC 1 1 1 1 3
44 AC/DC 1 1 1 2
45 AC/DC 1 1 1 1 3
46 AC/DC 1 1 1 2
47 AC/DC 1 1 1 2
48 DC 1 1 1 1 3
49 DC 1 1 1 2
50 AC/DC 0 1 1 1 3

Table A.2: Locomotive Set Class, ECP and Region Con-
straints

81

From Site To Site Slot Interval From Site To Site Slot Interval

Hub 1 Site 30 30 Hub 1 Site 22 30
Hub 1 Site 19 30 Hub 1 Site 20 30
Hub 1 Site 10 30 Hub 1 Site 31 30
Hub 1 Site 2 30 Hub 1 Site 24 30
Hub 1 Site 4 30 Hub 1 Site 23 30
Hub 1 Site 3 30 Hub 1 Site 15 30
Hub 1 Site 25 30 Hub 1 Site 17 30
Hub 1 Site 18 30 Hub 1 Site 8 30
Hub 1 Site 27 30 Hub 1 Site 33 30
Hub 1 Site 28 30 Hub 1 Site 5 30
Hub 1 Site 7 30 Hub 1 Site 6 30
Hub 1 Site 32 30 Hub 1 Site 12 30
Hub 1 Site 26 30 Hub 1 Site 38 30
Hub 1 Site 9 30 Hub 1 Site 34 60
Hub 1 Site 29 30 Hub 1 Hub 2 60
Hub 1 Site 21 30 Hub 2 Hub 1 60
Hub 1 Site 11 30 Hub 2 Site 34 60
Hub 1 Site 16 30 Hub 2 Site 27 30
Hub 1 Site 1 30 Hub 2 Site 36 30
Hub 1 Site 13 30 Hub 2 Terminal 60
Hub 1 Site 14 30 Terminal Hub 2 60

Table A.1: Site slot intervals

82

m
W

a
go

n
C

la
ss

w
si
z
e

m
w
ec
p

m
m

W
ag

on
C

la
ss

w
si
z
e

m
w
ec
p

m
m

W
ag

on
C

la
ss

w
si
z
e

m
w
ec
p

m

1
J

10
0

1
29

J
10

0
1

57
J

10
0

0
2

J
10

0
1

30
J

10
0

0
58

J
10

0
1

3
J

10
0

1
31

J
10

0
0

59
J

10
0

0
4

J
10

0
1

32
J

10
0

0
60

J
10

0
0

5
J

10
0

1
33

J
10

0
0

61
S

50
0

6
J

10
0

1
34

J
10

0
0

62
S

50
0

7
J

10
0

1
35

J
10

0
0

63
S

50
0

8
J

10
0

1
36

J
10

0
0

64
S

50
0

9
J

10
0

1
37

J
10

0
1

65
S

50
0

1
0

J
10

0
1

38
J

10
0

1
66

S
50

0
1
1

J
10

0
1

39
J

10
0

1
67

S
50

0
1
2

J
10

0
1

40
J

10
0

1
68

S
50

0
1
3

J
10

0
1

41
J

10
0

0
69

S
50

0
1
4

J
10

0
1

42
J

10
0

0
70

S
50

0
1
5

J
10

0
1

43
J

10
0

1
71

S
50

0
1
6

J
10

0
1

44
J

10
0

1
72

S
50

0
1
7

J
10

0
1

45
J

10
0

1
73

J
10

0
0

1
8

J
10

0
1

46
J

10
0

1
74

J
10

0
1

1
9

J
10

0
0

47
J

10
0

1
75

J
10

0
0

2
0

J
10

0
1

48
J

10
0

1
76

J
10

0
1

2
1

J
10

0
1

49
J

10
0

0
77

J
10

0
0

2
2

J
10

0
1

50
J

10
0

1
78

J
10

0
1

2
3

J
10

0
0

51
J

10
0

1
79

J
10

0
1

2
4

J
10

0
1

52
J

10
0

0
80

J
10

0
1

2
5

J
10

0
0

53
J

10
0

1
81

J
10

0
1

2
6

J
10

0
1

54
J

10
0

0
82

J
10

0
1

2
7

J
10

0
1

55
J

10
0

0
83

S
50

0
2
8

J
10

0
1

56
J

10
0

0
84

S
50

0

T
ab

le
A

.3
:

W
ag

on
S

et
C

la
ss

,
S

iz
e

an
d

E
C

P
p

ro
p

er
ti

es

83

E
m

p
ty

L
oa

d
ed

S
i

S
j

C
o
n

fi
gu

ra
ti

o
n

S
i

S
j

C
on

fi
gu

ra
ti

on
S
i

S
j

C
on

fi
g
u

ra
ti

on
S
i

S
j

C
o
n

fi
g
u

ra
ti

o
n

H
u

b
1

S
it

e
1

1
00

J
H

u
b

1
S

it
e

21
10

0J
S

it
e

1
H

u
b

1
10

0J
S

it
e

2
1

H
u

b
1

1
0
0
J

H
u

b
1

S
it

e
2

1
00

J
H

u
b

1
S

it
e

22
10

0S
S

it
e

2
H

u
b

1
10

0J
S

it
e

2
2

H
u

b
1

1
0
0
S

H
u

b
1

S
it

e
3

1
00

J
H

u
b

1
S

it
e

23
10

0S
S

it
e

3
H

u
b

1
10

0J
S

it
e

2
3

H
u

b
1

1
0
0
S

H
u

b
1

S
it

e
4

1
00

J
H

u
b

1
S

it
e

23
10

0J
S

it
e

4
H

u
b

1
10

0J
S

it
e

2
3

H
u

b
1

1
0
0
J

H
u

b
1

S
it

e
5

1
00

S
H

u
b

1
S

it
e

24
10

0S
S

it
e

5
H

u
b

1
10

0S
S

it
e

2
4

H
u

b
1

1
0
0
S

H
u

b
1

S
it

e
5

1
00

J
H

u
b

1
S

it
e

24
10

0J
S

it
e

5
H

u
b

1
10

0J
S

it
e

2
4

H
u

b
1

1
0
0
J

H
u

b
1

S
it

e
6

1
00

S
H

u
b

1
S

it
e

25
10

0J
S

it
e

6
H

u
b

1
10

0S
S

it
e

2
5

H
u

b
1

1
0
0
J

H
u

b
1

S
it

e
6

1
00

J
H

u
b

1
S

it
e

26
10

0J
S

it
e

6
H

u
b

1
10

0J
S

it
e

2
6

H
u

b
1

1
0
0
J

H
u

b
1

S
it

e
7

1
00

J
H

u
b

1
S

it
e

27
10

0J
S

it
e

7
H

u
b

1
10

0J
S

it
e

2
7

H
u

b
1

1
0
0
J

H
u

b
1

S
it

e
8

1
00

S
H

u
b

1
S

it
e

28
10

0J
S

it
e

8
H

u
b

1
10

0S
S

it
e

2
8

H
u

b
1

1
0
0
J

H
u

b
1

S
it

e
8

1
00

J
H

u
b

1
S

it
e

29
10

0J
S

it
e

8
H

u
b

1
10

0J
S

it
e

2
9

H
u

b
1

1
0
0
J

H
u

b
1

S
it

e
9

1
00

S
H

u
b

1
S

it
e

29
10

0S
S

it
e

9
H

u
b

1
10

0S
S

it
e

2
9

H
u

b
1

1
0
0
S

H
u

b
1

S
it

e
10

1
00

J
H

u
b

1
S

it
e

30
10

0J
S

it
e

10
H

u
b

1
10

0J
S

it
e

3
0

H
u

b
1

1
0
0
J

H
u

b
1

S
it

e
11

1
00

J
H

u
b

1
S

it
e

30
10

0S
S

it
e

11
H

u
b

1
10

0J
S

it
e

3
0

H
u

b
1

1
0
0
S

H
u

b
1

S
it

e
12

1
00

S
H

u
b

1
S

it
e

31
10

0J
S

it
e

12
H

u
b

1
10

0S
S

it
e

3
1

H
u

b
1

1
0
0
J

H
u

b
1

S
it

e
12

1
00

J
H

u
b

1
S

it
e

32
10

0J
S

it
e

12
H

u
b

1
10

0J
S

it
e

3
2

H
u

b
1

1
0
0
J

H
u

b
1

S
it

e
13

1
00

J
H

u
b

1
S

it
e

33
10

0J
S

it
e

13
H

u
b

1
10

0J
S

it
e

3
3

H
u

b
1

1
0
0
J

H
u

b
1

S
it

e
14

1
00

J
H

u
b

1
S

it
e

37
10

0J
S

it
e

14
H

u
b

1
10

0J
S

it
e

3
7

H
u

b
1

1
0
0
J

H
u

b
1

S
it

e
15

1
00

J
H

u
b

1
S

it
e

38
10

0J
S

it
e

15
H

u
b

1
10

0J
S

it
e

3
8

H
u

b
1

1
0
0
J

H
u

b
1

S
it

e
16

1
00

J
H

u
b

2
H

u
b

1
10

0J
10

0S
S

it
e

16
H

u
b

1
10

0J
H

u
b

1
H

u
b

2
1
0
0
J

1
0
0
S

H
u

b
1

S
it

e
17

1
00

J
H

u
b

2
H

u
b

1
20

0J
S

it
e

17
H

u
b

1
10

0J
H

u
b

1
H

u
b

2
2
0
0
J

H
u

b
1

S
it

e
18

1
00

J
H

u
b

2
S

it
e

34
10

0J
S

it
e

18
H

u
b

1
10

0J
H

u
b

1
H

u
b

2
1
0
0
J

H
u

b
1

S
it

e
18

1
00

S
H

u
b

2
S

it
e

35
50

S
S

it
e

18
H

u
b

1
10

0S
S

it
e

3
4

H
u

b
2

1
0
0
J

H
u

b
1

S
it

e
19

1
00

S
H

u
b

2
S

it
e

36
50

S
S

it
e

19
H

u
b

1
10

0S
S

it
e

3
5

H
u

b
2

5
0
S

H
u

b
1

S
it

e
20

1
00

J
T

er
m

in
al

H
u

b
2

10
0J

10
0S

S
it

e
20

H
u

b
1

10
0J

S
it

e
3
6

H
u

b
2

5
0
S

T
er

m
in

a
l

H
u

b
2

2
00

J
H

u
b

2
T

er
m

in
al

10
0J

10
0S

H
u

b
2

T
er

m
in

a
l

2
0
0
J

T
a
b

le
A

.4
:

S
it

e
p

ai
r

al
lo

w
ab

le
w

ag
on

co
n

fi
gu

ra
ti

on
s

84

Si Sj Tij Si Sj Tij
Hub 1 Hub 2 345 Hub 2 Hub 1 300
Terminal Hub 2 260 Hub 2 Terminal 332
Hub 1 Site 1 135 Site 1 Hub 1 223
Hub 1 Site 2 267 Site 2 Hub 1 345
Hub 1 Site 3 248 Site 3 Hub 1 275
Hub 1 Site 4 203 Site 4 Hub 1 281
Hub 1 Site 5 107 Site 5 Hub 1 215
Hub 1 Site 6 70 Site 6 Hub 1 302
Hub 1 Site 7 164 Site 7 Hub 1 203
Hub 1 Site 8 142 Site 8 Hub 1 223
Hub 1 Site 9 123 Site 9 Hub 1 123
Hub 1 Site 10 210 Site 10 Hub 1 291
Hub 1 Site 11 121 Site 11 Hub 1 188
Hub 1 Site 12 1047 Site 12 Hub 1 1471
Hub 1 Site 13 224 Site 13 Hub 1 231
Hub 1 Site 14 310 Site 14 Hub 1 169
Hub 1 Site 15 133 Site 15 Hub 1 155
Hub 1 Site 16 135 Site 16 Hub 1 182
Hub 1 Site 17 154 Site 17 Hub 1 202
Hub 1 Site 18 310 Site 18 Hub 1 462
Hub 1 Site 19 400 Site 19 Hub 1 165
Hub 1 Site 20 156 Site 20 Hub 1 185
Hub 1 Site 21 183 Site 21 Hub 1 173
Hub 1 Site 22 139 Site 22 Hub 1 353
Hub 1 Site 23 109 Site 23 Hub 1 181
Hub 1 Site 24 101 Site 24 Hub 1 230
Hub 1 Site 25 200 Site 25 Hub 1 283
Hub 1 Site 26 204 Site 26 Hub 1 267
Hub 1 Site 27 192 Site 27 Hub 1 265
Hub 1 Site 28 166 Site 28 Hub 1 226
Hub 1 Site 29 75 Site 29 Hub 1 120
Hub 1 Site 30 350 Site 30 Hub 1 460
Hub 1 Site 31 97 Site 31 Hub 1 117
Hub 1 Site 32 159 Site 32 Hub 1 217
Hub 1 Site 33 164 Site 33 Hub 1 234
Hub 2 Site 34 151 Site 34 Hub 2 151
Hub 2 Site 35 86 Site 35 Hub 2 86
Hub 2 Site 36 137 Site 36 Hub 2 137
Hub 1 Site 37 20 Site 37 Hub 1 37
Hub 1 Site 38 180 Site 38 Hub 1 210

Table A.5: Site-Site Travel Times

85

Sσ Day SW s
σ,α SW e

σ,α

Site 33 Monday 02:40:00 23:30:00
Site 1 Wednesday 06:00:00 18:00:00
Site 7 Tuesday 06:00:00 16:00:00
Site 10 Monday 00:00:00 18:00:00
Site 12 Monday 00:00:00 23:59:00
Site 12 Tuesday 00:00:00 11:00:00
Site 12 Tuesday 18:00:00 23:59:00
Site 12 Wednesday 00:00:00 11:00:00
Site 12 Wednesday 18:00:00 23:59:00
Site 12 Thursday 00:00:00 23:59:00
Site 12 Friday 00:00:00 11:00:00
Site 12 Friday 18:00:00 23:59:00
Site 12 Saturday 00:00:00 23:59:00
Site 12 Sunday 00:00:00 11:00:00
Site 12 Sunday 18:00:00 23:59:00
Site 32 Wednesday 05:00:00 18:00:00
Site 3 Wednesday 06:00:00 18:00:00
Site 38 Wednesday 06:00:00 18:00:00
Site 17 Thursday 02:01:00 17:00:00

Table A.6: Site Closure Times

86

Number of Loads

Sσ Small Medium Large

Site 1 1 7
Site 2 1 4
Site 3 1 2 11
Site 4 1 4 27
Site 5 2
Site 6 1 2
Site 7 4
Site 8 1 2
Site 9 2
Site 10 3 19
Site 11 1 10
Site 12 1 3
Site 13 3
Site 14 1 2
Site 15 1 13
Site 16 1 5
Site 17 3 17
Site 18 2
Site 19 1
Site 20 1 1
Site 21 1 1
Site 22 1 1
Site 23 1
Site 24 3
Site 25 1 6
Site 26 4
Site 27 3
Site 28 3
Site 29 3
Site 30 1
Site 31 5
Site 32 1 12
Site 33 2 7
Site 34 1 9
Site 35 1 1
Site 36 1 1
Site 37 1
Site 38 1 5∑

4 30 204

Table A.7: Demand breakdown for all test data sets

87

