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Abstract

The design of a water distribution system (WDS) involves finding an acceptable trade-off be-
tween cost minimisation and the maximisation of numerous system benefits, such as hydraulic
reliability and surplus capacity. The primary design problem involves cost-effective specifica-
tion of a pipe network layout and pipe sizes (which are typically available in a discrete set
of commercial diameters) in order to satisfy expected consumer water demands within required
pressure limits. The problem may be extended to consider the design of additional WDS com-
ponents, such as reservoirs, tanks, pumps and valves. Practical designs must also cater for the
uncertainty of demand, the requirement of surplus capacity for future growth, and the hydraulic
reliability of the system under different demand and potential failure conditions.

A detailed literature review of exact and approximate approaches towards single-objective (min-
imum cost) WDS design optimisation is provided. Essential topics which have to be included in
any modern WDS design paradigm (such as demand estimation, reliability quantification, tank
design and pipe layout) are discussed. A number of formative concepts in multi-objective evo-
lutionary optimisation are also reviewed (including a generic problem formulation, performance
evaluation measures, comparative testing strategies, and suitable classes of metaheuristics).

The two central themes of this dissertation are conducting multi-objective WDS design optimi-
sation using metaheuristics, and a critical examination of surrogate measures used to quantify
WDS reliability. The aim in the first theme is to compare numerous modern metaheuristics, in-
cluding several multi-objective evolutionary algorithms, an estimation of distribution algorithm
and a recent hyperheuristic named AMALGAM (an evolutionary framework for the simulta-
neous incorporation of multiple metaheuristics applied here for the first time to a real-world
problem), in order to determine which approach is most capable with respect to WDS design
optimisation. Several novel metaheuristics are developed, as well as a number of new variants
of existing algorithms, so that a total of twenty-three algorithms were compared.

Testing with respect to eight small-to-large-sized WDS benchmarks from the literature reveals
that the four top-performing algorithms are mutually non-dominated with respect to the vari-
ous performance metrics. These algorithms are NSGA-II, TAMALGAMJndu, TAMALGAMndu

and AMALGAMSndp (the last three being novel variants of AMALGAM). However, when these
four algorithms are applied to the design of a very large real-world benchmark, the AMALGAM
paradigm outperforms NSGA-II convincingly, with AMALGAMSndp exhibiting the best perfor-
mance overall. As part of this study, a novel multi-objective greedy algorithm is developed by
combining several heuristic design methods from the literature in order to mimic the design
strategy of a human engineer. This algorithm functions as a powerful local search. However,
it is shown that such an algorithm cannot compete with modern metaheuristics, which employ
advanced strategies in order to uncover better solutions with less computational effort.

The second central theme involves the comparison of several popular WDS reliability surro-
gate measures (namely the Resilience Index, Network Resilience, Flow Entropy, and a novel



mixed surrogate measure) in terms of their ability to produce designs that are robust against
pipe failure and water demand variation. This is the first systematic study on a number of
WDS benchmarks in which regression analysis is used to compare reliability surrogate measures
with probabilistic reliability typically derived via simulation, and failure reliability calculated
by considering all single-pipe failure events, with both reliability types quantified by means of
average demand satisfaction. Although no single measure consistently outperforms the others,
it is shown that using the Resilience Index and Network Resilience yields designs that achieve
a better positive correlation with both probabilistic and failure reliability, and while the Mixed
Surrogate measure shows some promise, using Flow Entropy on its own as a quantifier of re-
liability should be avoided. Network Resilience is identified as being a superior predictor of
failure reliability, and also having the desirable property of supplying designs with fewer and
less severe size discontinuities between adjacent pipes. For this reason, it is recommended as
the surrogate measure of choice for practical application towards design in the WDS industry.

AMALGAMSndp is also applied to the design of a real South African WDS design case study
in Gauteng Province, achieving savings of millions of Rands as well as significant reliability
improvements on a preliminary engineered design by a consulting engineering firm.



Uittreksel

Die ontwerp van waterverspreidingsnetwerke (WVNe) behels die soeke na ’n aanvaarbare afrui-
ling tussen koste-minimering en die maksimering van ’n aantal netwerkvoordele, soos hidroliese
betroubaarheid en surpluskapasiteit. Die primêre ontwerpsprobleem behels ’n koste-doeltreffen-
de spesifikasie van ’n netwerkuitleg en pypgroottes (wat tipies in ’n diskrete aantal kommersiële
deursnedes beskikbaar is) wat aan gebruikersaanvraag binne sekere drukspesifikasies voldoen.
Die probleem kan uitgebrei word om die ontwerp van verdere WVN-komponente, soos op-
gaardamme, opgaartenks, pompe en kleppe in ag te neem. Praktiese WVN-ontwerpe moet
ook voorsiening maak vir onsekerheid van aanvraag, genoegsame surpluskapsiteit vir toekom-
stige netwerkuitbreidings en die hidroliese betroubaarheid van die netwerk onder verskillende
aanvraag- en potensiële falingsvoorwaardes.

’n Omvattende literatuurstudie word oor eksakte en benaderde oplossingsbenaderings tot enkel-
doelwit (minimum koste) WVN-ontwerpsoptimering gedoen. Sentrale temas wat by heden-
daagse WVN-ontwerpsparadigmas ingesluit behoort te word (soos aanvraagvooruitskatting, die
kwantifisering van betroubaarheid, tenkontwerp en netwerkuitleg), word uitgelig. ’n Aantal
basiese konsepte in meerdoelige evolusionêre optimering (soos ’n generiese probleemformulering,
werkverrigtingsmaatstawwe, vergelykende toetsingstrategieë, en sinvolle klasse metaheuristieke
vir WVN-ontwerp) word ook aangeraak.

Die twee sentrale temas in hierdie proefskrif is meerdoelige WVN-ontwerpsoptimering deur mid-
del van metaheuristieke, en ’n kritiese evaluering van verskeie surrogaatmaatstawwe vir die
kwantifisering van netwerkbetroubaarheid. Die doel in die eerste tema is om ’n aantal moderne
metaheuristieke, insluitend verskeie meerdoelige evolusionêre algoritmes en die onlangse hiper-
heuristiek AMALGAM (’n evolusionêre raamwerk vir die gelyktydige insluiting van ’n aantal
metaheuristieke wat hier vir die eerste keer op ’n praktiese probleem toegepas word), met
mekaar te vergelyk om sodoende ’n ideale benadering tot WVN-ontwerpoptimering te identi-
fiseer. Verskeie nuwe metaheuristieke sowel as ’n aantal nuwe variasies op bestaande algoritmes
word ontwikkel, sodat drie en twintig algoritmes in totaal met mekaar vergelyk word.

Toetse aan die hand van agt klein- tot mediumgrootte WVN-toetsprobleme uit die literatuur dui
daarop dat die vier top algoritmes mekaar onderling ten opsigte van verskeie werkverrigtings-
maatstawwe domineer. Hierdie algoritmes is NSGA-II, TAMALGAMJndu, TAMALGAMndu

en AMALGAMSndp, waarvan laasgenoemde drie nuwe variasies op AMALGAM is. Wanneer
hierdie vier algoritmes egter vir die ontwerp van ’n groot WVN-toetsprobleem ingespan word,
oortref die AMALGAM-paradigma die NSGA-II oortui-gend, en lewer AMALGAMSndp die
beste resultate. As deel van hierdie studie is ’n nuwe meerdoelige gulsige algoritme ontwerp
wat verskeie heuristiese ontwerpsmetodologieë uit die literatuur kombineer om sodoende die on-
twerpstrategie van ’n ingenieur na te boots. Hierdie algoritme funksioneer as ’n kragtige lokale
soekprosedure, maar daar word aangetoon dat die algoritme nie met moderne metaheuristieke,



wat gevorderde soekstrategieë inspan om beter oplossings met minder berekeningsmoeite daar
te stel, kan meeding nie.

Die tweede sentrale tema behels die vergelyking van ’n aantal gewilde surrogaatmaatstawwe vir
die kwantifisering van WVN-betroubaarheid (naamlik die elastisiteitsindeks, netwerkelastisiteit,
vloei-entropie en ’n gemengde surrogaatmaatstaf ) in terme van die mate waartoe hul gebruik kan
word om WVNe te identifiseer wat robuust is ten opsigte van pypfaling en variasie in aanvraag.
Hierdie proefskrif bevat die eerste sistematiese vergelyking deur middel van regressie-analise van
’n aantal surrogaatmaatstawwe vir die kwantifisering van WVN-betroubaarheid en stogastiese
betroubaarheid (wat tipies via simulasie bepaal word) in terme van ’n aantal toetsprobleme in
die literatuur. Alhoewel geen enkele maatstaf as die beste na vore tree nie, word daar getoon
dat gebruik van die elastisiteitsindeks en netwerkelastisiteit lei na WNV-ontwerpe met ’n groter
positiewe korrelasie ten opsigte van beide stogastiese betroubaarheid en falingsbetroubaarheid.
Verder toon die gebruik van die gemengde surrogaatmaatstaf potensiaal, maar die gebruik
van vloei-entropie op sy eie as kwantifiseerder van betroubaarheid behoort vermy te word.
Netwerkelastisiteit word as ’n hoë-gehalte indikator van falingsbetroubaarheid gëıdentifiseer en
het ook die eienskap dat dit daartoe instaat is om ontwerpe met ’n kleiner aantal diskontinüıteite
sowel as van ’n minder ekstreme graad van diskontinüıteite tussen deursnedes van aangrensende
pype daar te stel. Om hierdie rede word netwerkelastisiteit as die surogaatmaatstaf van voorkeur
aanbeveel vir toepassings van WVN-ontwerpe in die praktyk.

AMALGAM word ook ten opsigte van ’n werklike Suid-Afrikaanse WVN-ontwerp gevallestudie
in Gauteng toegepas. Hierdie toepassing lei na die besparing van miljoene rande asook noe-
menswaardige verbeterings in terme van netwerkbetroubaarheid in vergeleke met ’n aanvanklike
ingenieursontwerp deur ’n konsultasiefirma.
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Chapter 1

Introduction

“Water is life, sanitation is dignity.” (South African Strategic Framework for Water
Services [207])

Water — that most precious substance, essential for the survival of all life on earth. One cannot
but pause a moment and ponder in reverence at its simple purity and extreme necessity. Safe,
effective water storage and delivery systems are amongst mankind’s greatest feats of engineering,
and they present some of the most compelling challenges in this dire age of overpopulation and
global warming.

The subject matter of this dissertation is the design optimisation of urban water distribution
systems (WDSs). Indeed, there is immense potential for reducing costs and building better,
more reliable water systems, considering a broad range of objectives. The primary formative
elements of these water networks are pipes, reservoirs, tanks, pumps and valves. A simple water
distribution network is shown in Figure 1.1, including a reservoir with a pump, a balancing tank,
five numbered junctions connected by pipes, and a valve. The looped layout of the pipes is a
common feature of WDS, as loops provide alternative flow pathways enabling the disconnection
of pipes during times of system maintenance or failure. The primary goal of WDS design
optimisation is to minimize installation (or rehabilitation) and operating costs, whilst satisfying
flow and pressure requirements throughout the system. However, in recent years there has been
an increasing focus on obtaining information on the trade-off between system cost and benefits
(often expressed in terms of system reliability). This has led to the use of multi-objective
optimisation techniques that obtain a Pareto-optimal set of solutions in cost–benefit space. In
this dissertation, various algorithms for the multi-objective design optimisation of WDSs are
analyzed, considering both cost and surrogate measures of reliability. These algorithms are
applied to the design of real WDSs, in order to prove them practical for real-world engineering.

1.1 Water Distribution System Design Optimisation

A water network is typically represented as a two-dimensional plan of existing and/or potential
pipelines. Individual pipes are linked together to form pipelines, which may meet at nodes
(or junctions). Although water may exit the pipeline at any point along its length via service
lines, demand is usually grouped at the nodes (also known as demand nodes). Pipelines may
also be connected to tanks, pumps, and valves. Pipes are ordinarily straight and cylindrical,
both because this is the easiest and most reliable way to manufacture them, and because a
cylindrical section is best suited to handle fluid pressure and makes the most economical use

1
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Figure 1.1: A simple water distribution network.

of pipe material. Each component in a WDS is associated with an elevation. Demand nodes
are also associated with lumped demand quantities (or loads), expressed in terms of flow out of
the network. Reservoirs and tanks (sources) are associated with a volume of water in storage,
a potential energy expressed in units of pressure that depends on the source elevation, and a
maximum flow rate at which they can feed the network. Historically, the physical network layout
was designed first by an engineer, so that the design optimisation problem was merely that of
choosing the component characteristics for a static layout of pipelines and other components
at fixed locations. Recently, there have been several attempts at incorporating some form of
layout design and/or component placement in the optimisation, which complicates the problem
considerably [4].

Optimisation proceeds by considering alternative sizes for, and operations on, pipelines and
other system elements and, for each network configuration, calculating the hydraulic properties
of the network such as flow and pressure values. Calculating hydraulic properties is commonly
known as ‘balancing the network’, and is itself a challenging problem. The system has a feasible
configuration if the hydraulic properties satisfy the constraints set on them. However, it is also
possible to consider infeasible WDS designs depending on the extent of the constraint violation.
In an exhaustive search of configurations, each system element would take on each of its possible
attribute values, generating multiple combinations. Combinations grow exponentially as the
number of network elements increase (the search complexity is O(ωκ), where κ is the number
of formative elements and ω is the number of design options for each element).

The size of a new pipeline may typically be one of a discrete set of commercially available
pipe sizes, each associated with a different cost. In addition, existing pipes in a system under
rehabilitation may undergo several operations including, cleaning (which reduces internal pipe
roughness), parallel pipe installation (duplication), replacement, or removal. It is important
to note that each pipe size has its own pressure rating, which may complicate the constraints
of the problem, though typically they are safely in excess of the system pressure performance
constraints. Tanks are used as balancing agents to provide additional flow during times of
high demand, and fill during periods of low demand. Tanks also assist in providing consistent
pressures across the WDS (also known as pressure equalization). They may be placed at multiple
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points in a system, and come in a variety of sizes and installation costs. It is desirable that tanks
fill and empty over their operational ranges during their demand cycle (e.g. daily / weekly),
in order to avoid overflow and water stagnation. Pumps may also be placed throughout a
system to add energy where necessary, though this is typically near the water source in the
form of a pump station. There are various pump types, each with different installation and
running costs. Pumps are also associated with operating curves with different wire-to-water
efficiencies at different pressure and flow conditions. Valves are used to change flow profiles
between pipes at links in the network, often for reducing pressure between different parts of
a system. Optimisation typically applies to a steady-state system (flow velocity in each part
of the system is static) during peak flow conditions, although several different demand loads
may be analyzed (the loads may be incorporated as constraints in the optimisation process).
It is assumed that a fixed inflow and outflow to the system is known in advance. If a system
can satisfy peak demand, then it will obviously also be able to cater for reduced demand, but
care must be taken to respect maximum pressure limitations, justifying the need for a static
zero-flow simulation. If tanks are to be designed, then it is essential to conduct an extended
period analysis, simulating the tank inflows and outflows, in order to design for effective tank
operation [248].

Given a computer representation of a hydraulic network, several public-domain source code
libraries exist which are able to calculate its hydraulic state properties. The highly popular
EPANET 2 [203] dynamic-linked-library will be used for this purpose in this dissertation. The
calculated state variables must satisfy the pressure and flow requirements for each demand node,
otherwise the network will not fulfil its supply objectives.

1.2 Motivation for Research Topic

Water distribution systems are essential to modern civilization, and their inadequacy places
absolute limitations on economic growth, social development and health. The World Health
Organization / UNICEF 2010 report Progress on Sanitation and Drinking Water indicates that
while 87% of the global population obtains their water from improved sources, there are many
regions with extremely poor access. In particular, only 60% of the populations of Sub-Saharan
Africa and 50% of those in Oceania have access to treated water supply. The situation is most
dire in rural areas, where in Sub-Saharan Africa coverage is only 47% in rural areas compared
to 83% in urban areas, and in Oceania where coverage is 37% in rural areas compared to 92%
in urban areas [258]. An urgent need exists to develop this critical infrastructure in developing
countries, as highlighted in the UN Millennium Development goal of halving the proportion of
the population without sustainable access to safe drinking water and basic sanitation by 2015
[233].

In many developing countries, 30 to 40% of water (or more) is lost due to water leakages
and illegal tapping [235], a situation which is exacerbated as systems age, unless they are
properly maintained. This highlights the design goal of planning for leakage abatement, long-
term performance considerations and correctly sizing pipes according to their pressure and
velocity ratings.

Furthermore, the rapid pace of urban development and the steady rise of global warming all place
pressure on our basic resources, especially water, creating enormous planning and management
challenges for now and the future [132].

Another important concept often neglected is designing with a long-term outlook, considering
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the entire life-cycle of the engineered system. In particular, there is typically a trade-off between
initial investment costs and maintenance / operation costs over the system lifespan. The present
value of these costs should be included in the model. Secondly, one of the major problems
in developing communities is that although there may be availability of funds to install new
infrastructure, there is a severe shortage of resources and skill to maintain that infrastructure.
This calls for the installation of more robust systems which require less maintenance over their
lifespan [234].

One of the underlying goals in this dissertation is to investigate techniques that enable automatic
design optimisation with minimal user input. This is important in real design situations, as
many optimisation models contain a plethora of parameters which are unfathomable to the
average engineer. This is probably the main reason why design optimisation for engineering has
not become more mainstream.

WDSs are extremely costly to install and maintain [248], and it is often the case that optimi-
sation can achieve dramatic cost savings, as shall be demonstrated in the South African case
study towards the end of this dissertation. Any methodology which makes WDS design easier
and more comprehensive is worth earnest consideration, especially if it can produce designs
which are both cheaper and more reliable.

Finally, at the time of writing there was no commercial software product for WDS design which
offers the possibility of multi-objective optimisation [208]. It is the goal of the author to rectify
this shortcoming by producing a dynamic linked-library which may easily be incorporated into
any commercial package, using a familiar input format already widely used in the industry (i.e.
that of EPANET §2.2.9).

1.3 Research Scope and Objectives

The objectives of this dissertation are:

1. To provide a review of the hydraulics theory necessary for WDSs analysis, furnishing the
terminology necessary to formulate a WDS design optimisation (WDSDO) model.

2. To provide a broad introduction to the problem of WDS design, including the practical
engineering perspective and various mathematical formulations of the problem.

3. To conduct an extensive literature survey on the topic of design optimisation for WDS,
focussing on the problem of component sizing and placement. This shall be addressed in
two phases:

(a) The problem of least-cost design of a fixed layout network under a single water
demand scenario with given hydraulic and pressure constraints.

(b) The multi-objective problem considering objectives of minimizing total costs and
maximizing system reliability, providing some scope for layout modification.

4. To provide a self-contained introduction to the topic of multi-objective optimisation using
multi-objective evolutionary algorithms (MOEAs) and other population-based metaheuris-
tics.

5. To formulate a pragmatic model for the multi-objective WDSDO problem, and to produce
software for the model implementation.
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6. To compare several existing and new population-based metaheuristics for multi-objective
optimisation of WDS designs in a systematic manner on multiple benchmark systems.
The algorithms compared should include the Non-dominated Sorting Genetic Algorithm
2 [61], the Strength Pareto Evolutionary Algorithm 2 [277], a Differential Evolution
algorithm [152], a Particle Swarm Optimisation algorithm [231], a novel Greedy Engi-
neering Heuristic, an estimation of distribution algorithm (EDA) based on the Univari-
ate Marginal Distribution (UMD) [185] and a novel variant of UMD named Partitioned
UMD, an adapted Cellular Dynamic Multi-objective Evolutionary Algorithm [271], a novel
self-adaptive evolutionary algorithm named ANIMA, and a recent hyperheuristic named
AMALGAM [244].

7. To study several alternative formulations of the AMALGAM hyperheuristic, addressing
shortcomings uncovered in the existing algorithm.

8. To compare two different constraint handling techniques, the first incorporating a penalty
term, and the second using a recent method called constrained domination [190].

9. To study different numeric indicators of WDS reliability (reliability surrogate measures)
for use during multi-objective optimisation. This will include the Reliability Index measure
[227], the Network Resilience measure [194], and the Flow Entropy measure [195]. These
measures should be compared in terms of their ability to produce solutions that are robust
in terms of uncertain demands and pipe failure conditions.

10. To implement the optimisation model in a widely used programming language, yielding
a software library which may easily be linked to any commercial WDS design software
package.

1.4 Dissertation Layout

Chapter 2 constitutes a literature survey of fluid mechanics for WDSs providing the foundation
required to understand pipe hydraulics and hydraulic network simulation theory. Chapter 3
deals with the problem of least-cost WDS design optimisation, including a thorough investiga-
tion of existing single-objective optimisation algorithms. In Chapter 4, essential topics in WDS
design are presented, including demand estimation, tank design and reliability quantification.
Chapter 5 contains an overview of multi-objective optimisation and algorithms used in this con-
text. It also contains a multi-objective formulation of the WDS design problem. In Chapter 6,
the actual optimisation model implementation used in this study is developed. The test results
of the optimisation procedure for the competing algorithms on nine benchmark systems are
presented in Chapter 7. Chapter 8 comprises a reliability analysis study comparing reliability
surrogate measures to their stochastic counterparts. Chapter 9 contains an application to a re-
cent South African WDS case study, for which substantial cost savings were found. Chapter 10
is a conclusion in which a summary of the findings, contributions of the dissertation, and an
appraisal of the contributions areprovided. Chapter 11 describes possible avenues for further
research.

1.5 Technical Notes

All units of measurement in this dissertation are in SI units (International System of Units),
except where particular WDS benchmarks are formulated in alternative unit systems. When
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references to equations are made in the body of the dissertation, these will appear with the
equation number in round brackets, whereas external references to the literature will appear
with the bibliographic entry number in square brackets. There are five appendices. Appendix
A contains a brief summary of basic fluid mechanics theory with examples and hydraulic equa-
tion derivations. Appendix B contains a summary of prerequisite, miscellaneous mathematical
theory. Appendix C contains some illustrative examples of important algorithmic concepts.
Appendix D contains a discussion on the use of the optimisation software developed as part
of the work towards this dissertation. Finally, Appendix E provides a brief description of the
contents of the CD accompanying this dissertation.



Chapter 2

Fluid Mechanics for WDS Analysis

Water distribution systems (WDSs) are designed to transport water from water sources to
consumers. The simplicity of this sentence belies a great deal of complexity. Uncertain, time-
varying quantities of water must be coaxed to flow to a multitude of heterogenous consumers
via a complex pipe network. This must be able to cater for the maximum demand capacity,
be delivered within a maximum travel time to avoid quality degradation, be supplied within
satisfactory pressure and velocity ranges, and all within the framework of potential system
failures and emergency conditions such as fires. As water travels through a distribution system
(whose exact hydraulic properties are also uncertain, and change as the system ages) it loses
energy (referred to as head loss). Furthermore, the natural topography of a service region may
vary dramatically from point to point, impacting the effective pressures experienced by WDS
users. Care must therefore be taken to ensure that some consumers do not receive very high
pressures, whilst others struggle with low pressures. In order to design such a WDS, a sound
knowledge of hydraulic behaviour is required. This chapter constitutes a review of essential
concepts in fluid mechanics, necessary for hydraulic network analysis. The reader is invited to
explore additional hydraulics definitions and derivations in Appendix A.

2.1 Fluid Mechanics Basics

Fluid mechanics is the study of fluids in motion. These fluids contain energy in various forms:
chemical energy, kinetic energy and potential energy. In the context of WDSs one considers
water at varying degrees of impurity, and one is most interested in kinetic energy in the form
of flow (engendered by the force of gravity or pumping), and potential energy embodied in
pressure and elevation. Energy is also lost in the form of friction work against the pipe walls.
Owing to the negligible changes in density and temperature during ordinary operation, it is
common to assume that water is incompressible and isothermal [170]. However, consideration
of internal energy becomes essential when a system experiences extreme temperatures (pipes
may burst if water freezes in them). Chemical analysis becomes important when an in-depth
water quality study is conducted; however, this is beyond the scope of this dissertation. Some
important concepts in hydraulics are presented in this section.

7
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2.1.1 Pressure

Pressure is the force per unit area caused by the weight of the fluid. Pressure, p, is a force, F ,
acting over an area A, defined as

p = lim
∆A→0

∆F

∆A
=

dF

dA
.

Pressure at a point is a scalar quantity and is equal in all directions [170]; it is measured in units
of Pascal (Pa), where 1 Pa = 1 N/m2. Specific weight γ is the weight per unit volume of the
fluid, related to the fluid density ρ by γ = ρg, where g = 9.81 denotes standard gravitational
acceleration. For water at 4oC, its specific weight is 9810 N/m3 and its density is 1000 kg/m3.
For static fluids, the only variation in hydraulic pressure is with the elevation y in the fluid,
that is

dp

dy
= −γ. (2.1)

For a static fluid on a horizontal plane, the pressure everywhere on this plane is constant.
Considering a constant specific weight, (2.1) may be integrated to obtain p = −γy + c, where c
is a constant, or

p

γ
+ y = constant. (2.2)

The left hand side of (2.2) is known as the piezometric head, which is constant throughout any
incompressible static fluid. The first term, p/γ, is the pressure head (which is what shall be
referred to when the word head is used in the remainder of this dissertation), and the second
term, y, is the elevation above some datum. Piezometric head is also known as hydraulic head.
It is a measure of the total energy per unit weight above a datum. Piezometric head is measured
in units of height (m). Pressure and elevation at two different points, 1 and 2, in the fluid must
satisfy

p1

γ
+ y1 =

p2

γ
+ y2.

Hydraulic head may be used to determine a hydraulic gradient between two or more points.
Fluid always flows down a hydraulic gradient from a higher to a lower total head (hydraulic
head plus velocity head). In a closed hydraulic system, a pressure change produced at one point
is transmitted throughout the entire system (this effect is caused by a pressure wave and travels
at close to the speed of sound). This principle is known as Pascal’s law. Such a pressure change
might be brought on by a pump being switched on or a valve being closed [42].

A piezometer is a simple device for measuring pressure, which works by utilizing the change
in pressure with elevation. Figure 2.1 shows an example of a piezometer attached to a pipe.
The pressure at the exposed surface is that of atmospheric pressure, patm. Therefore, the gauge
pressure in the middle of the pipe, at a distance h below the water surface level, is p = γh, and
the absolute pressure is pabs = γh + patm.

2.1.2 Flow

Discharge or flow rate, q, is the volume rate of flow (dV
dt ) that passes a given section in a flow

stream (e.g. a pipe section), and has SI units of m3/s. If flow velocity is constant throughout
a section of pipe, then q = vA, where v is the velocity and A is the cross-sectional area of the
pipe. The same equation may apply if v represents a constant mean velocity. However, the
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Pipe

Piezometer

h = p/γ

v

Figure 2.1: Piezometer attached to a pipe.

actual flow velocity v varies across a flow field, as seen in the example of pipe flow in Figure
2.2. Thus, in a real scenario discharge is the integral across the section; that is

dV

dt
= q =

∫

A
v · dA,

where v is the velocity vector for each differential area dA, and dA is the area vector oriented
normal to dA with the same magnitude as the area [42].

The mean velocity, v, of a fluid is defined as its discharge divided by the total cross-sectional
area, v = q

A . To simplify pipe-flow analysis, one typically considers only the one-dimensional
mean velocity in a pipe, in which case the bar over the velocity may be dropped1 [42].

Mass flow is simply the incorporation of density, ρ, in the discharge equation, yielding

dm

dt
=

∫

A
ρv · dA

= ρ

∫

A
v · dA

= ρq.

Hydraulic analysis is often simplified by considering a system in steady-state. In this case, the
flow itself is steady (dv

dt = 0), and hence the mass in a control volume is constant over time. Such
an analysis is useful for macroscopic planning, and the majority of hydraulic engineering design
is conducted on this basis. However, one must keep in mind the existence of flow variation,
especially with regards to sudden changes in flow which may cause so-called transients or water

1The symbol v is used throughout this dissertation to denote steady-state mean velocity for one-dimensional
flow in a pipe. Velocity is used rather than speed, since flow always occurs in one or the other direction along a
pipe.
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hammer effects, where strong pressure waves rush through a system. While transient analysis is
usually relegated to be a secondary consideration in hydraulic engineering design, it is actually
very important. Poorly designed systems may experience extreme transient events with the
potential of causing serious component damage. This is also an operational question, since
transient problems may usually be avoided by inducing changes slowly [251].

Flow may either be laminar (smooth, constant flow profile) or turbulent (chaotic flow marked
by strong eddies of current), where laminar flow is associated with smooth pipes at slow flow
rates and turbulent flow is more likely found at higher velocities in rough pipes. Turbulence is
characterized by the so-called Reynolds number, Re (see Appendix A for details). In practice,
most flow in WDSs is turbulent. The energy equations used in practice try to account for both
flow types [169].

������������������������������������������������������

������������������������������������������������������

v

v

dA

Figure 2.2: Velocity distribution in a pipe flow.

2.1.3 Control Volume Approach

The so-called control volume approach may be used to develop continuity and energy equations
for hydraulic systems. A control volume (denoted by CV) is a fixed volumetric region in space
through which fluid may flow freely, bounded by a control surface (denoted by CS). An example
of this might be a pipe segment bounded by the pipe walls extending a short distance in either
direction along the pipe. A given body of fluid of constant mass (a fluid system) may possess
extensive properties which apply to the entire fluid system (e.g. mass), or intensive properties
which apply to the fluid unit mass (e.g. velocity) [42].

By considering the relationship between a control volume and a fluid system, one is able to
develop a general equation for the change of any extensive property, B, of the fluid system
in terms of an intensive property, b, of the system (see Appendix A). This yields the general
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control volume equation,

dBsys

dt
=

d

dt

∫

CV
bρ dV +

∫

CS
bρv · dA. (2.3)

The first term on the right-hand side of the equation is the instantaneous change over time of
B inside the control volume (which is zero for steady flow), and the second term represents the
net outflow rate of B from the control volume [42].

2.1.4 Continuity of Flow

The general control volume equation may be used to derive the continuity equation (see Ap-
pendix A) for flow with a uniform velocity across the flow section and constant density,

∑

CS

v ·A = − d

dt

∫

CV
dV.

For constant density, steady, one-dimensional flow, such as water flowing in a conduit, the
equation becomes ∑

CS

vA = 0.

This equation expresses continuity of flow, one of the most important conservation laws in
hydraulics. Considering a control volume between locations 1 and 2 in a pipe, the continuity
equation delivers the relationship

q1 = v1A1 = v2A2 = q2.

2.1.5 Hydraulic Energy

The control volume equation may be combined with the first law of thermodynamics to de-
velop the energy equation for fluid flow in hydraulic processes. This energy balance forms an
accounting of the energy inputs and outputs to and from a system [42, 170]. The first law of
thermodynamics states that the rate of change of energy with time is the rate at which heat
is transferred into the fluid, dH/dt, less the rate at which the fluid performs work on its sur-
roundings, dW/dt, expressed as dE

dt = dH
dt − dW

dt . The total energy of a fluid system is the sum
of the internal energy Eu, the kinetic energy Ek, and the potential energy Ep, with unit mass
equivalents, eu, ek, and ep. Total energy is therefore E = Eu + Ek + Ep. The kinetic energy
per unit mass is the total kinetic energy of the mass with velocity v divided by the mass m,

ek = mv2/2
m = v2

2 . The potential energy per unit mass is the weight of the fluid, γV , multiplied

by the centroid elevation z divided by the mass m, producing ep = γV z
m = γV z

ρV = gz.

Combining the first law of thermodynamics and the expression for total energy in the one-
dimensional version of the general control volume equation yields the general energy equation
for unsteady variable-density uniform flow,

dE

dt
=

dH

dt
− dW

dt
=

d

dt

∫
eρ dV +

∑

CS

eρv ·A

=
d

dt

∫
(eu + ek + ep)ρ dV +

∑

CS

(eu + ek + ep)ρv ·A

=
d

dt

∫
(eu +

v2

2
+ gz)ρ dV +

∑

CS

(eu +
v2

2
+ gz)ρv ·A,
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which for steady flow, reduces to

dH

dt
− dW

dt
=

∑

CS

(eu +
v2

2
+ gz)ρv ·A. (2.4)

The work done by a system on its surroundings may further be divided into flow work, Wf , and
shaft work, Ws (see Appendix A). Flow work per unit volume is the work done by the pressure
force in order to move the fluid a distance v∆t. This may be incorporated into (2.4) as

dWf

dt
=

∑

CS

pv ·A =
∑

CS

p

ρ
ρv ·A.

The general energy equation for steady, uniform flow now becomes

dH

dt
− dWs

dt
=

∑

CS

(
p

ρ
+ eu +

v2

2
+ gz)ρv ·A. (2.5)

2.1.6 Pressurised Pipe Flow

Hydraulics is the study of liquid flow in pipes and open channels. Pressurised pipe flow refers
to the flow of a fluid under pressure in a pipe, where the interior walls of the pipe are in contact
with the fluid at all times (i.e. there is no free surface). Open channel flow, where there is a
free surface, may also occur in pipes, when a pipe is not full. This is often applicable to gravity
systems such as sewerage networks.

Using the general energy equation for steady flow (2.5), and considering pipe flow between
sections 1 and 2, the energy equation for pipe flow may be expressed as

dH

dt
− dWs

dt
=

∑

A2

(
p2

ρ
+ eu2 +

v2
2

2
+ gz2

)
ρv2 ·A2 −

∑

A1

(
p1

ρ
+ eu1 +

v2
1

2
+ gz1

)
ρv1 ·A1,

which may be modified to

dH

dt
− dWs

dt
=

∑

A2

(
p2

ρ
+ eu2 + gz2

)
ρv2 ·A2 −

∑

A1

(
p1

ρ
+ eu1 + gz1

)
ρv1 ·A1

+
∑

A2

ρv3
2

2
A2 −

∑

A1

ρv3
1

2
A1. (2.6)

Flow is uniform between sections 1 and 2, so that hydrostatic conditions prevail across each
individual section. Therefore p/ρ+eu+gz is constant and may be taken outside the summation.
Also, the term ρvA = ṁ is the mass flow rate, so that

∑
A(ρv3/2) dA = (ρv3/2)A = ṁ(v2/2).

Equation (2.6) now becomes

dH

dt
− dWs

dt
= (

p2

ρ
+ eu2 + gz2)ṁ− (

p1

ρ
+ eu1 + gz1)ṁ + ṁ

v2
2

2
− ṁ

v2
1

2
.

This may be divided through by ṁ and rearranged to yield

1

ṁ

(
dH

dt
− dWs

dt

)
+

p1

ρ
+ eu1 + gz1 +

v2
1

2
=

p2

ρ
+ eu2 + gz2 +

v2
2

2
. (2.7)
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At this stage it is convenient to separate shaft work Ws into work expended on a turbine (Wt)
or work done by a pump (Wp). Shaft work may be expressed as

dWs

dt
=

dWt

dt
− dWp

dt
. (2.8)

Substituting (2.8) into (2.7) and dividing through by g yields

1

ṁg

dWp

dt
+

p1

γ
+ z1 +

v2
1

2g
=

1

ṁg

dWt

dt
+

p2

γ
+ z2 +

v2
2

2g
+

[
eu2 − eu1

g
− 1

ṁg

dH

dt

]
. (2.9)

The following terms are identified from (2.9): The head supplied by the pumps is

hp =
1

ṁg

dWp

dt
.

The head given up to the turbines is

ht =
1

ṁg

dWt

dt
.

The head loss (mechanical energy loss due to viscous stress) is

hL =

[
eu2 − eu1

g
− 1

ṁg

dH

dt

]
. (2.10)

The term (eu2−eu1)/g represents the finite increase in internal energy of the flow system, because
a portion of the mechanical energy is converted into thermal energy through the viscous action
between the fluid particles. The term − 1

ṁg
dH
dt represents the heat generated through energy

dissipation that escapes the system. Equation (2.9) may now be expressed as

p1

γ
+ z1 +

v2
1

2g
+ hp =

p2

γ
+ z2 +

v2
2

2g
+ ht + hL. (2.11)

This is the full form of the famous Bernoulli equation for energy conservation between two
points in a conduit under steady flow. This equation is expressed with the velocity representing
the mean velocity. Here p/γ is the pressure head, v2/2g is the velocity head and z is the
potential energy associated with the elevation at the centre of the pipe relative to some datum
[42, 93, 170].

2.1.7 Hydraulic and Energy Grade Lines

In a graphical representation of a hydraulic system, a side-view section is often used. The
energy terms in (2.11) all have units of height. Therefore, it is useful to draw a hydraulic grade
line (HGL) and an energy grade line (EGL) on the same scale drawing of a hydraulic system.
The HGL is essentially the line p/γ above the centre of a pipe, which is the distance the water
would rise in a piezometer tube attached to the pipe (see piezometer 1 in Figure 2.3). The
EGL is a distance of v2/2g above the HGL. Piezometer 2 in the figure measures the velocity
pressure as well, so that the water rises to meet the EGL. In Figure 2.3 it is assumed that there
is negligible initial velocity in the reservoir, so that the total energy head at the water surface
is simply z1. At the second measured position, where the height above the datum is z2, the
difference between the energy head (EGL) and the initial energy is the head loss, hL, caused by
the friction force of the fluid travelling in the pipe. Note that the grade lines exhibit a constant
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negative gradient along the length of the pipe where the physical characteristics of the pipe are
uniform ( d

ds (p/γ + z) = −c), and become steeper when the fluid encounters a new pipe with
different hydraulic properties. The positive effect of a pump on the hydraulic and energy grade
lines is shown in Figure 2.4. Just as the pump causes the system to gain energy, a turbine or
valve may engender a sudden drop of the grade lines. Also demonstrated in Figure 2.4 is the
increase in velocity head due to a reduced diameter pipe [42, 93].

2.1.8 Head Losses

Expression (2.10) defines the head loss variable, hL. Head losses in pressurised pipe flow may
occur by various means. Calculating these losses is a major part of performing a hydraulic
simulation on a network.

Shear-Stress Distribution of Flow in Pipes

Shear-stress is the force tangential and opposite to the flow direction caused by friction against
the pipe walls. Shear stress is expressed as

τ = µ
dv

dy
, (2.12)

where the proportionality factor µ is called the dynamic viscosity of the fluid and y is the distance
from the pipe wall (see Appendix A for a detailed discussion). The velocity distribution in a
pipe is directly linked to the shear-stress distribution. Consider steady flow in a pipe of uniform
cross-section, forming a cylindrical element of fluid with cylinder length ∆s, radius r0 and cross-
sectional area A (as shown in Figure 2.5). Let the flow be in a direction from pipe section 1 to
pipe section 2 (the two ends of the system). In general, this pipe may be at any angle θ with
respect to the horizontal plane. Under uniform flow, the general form of the integral momentum
equation in the s-direction (in the plane of the pipe’s axis) is expressed by

∑
Fs =

d

dt

∫

CV
vsρ dV +

∑

CS

vsρv ·A,

where d
dt

∫
CV vsρ dV = 0 because the flow is steady and where

∑
CS vsρv ·A = 0 because

there is no net flow of momentum through the control surface. Therefore
∑

Fs = 0 (because
the pressure across any section of the face of the fluid will be hydrostatically distributed). The
forces acting on the system are the pressure force, the gravitational force, and the shearing force.
The pressure forces are Fp1 = pA and Fp2 = (p + dp/ds∆s)A, acting at the lower and higher
ends of the system. The gravity force is Fg = γA∆s sin θ. The shearing force is Fτ = τ(2πr∆s),
where τ is the shear stress. The sum of the forces is

Fp1 − Fp2 − Fg − Fτ = 0. (2.13)

The negative signs indicate that these forces are in the opposite direction to that of the flow.
Equation (2.13) may therefore be written as

pA−
(

p +
dp

ds
∆s

)
A− γA∆s sin θ − τ(2πr∆s),

which simplifies to

−
(

dp

ds
∆s

)
A− γA∆s sin θ − τ(2πr∆s) = 0.
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because new pipe
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1 2

Figure 2.3: Energy and hydraulic grade lines for a reservoir and pipe system.

Setting dz = sin θ ds, shear stress may be solved for, yielding

τ =
r

2

[
− d

ds
(p + γz)

]
. (2.14)

Expression (2.14) indicates that τ is zero at the centre of the pipe, where r = 0, and increases
linearly to a maximum at the pipe wall. Furthermore, p + γz is constant across a cross-section,
because the streamlines are straight and parallel in a uniform flow so that there is no accel-
eration of fluid normal to the streamline. The gradient d(p + γz)/ds is negative and constant
across the section for uniform flow (see §2.1.7) [42, 93, 170].

Laminar Flow

Adapting (2.12) by setting y = r, one obtains τ = µ dv/dr. Substituting this into (2.14) yields

τ = µ
dv

dr
=

r

2

[
− d

ds
(p + γz)

]
.

This expression may be integrated over a cross-section by separation of variables, using the
boundary condition v = 0 when r = r0. This yields

v =
r2
0 − r2

4µ

[
− d

ds
(p + γz)

]
. (2.15)

Expression (2.15) indicates that the velocity distribution for laminar pipe flow is parabolic
across a section and has a maximum velocity at the pipe centre. Laminar flow in a cylindrical
pipe is known as Hagen-Poiseuille flow.
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It is often desirable to relate the pressure change to the rate of flow or mean velocity, v, in
a conduit. Therefore it is necessary to integrate dq = v dA over the cross-sectional flow area.
That is,

q =

∫

A
v dA

=

∫ r0

0

r2
0 − r2

4µ

[
− d

ds
(p + γz)

]
(2πr) dr

=
π

4µ

[
− d

ds
(p + γz)

] ∫ r0

0
(r2

0 − r2)2r dr

=
π

4µ

[
d

ds
(p + γz)

] (
r2 − r2

0

)2

2

∣∣∣∣∣

r0

0

=
πr4

0

8µ

[
− d

ds
(p + γz)

]
. (2.16)

Dividing (2.16) through by the cross-sectional area yields

v =
r2
0

8µ

[
− d

ds
(p + γz)

]
. (2.17)

Comparing (2.17) and (2.15) shows that v = vmax/2. Substituting pipe diameter D/2 for r0
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Figure 2.4: Energy and hydraulic grade lines for a hydraulic system with a pump and a change
in pipe diameter.
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1

2

∆s

r0

Fg = (γA∆s) sin θ

Fτ = τ0(2πr∆s)

γA∆s

Fp1 = pA

Fp2 = (p + dp
ds∆s)A

θ

θ

Figure 2.5: A cylindrical fluid element in a pipe.

gives

v =
D2

32µ

[
− d

ds
(p + γz)

]

or
d

ds
(p + γz) = −32µv

D2
. (2.18)

Integrating (2.18) along the pipe from section 1 to 2, one obtains

p2 − p1 + γ(z2 − z1) = −32µv

D2
(s2 − s1),

which may be rewritten as
p1

γ
+ z1 =

p2

γ
+ z2 +

32µv∆s

D2
.

This demonstrates that when the general energy equation for incompressible flow in conduits,
(2.11), is reduced to one for uniform laminar flow in a constant diameter pipe, the result is

p1

γ
+ z1 =

p2

γ
+ z2 + hf ,

where hf = 32µv∆s/D2 is used instead of hL to signify the head loss due to the frictional
resistance of the pipe.

Turbulent Flow in Smooth Pipes

Pipes are typically produced to have smooth walls, but degenerate and accumulate dirt with
age. One may also clean them to improve smoothness. The following velocity distribution
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equations are based on experimental results [43, 170]. If u∗ =
√

τ0/ρ is the shear velocity,
where τ0 is the shear stress at the pipe wall, then

v

u∗
=

u∗y

ν
for 0 <

u∗y

ν
< 5

and
v

u∗
= 5.75 log

u∗y

ν
+ 5.5 for 20 <

u∗y

ν
< 105,

where y is the distance from the pipe wall and ν is the kinematic viscosity of the fluid (see Ap-
pendix A). The velocity distribution for turbulent flow may also be approximated using power
law formulas of the form v/vmax = (y/r0)c, where vmax is the velocity at the centre of the pipe,
r0 is the pipe radius and c is an exponent that increases along with the Reynolds number (see
[43] for typical values of c).

Turbulent Flow in Rough Pipes

Pipes may become rough with age, producing different results depending on the type of pipe
and fluid load. Experimental results suggest that the velocity distribution of turbulent flow in
rough pipes may be represented by

v

u∗
= 5.75 log

y

k
+ ε,

where k is a measure of the height of the roughness elements, and ε is a function of the roughness
characteristics. In 1933, Nikuradse [183] did extensive work on turbulent flow, measuring the
resistance to flow posed by various pipes with uniform sand grains glued onto their inside walls.
Although commercial pipes have some degree of spatial variance in their degree of roughness,
they may have the same characteristics as do pipes with a uniform distribution of sand grains
of size k = ks [169]. Through experimentation, Nikuradse was able to determine a value of
ε = 8.5. The value of y was taken as the geometric mean of the wall surface, yielding

v

u∗
= 5.75 log

y

ks
+ 8.5.

This work revealed that for low Reynolds numbers and small sand grains, the flow resistance is a
close approximation to that of smooth pipes. This may be explained by the roughness elements
becoming submerged in a viscous sublayer. Also, for high Reynolds numbers, the resistance
coefficient is only a function of the relative roughness, ks/D. Here the viscous sublayer is very
thin, so that the roughness elements project into the flow stream causing flow resistance from
drag [42, 170].

Head Losses from Pipe Friction

Numerous expressions have been proposed to calculate head losses due to pipe friction, in-
cluding the Chezy, Manning, Scobey, Hazen-Williams and Darcy Weisbach expressions. These
expressions relate the friction losses to the physical characteristics of the pipe and the flow
parameters. The Darcy-Weisbach expression is the most accurate, because it is scientifically
based and applies to both laminar and turbulent flow. Given a pipe of length L and diameter
D, the Darcy-Weisbach expression for frictional head loss is

hLf
= f

L

D

v2

2g
,
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where f is a dimensionless friction factor which is a function of the Reynolds number, Re, and
relative roughness, ks/D. Here ks is the average non-uniform roughness of the pipe. This value
must often be determined experimentally, although standard tables do exist with roughness
values for commercial pipes of different materials and age categories [169]. The Darcy-Weisbach
expression has been derived for turbulent flow and can only be applied to laminar flow (usually
Re < 2000) using a friction factor of f = 64

Re
, which is actually equivalent to the Hagen-Poiseuille

expression. The equation for turbulent flow in a smooth pipe with Re > 3000 is

1√
f

= 2 log10

(
Re

√
f
)
− 0.8, (2.19)

and for a rough pipe,
1√
f

= 2 log10

D

ks
+ 1.14. (2.20)

Equations (2.19) and (2.20) were proposed by Von Karman and Prandtl, based on experimental
work done by Nikuradse in 1932 [170, 257]. In 1939, Colebrook and White proposed the semi-
empirical formula

1√
f

= 2 log10

(
ks/D

3.7
+

2.51

Re
√

f

)
.

This formula is asymptotic to both (2.19) and (2.20). In 1944 Moody used this equation, in
combination with experimental data on commercial pipes, to develop the Moody diagram (see
Appendix A). This diagram provides the friction factor f for different values of the Reynolds
number and the relative roughness.

The empirical Hazen-Williams equation is also used frequently in practice, with head loss at a
particular diameter approximated as

hL =
kL

C1.85
hw D4.87

q1.85,

where L is the length of the pipe, where Chw is the empirical Hazen-Williams pipe coefficient,
and where k is a conversion factor with k = 4.73 for imperial units and k = 10.583 for metric
units.

For ease of explanation, the head loss equation is often presented in the simplified form hL =
Kqη, where K is called the pipe (loss) coefficient. For example, in the Darcy-Weisbach expres-
sion, η = 2 and K = f 2L

πD3g
[42, 169, 170].

Minor (Form) Losses

Head losses may also be caused by inlets, outlets, bends, fittings, valves, expansions, contrac-
tions and other denizens of the hydraulic world. Collectively these losses are known as minor
losses, form losses or secondary losses, and are caused by flow separation and the generation of
turbulence. An example of flow separation occurring at a sharp pipe inlet is shown in Figure
2.6.

Minor head losses produced may be expressed as

hLm = K
v2

2g
,

where K is the loss coefficient which has been documented for various components. In all the
formulas which follow v1 denotes the flow velocity before the pipe change and v2 denotes the
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Separation zone

Figure 2.6: Flow separation at a sharp inlet causing turbulence and head loss.

velocity after the change. For sudden expansions or enlargements of the conduit, head loss may
be expressed as

hLm =
(v1 − v2)2

2g
.

Similarly, for gradual expansions (such as conical diffusers), the head loss may be expressed as

hLm = Kex
(v1 − v2)2

2g
,

where Kex is a function of the expansion (cone) angle. The head loss due to a sudden contraction
may be expressed as

hLm = Kco
v2
2

2g
,

where the values of Kco are a function of the diameter ratios D2/D1. Entrance losses are
calculated by means of the expression

hLm = Ken
v2

2g
,

where Ken depends on the geometry of the entrance. Exit or discharge losses from the end of a
pipe into a reservoir that has a negligible velocity constitutes the entire velocity head, expressed
as

hLm =
v2
2

2g
.

Using the concept of integral roughness, minor losses may also be accommodated approximately
by adapting pipe roughness coefficients. These values are determined experimentally and are
often categorized by pipe material [103, 169].

2.1.9 Pipe Flow in Simple Networks

Pipe networks may include pipes in series, parallel pipes and/or branching pipes. These simple
configurations may be converted to an equivalent pipe. Two pipes are equivalent when they
deliver the same rate of flow for the same head loss. This is useful in simplifying and analyzing
networks.
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Single Pump in a Pipe System

The head produced by a centrifugal pump in a hydraulic system is a function of discharge,
q. Such a pump is associated with a pump equation of head versus discharge, specifying the
operating range of the pump when running at a specific speed. The resulting characteristic
pump curves are usually supplied by the manufacturer. A similar system equation (or curve)
exists for any hydraulic system, specifying the possible head values that a system can produce
in a particular configuration (connected arrangement of pipes, pumps, valves etc.) for different
volume throughputs. It is at the intersection of the pump and system curves that operation will
occur (known as the system operating point). An example of the intersection of the system and
pump curves is provided in Figure 2.7. A direct analytical solution of the intersection point is
usually not possible, and a solution must be computed via numerical approximation. Consider

System curve

System operating point

Head versus discharge curve for the pump

0.5 1.0

20

40

60

H
ea

d
,

m

Discharge, m3/s

Figure 2.7: System and pump curves intersecting at the operating point.

the simple reservoir-pump-reservoir system shown in Figure 2.8. This obeys the energy equation

p1

γ
+ z1 +

v2
1

2g
+ hp =

p2

γ
+ z2 +

v2
2

2g
+

∑
K

v2

2g
+

∑ fLv2

D2g
. (2.21)

Since the system has an initial velocity of zero and the pipe size is homogeneous, (2.21) simplifies
to

hp = (z2 − z1) +
v2

2g

(
1 +

∑
K +

∑ fL

D

)
. (2.22)

This means that, for a given discharge, a certain head hp must be supplied to maintain that flow.
The system operating point is where the head produced by the pump is just the amount required
to overcome the system head losses and elevation differences. The pump equation of head versus
discharge is often approximated by means of an expression of the form hp = aq2 + bq + c, or
hp = c− dqη, where a, b and d are constant coefficients, and c represents the maximum head at
q = 0.
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Pumps must consume electricity to produce hydraulic energy. However, pumps are not 100%
energy efficient. They are associated with a wire-to-water efficiency which may be used to
calculate pump power consumption [42].
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Pumpz1 z2

Figure 2.8: A simple two-reservoir pump system.

Series Pipe Systems

Consider the series pipe system in Figure 2.9(a). Due to the law of continuity, discharge is equal
in each pipe, yielding

q = q1 = q2 = q3.

The energy equations provide the total head loss as the sum of the head losses in the individual
pipes [170],

hL = hL1 + hL2 + hL3 =
∑

i

hLi .

Using the notion of an equivalent pipe and an equivalent loss coefficient Ke, the total head loss
may be expressed as

hL = Keq
ηe =

∑

i

Kiq
ηi .

If ηi is the same for each pipe, then Ke =
∑

Ki [170].

Parallel Pipe Systems

Consider the parallel pipe system in Figure 2.9(b). By continuity the total discharge is equal
to the sum of the discharge from each pipe, giving

q = q1 + q2 + q3. (2.23)
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1

1 2

2

3

3

(a)

(b)

j1

j2

Figure 2.9: Pipes in (a) series and (b) parallel.

No matter which pipe one considers, the pressure and elevation difference between the two
junction points (j1 and j2) are the same. Since hL = (p1/γ + z1)− (p2/γ + z2), it follows that
the head loss, hL, between the two junction points is the same in each of the pipes in the parallel
pipe system [42, 170]. Therefore hL = hL1 = hL2 = hL3 . Considering pipes 1 and 2, this gives
the Darcy-Weisbach formulation as

f1
L1

D1

v2
1

2g
= f2

L2

D2

v2
2

2g
,

which may be rearranged to yield

v1

v2
=

√
f2

f1

L2

L1

D1

D2
.

If f1 and f2 are known, the division of flow may easily be calculated. However, some trial and
error analysis might be required if f1 and f2 are in the range where they are functions of the

Reynolds number [42]. In terms of an equivalent pipe, substituting q = (hL/Ke)
1
ηe into (2.23)

yields
(

hL

Ke

) 1
ηe

=
∑

i

(
hL

Ki

) 1
ηi

.

When the exponents ηi are all equal, this may be reduced to

(
1

Ke

) 1
η

=
∑

i

(
1

Ki

) 1
η

.
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Branched Pipe Systems

A branched pipe system with its hydraulic grade lines is shown in Figure 2.10. The flow
distribution in branched pipe systems may be determined by applying the continuity and energy
equations for pipe flow [42, 170]. The continuity equation is q3 = q1 + q2. In the vast majority
of municipal hydraulic applications, velocity heads are negligible compared to the piezometric
heads, and can safely be omitted from calculations [169]. Note that the reservoirs and the outlet
pipe are all exposed to atmospheric pressure. The energy equation for the pipe from reservoir
surface 1 to the junction at 4 is therefore

z1 = z4 +
p4

γ
+ hL1 .

From reservoir 2 to 4, the energy equation is

z2 = z4 +
p4

γ
+ hL2 ,

and from junction 4 to the outlet at 3, the equation is

z3 + hL3 = z4 +
p4

γ
.

If the pipe sizes, lengths and node elevations are known, one may solve these equations for the
pressure head, p4

γ , at junction 4.

Datum

z1 z2

z3z4

v1

v2

v3

p
γ

HGL

HGL

HGL

1

2

34

Figure 2.10: A simple branched pipe system.
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2.1.10 Transient Analysis

Transient events in hydraulic networks occur when there are sudden changes in flow conditions,
such as when a valve closes quickly or a pump fails. As mentioned earlier, this may cause large
pressure waves (or water hammer effects) to rebound through the system at close to the speed
of sound, causing much higher pressures than ordinarily found during steady state conditions.
This may cause pipes to rupture and other system failures [169, 170].

The underlying reason for these pressure waves is that during a transient event the velocity head
is rapidly transformed into pressure head and vice versa. During normal hydraulic analysis, the
compressibility of water is ignored, but the assumption of compressibility is fundamental in
transient analysis. Consider a pipe of length L and radius r with a valve at the downstream
end. If the fluid in the pipe is flowing at an average velocity v then the total kinetic energy in
the pipe is Ek = 1

2ρπr2Lv2. This quantity may become very substantial as velocity increases.
Similarly, pipes may carry large quantities of momentum, consequently requiring large forces to
alter flow conditions. Transient analysis is an important component of hydraulic system design
which has often been grossly neglected by the engineering community in the past [169].

Consider the simple reservoir system with a pipe and a valve shown in Figure 2.11. Suppose
initially the valve is fully open so that water is flowing at an average velocity v from the reservoir,
with negligible head loss. Suppose the valve is closed instantly, so that a pressure wave develops
which begins to move towards the reservoir at the speed of sound vc. Now, the water in the
pipe between the reservoir and the pressure wave still has the initial velocity v, whilst the water
behind the pressure wave has zero velocity. The pressure in the section between the valve and
the pressure wave is p0 + ∆p/γ, where p0 denotes the initial pressure and ∆p refers to the
increased pressure. Once the pressure wave reaches the reservoir, the pressure imbalance causes
the water to flow from the pipe back into the reservoir at velocity v. This causes a new pressure
wave that travels in the direction of the valve. These waves continue to rebound until friction
forces dampen out the pressure waves. The acoustic velocity is the speed of sound in a fluid
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Reservoir

Valve
v

Figure 2.11: A reservoir system with a distribution pipe and a valve.

medium. To determine the wave speed a (celerity), acoustic velocity in the fluid medium a0

is modified by the pipe wall elasticity, depending on the elastic properties of the wall material
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and the relative wall thickness [169]. The expression for wave speed is

a =

√
Ev/ρ√

1 + DEv
eEm

=
a0√

1 + DEv
eEm

,

where Ev is the bulk modulus of elasticity of the fluid, ρ is the density of the fluid, Em is
the elastic modulus of the pipe wall, D is the internal diameter of the pipe, and e is the wall
thickness. In a very rigid pipe, this reduces to a = a0 =

√
(Ev/ρ).

The Joukowsky equation relates water hammer pressure change with velocity change and acous-
tic velocity, but neglects the effect of head loss and is only valid for sudden changes [169]. It is
expressed as

∆p = −ρa∆v.

In terms of head, the Joukowsky head rise may be expressed as

∆h =
∆p

γ
= −ρa∆v

ρg
=

av0

g
.

2.2 Hydraulic Systems Theory

The mathematical representation and computer simulation of hydraulic networks are the topics
of this section. This refers to the problem of computing the hydraulic characteristics of a water
system for a given set of initial conditions and demands on the system, commonly known as
‘network balancing ’ or ‘hydraulic network simulation’. Four different mathematical models are
presented in this section, as well as brief discussions of the model implementation and the
software used in this dissertation, namely EPANET 2.

2.2.1 Hydraulic Network Simulation

As mentioned earlier in this Chapter, the system pressures and flows are normally calculated
for steady-state flow conditions. These system-wide characteristics must be calculated for var-
ious network configurations under various loading conditions over time. In an extended period
simulation one considers time variation in the tank elevations and demand loads in discrete
time units, effectively performing a steady state simulation for each time unit with the bound-
ary conditions for each consecutive period determined by the previous one [169, 170]. A more
advanced simulation technique is dynamic modelling, which considers unsteady flow conditions
incorporating transient analysis, and thus closer reflects reality. Due to the complexity of this
approach it is not yet in wide use. A simplified version of this is gradually varied conditions in
which it is assumed that a pipe is rigid and changes in flow occur instantly along a pipe. Here,
velocity is uniform along a pipe, but may change with time [169].

The calculation of hydraulic state in a network under steady state requires that two conditions
be satisfied. The first condition is that continuity must be satisfied for all n junctions in the
network. That is, the flow into any junction of the network must equal the flow out of that
junction. If Qi,in and Qi,out are the sets of inflows and outflows respectively for node i, the
continuity condition provides the set of equations

∑

j∈Qi,in

qj −
∑

k∈Qi,out

qk =
∑

di, i = 1, . . . , n, (2.24)
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where di is the external supply or demand at node i [42].

The second condition is that head loss between any two junctions must be the same, regardless
of which path in a series of pipes is taken to arrive at one junction point from another. This
requirement results because pressure must be continuous throughout the network, and cannot
have two different values at a given point. This condition also requires that the sum of the
head losses around a loop must equal zero. In this situation, the sign (positive or negative)
for the head loss in a given pipe is bestowed by considering whether the flow is clockwise or
counter-clockwise with respect to a loop [42]. A loop is defined as a primary loop if it contains
no sub-loops (see Figure 2.12 for an example) [169]. For the nL primary loops in a network,
there exists a set of conservation of energy equations,

∑

i,j∈INl

hLi,j −
∑

k∈IPl

hp,k = 0, l = 1, . . . , nL, (2.25)

where INl
is the set of nodes in loop l, hLi,j is the head loss in the pipe connecting nodes i and

j, IPl
is the set of pumps in loop l, and hp,k is the head produced by the kth pump.

Energy must also be conserved between fixed-grade nodes (FGN), which are points of known
constant elevation plus pressure head, such as two reservoirs in a network. If the known pressure
head difference between two fixed grade nodes is ∆EFGN, then given nf fixed grade nodes in a
network, one obtains a set of nf − 1 equations,

∑

i,j∈INl

hLi,j −
∑

k∈IPl

hp,k = ∆EFGNl
, l = 1, . . . , nf − 1, (2.26)

where the terms have a similar definition to those in (2.25), except that it applies to path l
between two fixed grade nodes instead of to a loop. Fixed grade node pathways are also known
as pseudo-loops [169].

In total there are now NC = n+nL +nf −1 equations representing the constraints on the water
network. Numerous methods exist for solving this system of equations. The original numerical
method of solution for hydraulic networks is the Hardy Cross method [41].

A

D C

B

Figure 2.12: A primary loop subsection in a pipe network.

2.2.2 Hardy Cross Method

The Hardy Cross method is an adaptation of Newton’s method (described in Appendix B)
[170]. An initial estimate of the flow conditions throughout the network must be established
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so that the loads at the various nodes are satisfied. The first estimate of flow conditions will
typically not satisfy the head loss condition, therefore corrections are applied [169, 170]. For
each loop of the network, a discharge correction is applied to yield a zero net head loss around
the loop [42]. Consider the example of an isolated loop in Figure 2.12, noting that no pumps
are present and that the arrows indicate the direction of flow. In this loop the loss of head in a
clockwise sense is given by

∑
hLc = hLAB

+hLBC
=

∑
c Kqη

c , and in a counterclockwise sense by,∑
hLcc =

∑
cc Kqη

cc. In a valid solution, the counterclockwise and clockwise head losses must
be equal, that is

∑
hLc =

∑
hLcc ,

∑

c

Kqη
c =

∑

cc

Kqη
cc.

A discharge correction ∆q is applied to satisfy the head loss requirement. If the clockwise head
loss is greater than the counterclockwise head loss, then ∆q is applied in the counterclockwise
sense, and vice versa. That is, ∆q is subtracted from the clockwise flows and added to the
counterclockwise flows [42]. This yields

∑

c

K(qc −∆q)η =
∑

cc

K(qcc + ∆q)η. (2.27)

The summation on either side of (2.27) may be expanded, and all but the two most significant
terms excluded, yielding

∑

c

K(qη
c − ηqη−1

c ∆q) =
∑

cc

K(qη
cc + ηqη−1

cc ∆q).

One may now solve for ∆q obtaining

∆q =

∑
K(qη

c − qη
cc)∑

ηKqη−1
c +

∑
ηKqη−1

cc

. (2.28)

If ∆q in (2.28) is positive, the correction is applied in a counterclockwise sense. A different ∆q
is calculated for each loop in the network [42]. Any pipe may be part of at most two primary
loops. Consequently certain pipes may have more than one correction applied [169]. Therefore,
the first set of flow corrections will usually not yield the desired final result and the solution can
only be approached by successive approximations until the corrections are negligible. Experience
has shown that multiplying the ∆q obtained in (2.28) by 0.6 will result in a faster convergence
[42]. To understand why this method may be reduced to Newton’s method, consider a notation
where the signs of the flows (clockwise or counterclockwise) are implicit in the variable qi,k,
where this is the ith pipe flow in the kth iteration, and the head loss may be expressed as a
function F (qk). Equation (2.28) may now be rewritten as

∆qk+1 = −
∑

i∈IL
Kiq

η
i

η
∑

Kqη−1
i

=
−F (qk)

∂F/∂q(qk)
,

which is exactly equivalent to Newton’s Method (see Appendix B).

Although useful for conceptualizing the simulation process, the Hardy Cross method is computa-
tionally more intensive than competing methods [169], and is hence not used in this dissertation.
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2.2.3 Linear Theory Method

The linear theory method solves NC non-linear energy equations for the unknown pipe flows, q,
using an iterative procedure. This method was developed by Wood and Charles [29] in 1972.
The energy head loss equations are linearized about qi,k+1, where the subscript k + 1 denotes
the current iteration. Here the previous iterations qi,k are taken as known values [169]. For an
isolated loop, without the presence of pumps, equations (2.24), (2.25), and (2.26) yield

∑

i∈Pj

qi,k+1 =
∑

di,

∑

i,j∈IL

Kiq
η−1
i,k qi,k+1 = 0,

and ∑

i,j∈IL

Kiq
η−1
i,k qi,k+1 = ∆EFGN

respectively. Here, Pj is the set of pipes connected to junction j and IL is the set of pipes in
loop or pseudo-loop, L. These equations form a set of linear equations which may be solved for
values of qi,k+1. The absolute values of the difference in successive flow estimates are compared
to a convergence criterion. The process is repeated until these differences become insignificant.
Owing to oscillations around the final solution, Woods and Charles recommend using the mean
of the previous two iterations as an estimate for the next iteration [169].

2.2.4 Gradient Algorithm

The gradient algorithm does not use loop equations, but rather employs pipe equations in which
q and h are solved for simultaneously. The pipe equations are formed by writing the conservation
of energy equation for the system components in terms of the nodal heads. The energy equation
for a pipe is expressed as

h1 − h2 = Kqη, (2.29)

where h1 and h2 are the nodal heads at the upstream and downstream ends of the pipe. Similarly,
using a quadratic approximation for the pump head, the energy equation for a pump is

h2 − h1 = aq2 + bq + c. (2.30)

These equations may be combined with the junction continuity equations (2.24) to form n + ns

equations with unknowns of nodal heads and pipe flows, where ns is the number of components
(pipes and pumps). The gradient algorithm proceeds by linearizing the component energy
equations using the previous flow estimates. For example, the equation for pipes becomes

Kqη−1
k qk+1 + h1 − h2 = 0.

The linearized component equations may be expressed in matrix form as

A12h + A11q + A10h0 = 0 (2.31)

and the linearized continuity equations as

A21q − d = 0, (2.32)
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where A12 = AT
21 (n × ns) is the incidence matrix of zeros and ones corresponding row-wise

to the nodes which are connected to each component, and A10 (n× nR) identifies all the fixed

grade nodes. A11 (ns×ns) is a diagonal matrix containing the linearization coefficients,
∣∣∣Kqη−1

k

∣∣∣
[169]. This produces the overall system of linear equations,

[
A11 A12

A21 0

] [
q

h

]
=

[
−A10h0

d

]
. (2.33)

Differentiating this system yields

[
DA11 A12

A21 0

] [
dq

dh

]
=

[
dE
dd

]
, (2.34)

where dE and dd are the residuals of (2.29), (2.30) and (2.24) evaluated at the current solution
qk and hk. DA11 is a diagonal matrix of the exponents of the pipe equations. The system
(2.34) is a set of linear equations in dq and dh. This may be solved and q, h updated using

qk+1 = qk + dq (2.35)

and

hk+1 = hk + dh. (2.36)

Iterations continue until convergence is achieved, which is determined by means of dE and dd.
Todini and Pilati developed an alternative efficient recursive scheme which improves perfor-
mance. Although the gradient algorithm requires a larger set of equations to be solved than the
Hardy Cross or Linear Theory methods, it has been shown to be robust and computationally
efficient [169, 192].

2.2.5 Pressure Driven Analysis

While most water simulation models currently in use are based on demand driven analysis
(DDA), there has been a campaign to shift towards pressure driven analysis (PDA), which is
physically more accurate [100, 228]. DDA fails to take properly into account the relationship
between pressure and demand, since demand will only be satisfied provided there is sufficient
pressure. Models that assume demand satisfaction and calculate the resulting pressures may
produce incongruous results, such as demand being satisfied at nodes with negative pressures,
especially when analysing extreme demand conditions and fireflow scenarios [229]. Furthermore,
the use of PDA allows one to quantify hydraulic performance using the degree of demand sat-
isfaction, and to conduct leakage analysis by means of leakage models which require accurate
pressure inputs.

The simplest form of PDA is the use of the standard emitter equation to calculate discharge at
an orifice. This expresses the flow rate as

q = chA, (2.37)

where c is the constant emitter / leakage coefficient, and where A is the constant emitter
exponent for the outlet. The emitter coefficient incorporates various flow-independent factors
such as the orifice diameter, the secondary loss coefficient and the contraction of the flow
path downstream of the orifice. The emitter exponent embodies the sensitivity of the flow
rate to pressure. This expression is often used to simulate simple pressure-dependent emitters,
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such as sprayers and leaks [204], and has even been used for pressure-dependent discharge at
demand nodes [31]. In conventional theory, the rate of flow through a fixed diameter hole in
a pipe is proportional to the square root of the pressure, i.e. A = 0.5 [239]. However, this
method is somewhat simplistic and may not be well suited to general usage for calculating
pressure-dependent demand satisfaction or leakage analysis where emitter exponents may vary
extensively [228, 239].

In 2003 Todini [228] proposed a more realistic approach to the extended period analysis of WDS
incorporating PDA. This yields the more general form of (2.33),

[
A11 A12

A21 A22

] [
q

h

]
=

[
−A10h0

d

]
, (2.38)

where A22 is a diagonal n×n matrix whose elements are either zero if the demand of the relevant
node is not head-driven, or nonlinear functions of the pressure at the node. Many formulations
exist for such a function, such as the formula
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by Aoki [11], where zi and h∗
i is the elevation and desired minimum head respectively at node

i [228]. Taking the derivative of (2.38) yields
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where DA11(k, k) = ηKqη−1
k and DA22 is a diagonal matrix derived from (2.39) such that
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This system of equations may be solved in an iterative manner, such as in the Gradient Algo-
rithm [228].

2.2.6 Comparison of Network Simulation Methods

In addition to the steady-state solution methods already discussed, there is the popular Newton-
Raphson method [169, 170]. The Newton-Raphson method converges more quickly than the
linear theory method for small systems, but may converge very slowly for large networks. It may
also suffer from convergence problems if poor initial conditions are selected [29]. The Linear
Theory algorithm is reportedly the best algorithm for the loop equation formulation, does not
require initialization of flows, and, according to Woods and Charles [29, 169], always converges
rapidly. In 1985, Holloway [124] conducted a comparative study of the Newton-Raphson and
Linear theory methods on a 200 pipe system. Both methods converged in 7 to 9 iterations,
with the Newton Raphson method requiring the least amount of computation time. In 1987,
Salago, Todini and O’Connell [206] compared these two methods to the Gradient algorithm
on systems under varying demand loads, and found that the Gradient algorithm outperformed
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the others in each scenario. Of the classical methods, the gradient algorithm is reportedly the
most computationally efficient, and is the method employed in both the EPANET 2 simulation
package [170] and in WatercadTM, a package produced by Haestad Methods [251].

One recent method for extended period simulation, published in 2006 by Van Zyl et al. [241],
is the Explicit Integration (EI) method, which attempts to decouple a network into constituent
simple base systems and solve each individually. This is done by integrating their linearized
dynamic tank equations explicitly. The results are then used to estimate the dynamic behavior
of the full WDS. The accuracy and efficiency of the EI method was shown to be superior to that
of the Euler Integration method [261] for two sample networks [241]. Another modern trend is
to include transient modelling in extended period simulation [169].

2.2.7 Model Calibration

Calibration is the process of adjusting the model parameters so that the simulated results accu-
rately reflect the observed field data for an existing physical system. Calibration is extremely
important in WDS simulation. Two of the major difficulties in calibration are estimating the
demand loads and pipe-carrying capacities accurately, since these variables may introduce se-
rious errors in calculations. The data for calibration is usually derived from fire-flow pressure
measurements, which involves measuring pressures and flow in isolated pipes or pipe sections,
although the modern trend is to install automated flow meters with the ability to transmit live
data. These measured values are used to adjust pipe friction factors, demand loads and other
parameters in a simulation until a good fit is obtained [103, 170].

2.2.8 Model Implementation

In 1988, Clark et al. [34] formulated a framework for hydraulic model implementation. This is
taken directly from [170] as follows:

1. Model Selection: Definition of model requirements and selection of model that fits desired
requirements.

2. Network representation: Representation of the distribution system components in the
model.

3. Calibration: Adjustment of model parameters so that predicted results adequately reflect
field data.

4. Verification: Independent comparison of model and field results to verify the adequacy of
the model representation.

5. Problem definition: Definition of the specific design or operational problem to be studied
and incorporation of the situation into the model.

6. Model application: Use of the model to study the specific problem / situation.

7. Analysis / display of results: Following the application of the model, the results should
be displayed and analyzed to determine the rationality of the results and to translate the
results into a solution to the problem.
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In this dissertation, only new system designs and existing benchmark systems are examined,
in which cases the model parameters are known in advance. Therefore, the calibration and
verification steps are not necessary in the application of the optimisation model.

2.2.9 EPANET

Many computer models exist to solve hydraulic network simulation equations. EPANET is
one of the more commonly used computer models worldwide. It has the ability to simulate
steady-state conditions, perform extended period simulation, and analyze water quality. Other
computer models include PIPE2000 [154], Hytran [127], Infowater [179], and WaterCAD [20],
all of which are commercial products which additionally support transient analysis. EPANET
2 was used extensively in this dissertation. It was developed by the U.S. Environmental Pro-
tection Agency for public domain use [203]. EPANET 2 uses the Gradient Algorithm described
previously. A detailed discussion on the use of the software, as well as the underlying theory, is
available in [204].

2.3 Chapter Summary

In this chapter the basic theory of WDS hydraulics was presented, in fulfilment of Dissertation
Objective 1 in §1.3. This should provide the reader with a foundation for understanding the
concepts and terms used in the remainder of this dissertation.

For a comprehensive treatment of fluid mechanics the reader is referred to Crowe and Roberson
[43]. For a detailed reference on WDSs the reader may consult Mays [169]. Finally, an excellent
reference on WDS modelling is Walski et al. [251].
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Chapter 3

Single-objective WDS Design
Optimisation

This chapter contains a description of the water distribution system (WDS) design optimisa-
tion problem, focussing on the single-objective case of constrained least-cost optimisation. It
includes a mathematical formulation of the problem, a concise literature survey of research on
the problem, numerous WDS design considerations, and a discussion of optimisation methods
and metaheuristics which have been applied in an attempt to solve the problem.

3.1 Introduction

Water distribution system design optimisation is a challenging problem [83]. It may involve the
design of an original water network, or the expansion / rehabilitation of an existing network. It
is desirable that the system be economical to install and maintain, and that it satisfies certain
performance criteria, including reliability, water quality, capacity, and pressure quantities [251].
The computational complexity of solving the problem of optimal WDS design problem is ex-
tremely high. This problem belongs to the class of NP-hard problems which are intractable when
using exact solution methods for large problem instances. Traditional optimisation techniques
(such as linear programming) have only been applied to WDS optimisation with numerous
simplifying assumptions [83].

Furthermore, WDS design requires significant engineering knowledge and sound judgment. A
systematic design optimisation procedure should be followed. A schematic overview of the opti-
misation model application process is provided in Figure 3.1 (a schematic adapted from [251]).
It demonstrates that the first requirement is a calibrated model of the WDS which can be used
to predict the behaviour of the system under different conditions. This model may not necessar-
ily require calibration with real test data, depending on whether it represents a completely new
system or an existing one requiring augmentation. A new system would use cited component
characteristic values, such as the quoted internal diameters and roughness characteristics of
pipes, as provided by the manufacturer. The problem statement in this context is the design
optimisation of WDSs (least-cost optimisation is assumed for the moment). If the current model
results are not accurate enough to predict real observations, then they cannot be used in deci-
sion making, and additional measurements of the real system may be required to recalibrate the
model. The technique used to formulate alternative solutions is the actual optimisation method,
with which this dissertation is primarily concerned. This may constitute a form of non-linear

35
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programming, such as the generalized reduced gradient method, an adaptive search algorithm,
such as the genetic algorithm, or one of numerous alternative metaheuristics in the operational
research literature. The current solution(s) identified by the optimisation technique must then
be tested. This includes conducting a hydraulic simulation in order to calculate the system-wide
flows and pressures, and to determine whether a particular solution is feasible in terms of its
constraints. Depending on the optimisation strategy used, the hydraulic simulation may be the
most computationally intensive subroutine, yet the optimisation method has a direct influence
over how many such simulations must be performed. The cost analysis is an evaluation of one
or more objective function values. These values are then used by the optimisation algorithm to
determine how to proceed with its search through solution space. Once a sufficient quantity of
quality solutions have been generated, a decision may be made with respect to which solution
to implement [251]. Initial optimisation methods, which aimed at determining only a minimum
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Figure 3.1: Overview of optimisation model application [251].

cost design solution, have been superseded by multi-objective optimisation techniques which
generate a Pareto-optimal set1 of alternative solutions. A discussion of objectives in addition
to capital costs is included in Chapter 4, while an in-depth discussion of multi-objective opti-
misation and the issues relating to its application in the context of WDS design optimisation
is included in Chapter 5. Additionally, traditional optimisation techniques, such as linear and
non-linear programming, which tend to oversimplify the problem or become trapped in local
optima (WDS design problems are typically highly non-linear), have given way to more suc-
cessful adaptive search techniques, such as genetic algorithms and simulated annealing [251].
In particular, evolutionary algorithms are more suited to the multi-objective paradigm, in the
sense that they may be able to find multiple members of a Pareto-optimal set in a single run.
Optimisation should not be viewed as an automated process by which a single optimal solu-
tion is identified. It should provide alternative solutions offering a range of costs and benefits,
fulfilling the role of a decision support tool for design engineers [251].

1The members of a Pareto-optimal solution set represent a trade-off between different objectives. Moving
from one solution to another will result in the degradation of one objective function value, but the improvement
of another. In the context of WDS design, one might have a trade-off between reliability and cost, and for each
reliability objective value a solution is found which achieves that reliability at the minimum cost.
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The typical formulation of the optimisation problem is a minimisation of costs subject to hy-
draulic feasibility, demand satisfaction and pressure constraints (as described in some detail in
this chapter), but additional considerations may include reasonable levels of redundancy and
reliability, budgetary constraints, trade-offs between competing objectives such as fire-flow ver-
sus water quality, minimizing running costs (pumping costs, pipe replacement costs), increasing
component homogeneity, minimizing excavation costs, the uncertainty of future requirements,
ensuring spare water storage capacity for emergencies, and ease of maintenance [250, 251].

WDS optimisation methods employed in the literature have included linear and nonlinear pro-
gramming [9, 223], dynamic programming [212], mixed-integer programming [145], gradient
search algorithms [159], enumeration methods [99], genetic algorithms [51, 209, 218, 262], sim-
ulated annealing [46], memetic algorithms [83], ant colony optimisation [168, 274], and others
[251].

Several benchmark water systems have appeared in the literature for optimisation model testing.
The following nine benchmark WDSs are analyzed in this dissertation: the New York Tunnel
problem (NYTUN), proposed by Schaake and Lai [212] in 1969, the Two-loop Network (TLN),
introduced by Alperovits and Shamir [9] in 1977, the Hanoi Network (HANOI), first presented
by Fujiwara and Khang [94] in 1990, the Two Reservoir Problem (TRP), proposed by Simpson
et al. [218] in 1994, the Exeter Water Network (EXNET), by the Centre for Water Systems
in Exeter, UK [84], and the Blacksburg (BLACK), Fossolo (FOSS), Pescara (PESCA), and
Modena (MOD) networks presented by Bragalli et al. [21] in 2008. In addition, a tenth WDS
design is analyzed, namely a recent South African developmental case study named the R21
Corridor (R21), supplied by GLS Software [103].

Optimisation for WDS design is currently not yet part of standard engineering practice, al-
though many optimisation tools are already incorporated into certain design programs [251].
Note that, without the comments outside of the flowchart, Figure 3.1 may be used for any
manual engineering planning project which excludes an attempt at mathematical optimisation.
Other difficulties with the inclusion of optimisation are that the model is a simplified version
of reality, the inability of algorithms to fully capture the design process, and general distrust
of automated algorithms which replace traditional engineering judgment. However, it is also
easy to demonstrate (1) that humans are unable to understand and predict the implications
of a design, due both to data uncertainty / variability and the complex non-linear interactions
between components, and (2) that the use of simplistic greedy search heuristics fails to find
globally optimal designs. Therefore, some level of optimisation is essential to enable effective
decision-making. The optimisation model must be broad enough to address the wide range
of important criteria for WDS design, yet simple enough to be used by a non-specialist. Any
approach should be efficient, holistic, and systematic, in order to enable correct decision making.

3.2 An Overview of Optimisation Methods

Optimisation methods refer to mathematical techniques used to adjust the parameters (or deci-
sion variables) of a model system automatically, in order to achieve the best possible (optimal)
outcomes, as defined by the system objective function(s), and frequently subject to constraints
on the model. For example, this may relate to the search for a least-cost design which satisfies a
required performance level, limited by an available budget. An optimisation problem is formu-
lated mathematically as the maximisation or minimisation of one or more objective functions
of the decision variables, subject to a set of equality and/or inequality constraints. The range
of possible solutions is often called the search space or parameter space. Similarly, the range of
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the objective function values to which the search space maps is often called the objective space.
Solutions are identified as feasible when they satisfy the optimisation constraints, and infeasible
otherwise [251, 259].

Optimisation methods range from analytical techniques, which employ gradients and higher
order derivatives of objective functions, to heuristic search methods and advanced metaheuris-
tics, which often mimic natural phenomena. Exact methods (or deterministic methods) are those
which guarantee locating the global optimal solution to a class of problems, provided a sufficient
amount of processing time is available. One such method is exhaustive enumeration, whereby
every possible configuration of a model is analyzed, an option very rarely available in real world
problems, owing to the enormous number of solutions. Other exact methods include Linear -
and Dynamic Programming. Exact methods are often unable to handle discrete variables, and
typically too slow to be used in solving large problem instances due to the ‘curse of dimensional-
ity’. Numerous Nonlinear Programming methods exist for solving nonlinear problems, however,
they are normally approximate methods, since they may become trapped at local optima in the
search space [259].

Heuristic is derived from the Greek “heuristikein” or “heurisko”, which may be translated
as “to find out” or “to discover” [189]. Heuristics are basically rules of thumb, criteria, or
principles for deciding amongst several alternative courses of action, in order to achieve some
objective. They represent a trade-off between simplicity and adequate decision-making power.
An example of a heuristic might be a greedy rule, such as choosing the alternative which yields
the best immediate gain in objective function value. A heuristic search might be used to conduct
optimisation, although it generally cannot guarantee finding an optimum [176, 259].

Metaheuristics are algorithms that operate at a higher level than heuristics, as indicated by
the prefix meta, which may be translated from Greek as “beyond, above, at a higher level”,
and is often used in the sense of “transformation” [189]. A metaheuristic may be defined as a
high-level strategy for directing heuristics in the search for optimal solutions in domains where
the task is hard [153]. Metaheuristics do not guarantee finding a global optimum, however,
they are often able to locate good solutions which may closely approach the global optimum.
They are usually considered global search techniques, in that they contain mechanisms to escape
local optima (such as the ability to move to a worse solution in the short term, in the hope of
finding a better solution in another region of the search space). Furthermore, because of their
generality, metaheuristics may be used on a broad class of hard problems. Metaheuristics are
frequently the only viable option in solving a difficult problem, owing to the large complexity
or size of the problem, or because of other elements such as discontinuity, black-box objective
functions, high levels of noise, deceptive local optima, and the mixture of discrete and contin-
uous variables. Metaheuristics are usually able to model problems more realistically and are
generally less limited in terms of problem type restrictions (such as requirements of linearity
or differentiable functions). Metaheuristics are not always the best techniques to apply, given
that many problems are solvable optimally, however in the case of WDS design, they prove
extremely relevant [176, 251, 259].

Metaheuristics usually contain adaptive elements, in that they alter their strategy as the search
progresses. One example of this is an initial period of high exploration, followed by a phase
where the search is gradually intensified around localized regions in the objective space, usually
coinciding with ‘valleys’ in the objective response surface (assuming a minimisation problem).
Certain formalized optimisation methods are too simplistic to be considered metaheuristics,
despite containing heuristic elements, such as the Finbonacci search, the Hooke and Jeeves
pattern search, and the simplex search. All of these techniques are non-adaptive, and use a
numerical difference technique to approximate partial derivatives and conduct improving steps.
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A metaheuristic might use one of these methods to conduct a local search within the broader
framework of a global optimisation strategy. Many metaheuristics mimic natural processes in
their search procedure, such as Evolutionary Algorithms (EAs) which are based upon biological
evolution, and employ a population of solutions. These types of metaheuristics are sometimes
referred to as heuristics derived from nature (HDN) [251, 259].

Examples of metaheuristics include Genetic Algorithms (an example of an EA), Simulated An-
nealing, Tabu Search, and Ant Colony Optimisation. All of these may be considered adaptive.
EAs are mentioned most frequently in the WDS literature as showing promise [251]. The advan-
tages of these for application to WDS optimisation include their inherent discrete formulation
(as such they easily handle discrete component sizes), their ability to conduct a robust global
search, their lack of requirement for partial derivative calculation (as they use only objective
function values), and their mechanisms which allow the search to escape local optima [73, 274].

Another optimisation paradigm considered in this dissertation is that of hyperheuristics, an
emerging search technology that may be defined as a (meta)heuristic which controls the selection
and operation of other (meta)heuristics in a dynamic fashion. Hyperheuristics were largely
motivated by the goal of raising the level of generality at which optimisation systems can
operate [25], and have been shown to produce performance boosts in some sample studies. In
this dissertation the AMALGAM hyperheuristic of Vrugt and Robinson [244] is analyzed for
use in WDS design optimisation. Several variants of the original AMALGAM formulation are
also studied.

An optimisation-simulation framework which typically applies in WDSDO is shown in Figure
3.2. The optimisation module generates candidate solutions using some optimisation method,
which must be tested for feasibility and hydraulic performance over a range of demand load-
ings by the simulation module. This module may either comprise an extended period analysis
simulator (for a given time-series of demands), or a stochastic simulator (which samples prob-
ability distributions in order to generate demands) [141, 251]. Special scenarios such as pipe
failures, fire-flows, and zero-flow conditions may also be generated by the simulation module.
The hydraulic simulator calculates the pressures and flows throughout the network for a specific
instance of demands. This may, for example, be performed by EPANET [203]. Performance
information is passed back to the optimisation procedure to interpret objective function values
and generate new candidate solutions.

3.3 Least-Cost Optimal Design Problem for WDS

In the classical problem of WDSDO designers focussed mainly on the sub-problem of pipe
network design, probably because pipes constitute the bulk of the capital cost [157]. This
problem is formulated as follows: For a given layout of pipes, and specified demand at the
nodes (usually peak demand), and minimum pressure requirements, given that the head loss in
a pipe is a function of flow in the pipe, pipe diameter, length and hydraulic properties, find the
combination of pipe diameters which produces the minimum cost design subject to the following
constraints [159, 218]:

1. Continuity of flow must be satisfied at all junctions (nodes) in the network (including
nodal demand quantities).

2. The total head loss around a loop must equal zero, or the head loss along a path between
two reservoirs / tanks must equal the surface elevation difference.
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Figure 3.2: An optimisation-simulation framework for WDS design optimisation (adapted from
[141]).

3. Pressure head at certain nodes must satisfy minimum and maximum limits.

4. Pipe diameters are constrained to a set of discrete sizes.

This basic formulation may be expanded to include the sizing or selection of additional WDS
components such as valves, pumps and storage tanks [262], and various component settings,
such as pumping schedules and valve settings. There may be existing elements in a system
with known (fixed) characteristics [159]. The rehabilitation of an existing network or network
subsection may be included by defining additional operations on pipes such as cleaning, replacing
or parallelling [251, 274].

It is important to note that this formulation is specified for a single demand load only. In
practice, systems experience a wide range of different flow conditions, possibly including a
static ‘no-flow’ flow condition, at which point system pressures are highest in gravity systems
due to zero friction losses. The design may also aim to achieve good system performance over
the course of an extended period of simulation. It is common that a system is designed to
perform well during peak conditions, but may be inefficient during times of low demand [251].

Optimisation constraints may also include reliability and redundancy constraints. An example
of one such constraint is the compulsory inclusion of alternate flow paths (loops) to allow for
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pipe failure or network maintenance. In practice, loops are a critical feature of distribution
systems [159, 262], making them much more robust and reliable; therefore the design process
should encourage their inclusion.

A similar concern is spare capacity and flexibility in the face of future uncertain demands.
Good indicators of capacity include the flow which can be delivered to numerous nodes during
a fire event, or the amount of pressure in excess of some minimum pressure at certain indicator
nodes [251]. Excess energy in the system allows it to age gracefully, minimizing the impact of
gradually reduced performance, and also accommodates system failure, since more energy will
be expended on friction when additional fluid is forced along alternate pathways [227].

Water quality is an additional concern, and is indirectly proportional to system capacity, because
of the increased residence time of water in larger pipes and tanks [251].

While there is generally an assumption of steady state flow conditions under a given loading
condition, systems are usually tested under multiple loading conditions to ensure reliability of
the design [159].

In order to design tanks and pumps, the daily demand patterns have to be analyzed in sequence
to consider the tank operations and pumping cost [159]. Weekly or even seasonal patterns may
be analyzed. However there is always a large degree of uncertainty. As a minimum consideration,
systems should be designed to handle peak loading conditions.

This design optimisation problem is traditionally formulated ‘for a given layout’. Owing to the
large computational complexity of the WDS design problem, it is typically separated into two
phases. The first phase is the determination of an appropriate layout for the water network,
such that each customer in a region of interest is connected to a water supply, often enforcing
the inclusion of loops to allow for uninterrupted supply in times of pipe failure. The second
phase is the sizing of the WDS components, including pumps, valves, tanks, and pipes. The
primary goal in the second phase is to ensure that required quantities of water are supplied at
adequate pressures to all consumers in the network [13, 157]. Sizing pipes in order to find a least-
cost solution which satisfies a single demand loading case and minimum pressure requirements,
produces ‘optimal’ designs in the form of branched networks. These are problematic, because
pipe failure affects an entire branch of the network. Layout design for looped networks is
a complex problem which has received relatively scant attention in the literature. To avoid
unreliable, branched designs, it is strongly recommended that systems be designed using multiple
demand scenarios and explicit reliability objectives, possibly enforcing loops and minimum pipe
diameters [251].

Researchers also typically assume a fixed layout, based on physical limitations such as street
right of ways, private easements and topography [4]. The design of the pipe layout can have
an enormous impact on the overall cost of the system, both because of differing frictional losses
and different site excavation costs [251], and multiple feasible layouts may exist which provide
improved performance. In reality there is a tight coupling between the layout and component
sizing problems, so that it may actually be preferable to combine the phases and design layout
and pipe sizes simultaneously. It may therefore be wise to facilitate some level of layout design
in the optimisation process.

As mentioned in the previous chapter, each potential network to be tested in the solution
space must be hydraulically balanced. This refers to the problem of calculating the hydraulic
properties of the network under steady state flow. It has become common practice to use a
separate hydraulic simulation package to perform this balancing, so that constraints 1 and 2
above are considered implicitly by the simulation software. The optimisation routine would
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then iteratively call the simulation package to calculate the hydraulics for each member of the
current solution set, and use the results to make decisions on how to derive a new solution set
[211].

Traditional hydraulic simulation uses DDA, whereby the mathematical model enforces demand
satisfaction throughout the WDS, and calculates the resultant flows and pressures. Although
this technique should be correct within the range of ordinary operation, extreme loads on
the system may produce physically impossible situations, such as demand being satisfied at a
node with negative pressures. However, the enforcement of pressure constraints should allow
the model to operate within its stable range. The alternative to DDA is the more physically
accurate PDA, which is currently not in widespread use, although PDA simulation packages are
available [226].

3.4 Formulation of the Least-Cost WDS Design Problem

In this section, the mathematical formulation of the least-cost optimal design problem is stated
in a very general sense. A comprehensive optimisation of WDSs is formulated by including pipe
sizing, rehabilitation, tank, pump and valve design for the entire system under steady state and
extended period simulations [251]. This formulation is adapted to include multiple objectives
in Chapter 5, and specialized for particular benchmark systems in Chapters 6–9.

Given a water network comprising n nodes and  l sizable components (pipes, valves, pumps and
tanks), the general least-cost optimisation problem may be stated mathematically in terms of
the various design variables x, nodal demands d, and nodal pressure heads h. Here x is a vector
of selected characteristic values (or physical dimensions) for the  l sizable system components,
d is a vector of length n specifying demand flow rates at each node, and h is a vector of length
n whose entries are the pressure head values for the n nodes in the system (note that head
depends on x and d). Since each component may have more than one sizable characteristic, the
length of x depends on the model and the network size with |x| = κ ≥  l. Here x may include,
for example, the diameter of the pipes, the capacity of the pumps, valve type and setting, and
tank volume, diameter and base elevation [159]. The objective function and the constraint sets
are discussed in the following subsections.

3.4.1 The Objective Function

The objective is to minimize a cost function f(h, d, x). This cost function may include in-
stallation costs, material costs, and the present value of the running costs and/or maintenance
costs for a potential system over its entire lifetime. This single objective formulation may be
used to accommodate multiple objectives by aggregating their functions and using weighting
coefficients. However, this is definitely sub-optimal in terms of both solution quality and time-
efficiency, and therefore not recommended. The objective function may be linear or nonlinear,
allowing for various types of components to be designed. By excluding existing components
from the cost function, the model also allows for expansion of an existing network [159]. For
the simple problem of minimizing the cost of an np-pipe system (without pressure goals), the
objective function may be expressed as f(x) =

∑np

k=1 C(Dk, Lk), where C(Dk, Lk) is a cost
function of the pipe diameter Dk, and the pipe length Lk of the k-th pipe [83, 159]. For optimi-
sation methods that cannot accommodate constraints explicitly, it is common practice to add a
penalty term to the cost function, in order to penalize constraint violations (such as deviation
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from system pressure requirements) [159]. This technique requires a penalty factor to scale
constraint violations to the same magnitude as cost.

3.4.2 Conservation of Flow Constraints

A set of at least n constraints of the form g(q, d, x) = 0 includes a conservation of flow equation
for each of the nodes in the system, incorporating the nodal water demands and the flows for
all pipes branching from a node. More precisely in terms of the flows at nodes i = 1, . . . , n this
is

gi(q, d, x) = gi(q(d, x), d) =
∑

j∈Ni

qij − di = 0, i = 1, . . . , n,

where Ni is the set of nodes connected to node i, where qij is the flow in the pipe connecting
nodes i and j, and di is the demand at node i. Additional constraints may be added for multiple
loading conditions. These may be required to be satisfied according to some temporal pattern
[251].

3.4.3 Energy Equation Constraints

A system of equations of the form e(h, d, x) = 0 is required for the primary loops in the system,
specifying that energy is conserved around each loop. The same applies for pseudo-loops (paths
between fixed-grade (known head) nodes, such as a reservoir or a tank). The loops and pseudo-
loops must be identified by examining the network layout. If there are nFG fixed grade nodes,
then nFG−1 pseudo-loop equations are required. For a total of nL primary loops in the system,
these equations may be expressed as

el(h(d, x)) =
∑

i,j∈Il

hLij −
∑

k∈Pl

hpk
= 0, l = 1, . . . , nL,

where Il is the set of nodes in loop l, hLij is the head loss in the pipe connecting nodes i and j,
Pl is the set of pumps in loop l, and hpk

is the head produced by the k-th pump. A similar set
of equations apply for the pseudo-loops, except that the right-hand side of the equation is the
known head difference. Alternatively, instead of using loop equations conservation of energy
may be expressed solely in terms of pipe headloss equations [169]. The conservation of flow
constraints and energy equation constraints are nonlinear, and together represent conservation
of mass and energy laws pertaining to pressure and flow distribution in the system. These
constraints may be satisfied intrinsically by a hydraulic simulation package [159, 251].

3.4.4 Pressure Head Constraints

Upper and lower bounds of the form hmin ≤ h(d, x) ≤ hmax may be prescribed on pressure
heads h at each node [159]. The upper bound may be related to maintaining the structural
integrity of the pipes or some maximum pressure a customer is able to handle. It is usually
advisable to treat these as soft constraints, or allow for moderate deficits at some of the nodes,
since it may not be possible to satisfy them in all parts of the network, making it impossible to
find feasible solutions.
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3.4.5 Design Constraints

Design constraints of the form jmin(x) ≤ j(x) ≤ jmax(x) on the variables j(x) specify physical
limitations or characteristic value sets from which components may be selected [159]. These
constraints may represent restrictions on discrete variables, such as pipes which come in a va-
riety of commercial diameters, or the rehabilitation of pipes by specifying cleaning, replacing,
and duplicating operations for existing pipes. Such maintenance operations change the effective
diameters and friction characteristics of the pipes.

3.4.6 General Constraints

A general constraints set of the form wmin(h, q, d, x) ≤ w(h, q, d, x) ≤ wmax(h, q, d, x) may be
used to incorporate limits on terms that are functions of both hydraulics and design variables,
such as a limitation on the flow velocity in a pipe, and may include budget limitations, a
minimum level of some reliability / redundancy measure, minimum turnover times of water
in storage, and other operational constraints [251]. The generality of these constraints allows
all types of systems (branched, looped, gravity systems, systems with pumps and tanks) to
be analyzed at any level of complexity [159, 223, 262]. It is important to note that both
the objective function and constraints are typically non-linear in modern formulations of the
problem.

3.4.7 Entire Problem Formulation

The WDSDO problem is therefore to

minimize f(h, d, x),
subject to g(q, d, x) = 0,

e(h, d, x) = 0,
hmin ≤ h(d, x) ≤ hmax,
jmin(x) ≤ j(x) ≤ jmax(x),
wmin(h, q, d, x) ≤ w(h, q, d, x) ≤ wmax(h, q, d, x).





(3.1)

3.5 Design Considerations for Water Distribution Networks

WDS design optimisation involves many complicating practical issues, making automated design
difficult to realize. In this section some of these complicating issues are discussed.

There is considerable uncertainty in WDS planning. The most significant uncertainty comes
in the form of estimating current and future water demands. Small systems may be greatly
affected by relatively minor events, such as a new customer joining the network. In a large
system, the complexity of growth is highly uncertain. An economic downturn or upturn may
have a dramatic effect on demand. Demand estimation is discussed briefly in Chapter 4 [251].

There is a trade-off between having a conservative, oversized system and a least-cost, lean
system. The over-allocated system entails a higher capital cost and longer residence times which
may affect water quality adversely, but it has the advantage of providing additional water for
fire flow and additional capacity for future growth. A system which only just meets the current
demands may experience low pressures, inadequate fire flows, be unable to respond adequately to
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system failures, and impose unrealistic limits to growth. Building robust, reliable systems should
be as important as lowering the capital costs. These situations introduce competing objective
functions which seek to minimize cost and maximize capacity [251]. Another complication is
that there is a feedback effect between pipe sizing and demands. If a pipe has spare capacity,
chances are that it will be utilized by new developments [251]. There is a prevailing opinion
amongst engineers that it is desirable to over-design a WDS so as to achieve robustness and
allow room for growth.

There is also considerable uncertainty in cost information. It is possible that cost data are only
accurate to ±20%, with solutions differing in cost by only 1–2%. This is not so problematic if
the relative costs are consistent, because the solutions will still be ordered correctly in terms
of cost, however it may cause serious problems when considering the trade-off between capital
and running costs. The cost of installing a pipe is not merely a function of its length and
diameter; it also includes excavation and other costs. If the network layout itself has to be
designed, alternative pipe routes may involve extremely different excavation, paving and right-
of-way costs, which may dwarf the pipe costs [251]. This strongly suggests the incorporation of
layout design in the automated design procedure.

Another important consideration which complicates the problem is staged development, or
development over time. In 1999, Halhal et al. [117] developed an optimisation methodology
which schedules improvements to a WDS optimally. This maximizes accumulated benefits over
time and minimizes the sum of the present value of staged investments.

Pumps may be required to run at close to maximum efficiency for the majority of the test period,
and it is possible to design their periodic on/off schedules. Tanks may be required to exhibit a
daily or weekly water recharge cycle (tanks should fill and empty over their operational range).
Both the initial installation and operational costs should be considered over the specified period.
These costs must be expressed in present value. Savic et al. [211] have developed a method for
an optimal selection of pumps for installation in new or upgraded pump stations [251]. Tank
design also requires the simulation of emergency situations and instantaneous peak flows, for
which emergency storage capacity should be available. A full simulation over the course of a
day may be too time intensive for use in design optimisation; a small representative number
of periods of the day is typically used. Approximation techniques are required to maintain
consistency of tank levels when approximate periods are used. Representative periods may
include peak day demand and average day demand, in 24 hourly periods. Designing pumps,
tanks and valves adds the additional complication of mixing discrete (pipe sizes) and continuous
variables [169].

In addition to spare storage capacity, designing for fire-flow scenarios may increase the size of
pipes. Models may even consider the trade-off between available fire-flow and economic losses
due to building damage caused by fire [90].

Another interesting problem is the trade-off between excess pressure and potential leaks in
the system. Pipes under higher pressure will deteriorate more rapidly, and when they develop
leaks, water losses will be larger. Several researchers have suggested incorporating leakage
models [229]. A brief discussion of leakage models appears in the next chapter.

It is also possible to consider pipe failures in the process of WDS design, incorporating their
replacement costs over time, and determining how the network will be affected hydraulically.
Some researchers have used a single pipe failure model in which individual failure of all the pipes
in the system are simulated, one at a time, and used the effect on customer service as a result of
these failures to determine a reliability measure [49]. However, this does not scale practically to
larger systems. A more practical model may be a probabilistic one in which the failure of pipes
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over the system lifetime is modelled, using failure rates as determined from historical records
or physical experimentation [112].

If an existing system is expanded or rehabilitated, the optimisation algorithm requires a cali-
brated model of the system in question. Models may be calibrated using real test data, obtained
either from site fire-flow and pressure tests, metered demands, online monitoring systems (so-
called SCADA systems) or a combination of these. Calibrating a model is an optimisation
exercise in its own right and many algorithms have been developed for it (see pages 251–291 in
[251]). Data collection and hydraulic model calibration are not dealt with in this dissertation.

Numerous researchers have proposed models enforcing loops, but care must be taken to ensure
that loops are actually reliable, and not merely topological features. For example, a 50 millime-
ter diameter pipe connected in a loop to large 1 meter diameter pipe will not provide a sufficient
alternative flow-path should the large pipe fail [250]. Several reliability measures have been de-
signed specifically to encourage loops of similarly sized pipes or balanced flow characteristics.
Two such reliability measures are presented in Chapter 4.

Finally, aesthetic concerns may also have an impact on designs, especially when considering
raised water tanks [251]. These considerations are difficult to incorporate into models, except
as constraints on tank elevation and size. However, at some point consumers are probably going
to have to sacrifice scenery for a functional WDS.

3.6 A Concise History of WDS Design Problem Solutions

The traditional method for designing WDSs involves a trial and error approach guided by expert
experience. A common rule of thumb has been to ensure that the slope of the hydraulic grade
or the flow velocity along a pipe lay within certain bounds. The small number of configurations
which could thus be tested was an obvious limitation [83, 251].

The earliest attempts at water network optimisation were by Babbit and Donald in 1931, Camp
in 1939, and the first computerized attempt by Schaake and Lai in 1969 [251].

A major event in the comparison of water network design optimisation techniques occurred in
1985 at the “Battle of the Network Models.” This was a series of sessions held at the ASCE Water
Resources Planning and Management Conference in Buffalo, New York, where researchers were
required to optimize the design of a realistic model system called “Anytown”. The participants
used optimisation models to size the piping system, whilst manually choosing the location and
size of tanks. The participants used different optimisation models, which were based on linear
programming, partial enumeration, or nonlinear programming techniques. No attempt was
made to optimize the location and dimensions of tanks or pumps automatically, which relied
entirely on expert judgment. The majority of the participants were able to find a solution
that would work at peak loading, but would not have adequate capacity to fill the tanks at
non-peak times [87]. The algorithm that performed the best during these trials was the partial
enumeration algorithm by Gessler [99].

Of the earlier optimisation models reported in the literature, some of the most useful were
those by Alperovits and Shamir [9] in 1977, Quindry et al. [197] in 1983, Morgan and Goulter
[111], and Gessler and Walski [99], both in 1985. A common shortcoming of these models was
their inability to design and analyze a complete WDS. Their limitations included the maximum
network size they could handle, the number of loading conditions that could be analyzed, and
the types of components that could be designed [159, 251].
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In 1977 Alperovits and Shamir [9] developed an approach known as the linear programming gra-
dient method, whereby the original nonlinear problem is approximated as a sequence of linear
subproblems. The primary variables are the flows in the network. For each flow distribution
the other decision variables (such as pipe diameters or pump capacities) are optimized iter-
atively by means of linear programming. This approach has been adapted and improved by
many researchers such as Quindry et al. [197] in 1981, Featherstone and El-Jumaily [89] in 1983,
Fujiwara et al. [94] in 1987, and Loganathan et al. [166] in 1995. However, these linear approx-
imation methods do not guarantee optimality to an intrinsically non-linear problem, produce
unrealistic output solutions (so-called split-pipe solutions where a pipeline is divided into several
sub-lengths of different diameters) or those having a lack of redundancy (no loops), and also
often suffer from efficiency problems [83].

A number of researchers have applied nonlinear optimisation techniques to WDS design prob-
lems. This includes Shamir [214] in 1974, Ormsbee and Contractor [187] in 1981, Chiplunkar et
al. [33] in 1986, El-Bahrawy and Smith [79] in 1987, Su et al. [223] in 1987, Lansey and Mays
[159] in 1989, Duan et al. [74] in 1990, Cullinane et al. [45] in 1992. The limitations of nonlinear
optimisation techniques are that they frequently become trapped at local optima and that they
typically employ continuous variables, requiring conversion to discrete values which may reduce
the quality of the solution [83, 251]. Mathematical programming approaches generally function
by iteratively fixing pipe flow rates or pressure heads, optimizing the pipe sizes for the given
values, updating the flows or heads, and re-optimizing, until convergence is achieved. Most of
these approaches are limited to considering only a single demand loading condition. Although
Morgan and Goulter [111] considered multiple loadings, it also produced split-pipe solutions
[157].

It is possible to simulate all network configurations in a complete enumeration of the search
space, but this becomes highly impractical as systems grow larger. For example, a medium-sized
system of 100 pipes, each with 10 diameter options would require 10100 hydraulic simulations.
Even if a million such simulations could be conducted in a second, this would require more
than 386 years to complete, far longer than the age of the known universe. In 1985 Gessler and
Walski [99] proposed a selective enumeration method for eliminating certain inferior solutions
from being evaluated by a hydraulic simulator (see §3.7.1). However, in 1992 Murphy and
Simpson [178] showed that the approach failed to locate an optimal solution even for a medium-
sized network [83].

It was suggested by Goulter [109] in 1988 that the minimum cost design for a given layout and
single loading case should be a branched network (that is, a network with no loops). While
this may be true, loops are an essential feature of actual distribution systems as they provide
alternative flow paths in the case of pipe failure or for maintenance purposes. One can achieve a
degree of redundancy in pipe network optimisation by ensuring that the layout has appropriate
loops and by specifying minimum diameters for all pipes [251].

In 1990 Monbaliu et al. [175] proposed a greedy rule-based gradient search technique. Ini-
tially, all pipes are set to their minimum diameters and the pressures at the network nodes are
computed by simulation. Until all pressure constraints are satisfied, an iterative procedure is
employed whereby the pipe with the maximum head loss per unit length is increased to the
next available size and the network pressures recomputed. This algorithm’s effectiveness cannot
be ensured, owing to the complex nonlinear interactions between the system components [83].
Other greedy WDS design heuristics have been proposed, such as those by Todini [227] in 2000,
and Afshar et al. [4] in 2005.

Two-phase searches were developed by some researchers in order to improve the chance of
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finding global optima [83]. This included models by Fujiwara and Khang [94] in 1990, Eiger et
al. [78] in 1994, and Loganathan et al. [166] in 1995.

Several researchers have investigated layout geometry optimisation, neglecting the strong cou-
pling which exists between component sizing and layout determination for pipe networks. This
includes work by Goulter and Morgan [111] in 1985, Walters and Lohbeck [253] in 1993, David-
son and Goulter [53] in 1995, Walters and Smith [255] in 1995, Davidson [52] in 1999, and Geem
et al. [96] in 2000. One exception to the two phase design methodology appears in the work by
Afshar et al. [4], where a so-called maximal layout of all practically possible pipe pathways is
considered, and the algorithm is allowed to eliminate pipes during the course of optimisation.

During the 1990s researchers began to investigate the use of stochastic optimisation techniques
for solving WDS design problems. Numerous metaheuristics were implemented for this pur-
pose. Genetic algorithms, simulated annealing and tabu searches are common metaheuristics.
Heuristic searches typically consider only the objective function value of current solutions dur-
ing an iterative search procedure. These solutions are evolved over generations, using stochastic
variation operators (e.g. mutators, information exchanges (crossover)). Metaheuristics often
encounter difficulty when dealing with constraints, and must instead use specialized techniques
to accommodate them, such as weighted penalty functions that adapt the objective function.
A drawback of metaheuristics is the large number of simulations that must be performed, since
response surface gradient information is typically not used [83, 218, 251].

A host of metaheuristics have been applied to least-cost WDS design optimisation. Genetic
algorithms (GAs) for solving WDS design have been used by Hadji and Murphy in 1990 [115],
Murphy and Simpson [178] in 1992, Walters and Cembrowicz [252] in 1993, Simpson et al. [218]
in 1994, Dandy et al. [51] in 1996, Savic and Walters [209] in 1997, Halhal et al. [116] in 1997,
Gupta et al. [114] in 1999, Lippai et al. [163] in 1999, Walters et al. [254] in 1999, and Wu et
al. in 2001 [262] and 2002 [265]. Simulated annealing was applied by Loganathan et al. [166] in
1995, and by Cunha and Sousa [46] in 1999. Tabu searches were employed by Fanni et al. [85]
in 2000, and by Cunha and Ribeiro [47] in 2004. Simpson et al. [219] were the first to apply
Ant Colony Optimisation (ACO) to WDS optimisation in 2001. A study by Zecchin et al. [275]
in 2007 compared five different ACO algorithms for WDS design. Particle swarm optimisation
was applied by Vairavamoorthy and Shen [236] in 2004, and more recently by Izquierdo et al.
[132] in in 2008. In 2002, Geem et al. [97] applied the musically inspired harmony search to the
optimisation of WDSs, and again in 2009 [98] including pumps, demonstrating better results
than both GAs and simulated annealing. In 2003 Eusuff and Lansey [83] developed the Shuffled
Frog Leaping Algorithm, a memetic metaheuristic which proves more efficient than GAs for
WDS design. Mohan and Babu [174] used Honey-Bee Mating Optimisation in 2010, improving
optimisation efficiency by an order of magnitude over previous metaheuristics.

Researchers struggled for many years with the problem of formulating their models to accommo-
date additional components such as tanks and pumps, and to handle the simultaneous inclusion
of multiple objectives. It has since become widely acknowledged that there is more to WDS
design than just deciding on pipe sizes, and that least-cost designs are not adequate [250]. Most
multi-objective WDS design formulations have considered the objectives of cost and reliability
[141]. The reliability of a WDS is a nebulous notion, owing to the vast number of differing
definitions of and approaches towards measuring reliability over the years. It is generally ac-
cepted that there is a strong correlation between reliability, redundancy and capacity, and that
increased reliability comes at a price, requiring larger or more WDS components [251].

Attempts at multi-objective optimisation for water network design were made by amongst others
Walski et al. [247] in 1990, Halhal et al. [254] in 1999, Xu and Goulter [268] in 1999, Todini [227]
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in 2000, Dandy and Engelhardt [48] in 2001, Farmani et al [86, 88] in 2003 and 2005, Tolson et
al. [230] in 2004, by Prasad and Park [194] in 2004, Kapelan et al. [141] in 2005, Keedwell and
Khu [143] in 2006, di Pierro et al. [68] in 2009, and Vasan and Simonovic [243] in 2010.

Although a Pareto-optimal set may be approximated by repeatedly solving a single-objective
optimisation problem with different goals, this method is known to be computationally ineffi-
cient. Multi-objective evolutionary algorithms (MOEAs) may be used to determine an entire
Pareto-optimal front in a single optimisation run. Multi-objective optimisation for WDS design
is discussed further in Chapter 5.

3.7 A Survey of WDS Design Optimisation Methods

This section constitutes a survey of the optimisation techniques which have been used to solve
the least-cost WDS design optimisation problem. These methods are thus all single-objective
optimisation techniques, although some may be adapted for multiple objectives, as shall be
demonstrated in Chapter 5. The methods discussed include Partial Enumeration, Linear and
Nonlinear Programming, Simulated Annealing, Tabu Search, Genetic Algorithms, Ant Colony
Optimisation, Shuffled Complex Evolution, Particle Swarm Optimisation, and the Shuffled Frog
Leaping Algorithm.

3.7.1 Enumeration and Grouping

In 1985, Gessler [99] developed the Partial Enumeration Method (PEM) to optimize water
networks based on the enumeration of a limited number of alternatives. Inferior solutions may
be eliminated from evaluation using two considerations. The first consideration is that after
a combination of pipe sizes has been found which gives a hydraulically feasible solution, there
is no need to test any other combination which has a significantly higher cost. The second
consideration is that after an infeasible solution has been found, any other combination with
sizes equal to or smaller than these is also infeasible. Another technique which dramatically
reduces the solution space is placing adjacent pipes together in groups which are sized identically.
This reflects reality in that utilities are unlikely to have pipes connected with dramatically
different diameters (except of course for service lines branching off main pipes). However, the
specification of sensible groups in itself represents a tricky optimisation problem [251].

The PEM drastically reduces the number of combinations which have to be balanced hydrauli-
cally. However, it still constitutes a rough pruning of the search space and cannot guarantee
finding a global optimum [246]. Additionally, although it works well for small networks, the
PEM does not scale sufficiently to handle real-world networks [178].

3.7.2 Linear Programming

Linear programming (LP) approaches have been used to reduce the complexity of the nonlinear
system by solving a sequence of linear sub-problems. The simplified problem of sizing only pipe
diameters may be expressed as the minimisation of a cost function, f(x) =

∑np

i=1

∑ω
j=1 Ci(xi,j),

where xi,j denotes the length of the portion of pipe i which has diameter j, where np denotes
the number of pipes in the system, where ω denotes the number of sizes, and where Ci(xi,j)
denotes the cost function of purchasing a length xi,j of pipe i of diameter j.
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In addition to the basic hydraulic constraints, another constraint ensures that the sum of all
segments of pipe between any two nodes is equal to the length between those two nodes. That
is,

ω∑

j=1

xi,j = Li,

where Li denotes the total length of pipe i. Note that if a particular pipe size is not included,
then the length of its segment is zero.

An optimum solution obtained by this method consists of one or two pipe segments of different
discrete sizes between each pair of nodes. These ‘split-pipe’ solutions are highly impractical,
particularly when short pipe lengths of different diameters are used [250]. Furthermore, the
matrix inversion required to solve the linear problem is inconvenient and computationally ex-
pensive for large systems. Therefore, LP approaches to pipeline design are not recommended,
and a description of such approaches is only included here for historical interest.

3.7.3 Non-linear Programming

Non-linear programming (NLP) methods treat pipe sizes as continuous variables, and therefore
require rounding of sizes to discrete diameters, which is typically sub-optimal. NLP requires
the calculation of the partial derivatives of the objective function value with respect to all
the decision variables, which is only possible if the decision variables are continuous, and may
nonetheless be difficult. Nonlinear programming has been used for pipe sizing problems by
Jacoby [135] in 1968, Lam [155] in 1973, Ormsbee and Contractor [187] in 1981, and Lansey
and Mays [159] in 1989, but has been largely unsuccessful as a robust optimisation technique.

One of the most popular approaches to nonlinear programming is the Generalized Reduced
Gradients (GRG) method, able to solve systems with nonlinear objectives and constraints. GRG
was popularized by Lasdon and Waren [160] in 1982. A serious limitation of NLP formulations
for WDS design was the size of problem they could handle. This was addressed by the 1989
model of Lansey and Mays [159], which represents a ‘mature’ NLP model for WDS design using
GRG. It is able to design components in addition to pipes and consider multiple demand loading
conditions. The largest portion of constraints in the WDS design problem is the hydraulic
constraints of continuity of flow and conservation of energy. Their model significantly reduces the
number of constraints accommodated by the optimisation model by outsourcing the hydraulic
simulation role to an external simulator (they employed KYPIPE by Wood [261]), which enforces
hydraulic constraints implicitly. This reduces the problem dimensionality greatly, effectively
allowing much larger systems to be designed under GRG. To the best of this author’s knowledge,
this was the first time that outsourcing to an external simulator was used as a strategy in
automated WDS design, a methodology which went on to become mainstream.

Lansey and Mays [159] reformulated the model in (3.1) to express nodal head h as a function
of design variables x, and modified the objective function to include an augmented Lagrangian
penalty function [193] with a term for each pressure constraint. This yields a reduced model of
the form

Minimize f(h(x), x, µ, σ) = f(x) + 1
2

∑
i σi

(
ci − µi

σi

)2
+ 1

2

∑
i

µ2
i

σi
,

Subject to jmin(x) ≤ j(x) ≤ jmax(x),

}
(3.2)

where σi and µi are penalty weights and Lagrange multipliers respectively for the i-th constraint,
where ci denotes the modified constraint equation, and where jmin, j and jmax have the same



3.7. A SURVEY OF WDS DESIGN OPTIMISATION METHODS 51

meaning as in (3.1). The model uses a two level procedure of nested loops, in which the
outer loop adjusts the penalty weights and Lagrange multipliers (using a heuristic based on the
magnitude of infeasibilities), and the inner loop uses the GRG2 code by Lasdon and Waren
[160] to determine the change of design variables for fixed σ and µ values. GRG2 is based
on the GRG method, and employs a two-step procedure to calculate reduced gradients and
adjust decision variables accordingly. KYPIPE was used within GRG2 to evaluate the objective
function. Unfortunately, despite a multi-start search, the Lansey and Mays model still tends to
become trapped at local optima, a problem frequently associated with NLP techniques. Lansey
and Mays handled solutions with continuous pipe sizes by calculating an equivalent split pipe
solution. A better technique is that of Afshar et al. [4] which uses a heuristic method to convert
continuous sizes to discrete diameters.

Both linear and non-linear programming methods require significant simplifications to solve real
world systems. Another major disadvantage of these approaches is that they produce only a
single solution per optimisation run. This paradigm has been superseded by a multi-objective
approach producing multiple non-dominated solutions [159, 251]. Owing to these drawbacks,
mathematical programming techniques are not considered further in this dissertation.

3.7.4 Simulated Annealing

The idea behind the method of Simulated Annealing (SA) is derived from the analogy of heating
and cooling of materials in order to increase their strength, as is frequently done in pottery and
metalwork. The method is based on similarities between the way in which a metal cools and
freezes into a minimum energy crystalline structure and the search for a minimum in a more
general system [46, 146].

SA begins at a high ‘temperature’, which means that it initially has great flexibility in moving
randomly through the solution space. If the search space can be viewed as having valleys at
the bottom of which are local optima (minimisation problem), then ideally every valley should
initially be accessible. As time continues, the temperature is decreased, which decreases the
flexibility of the search, and may cause it to become trapped in a particular valley. If a new
(random) move results in a solution which has a lower altitude, that solution is adopted as the
current solution. Not all moves to points higher than the current best are immediately rejected.
An acceptance criterion is used to decide which solutions to adopt during the search. This
criterion is based on the height difference between the last saved lowest valley and the current
solution. Probabilistic decisions are made about whether to stay in a new lower valley or to
move out of it. The acceptance criterion depends on the current ‘temperature’ and uses the
Boltzmann probability distribution [146].

The annealing schedule provides the rules for lowering the temperature over time. Decreasing
the temperature too slowly makes the search inefficient, and cooling too rapidly results in the
search becoming trapped in a sub-optimal region of the solution space. The cooling schedule
typically employs either a constant amount temperature reduction scheme, or a constant factor
temperature reduction scheme (such as 10% of the current temperature), for each temperature
phase. The first scheme explores an equal number of solutions in each temperature zone, and
the second scheme spends more time in the lower temperature zones. Another important aspect
is the determination of the number of random steps required at each temperature [46].

The basic SA algorithm, as formulated in [46], appears in pseudocode form as Algorithm 1.

In 1999 Cunha and Sousa [46] proposed a scheme whereby the neighbourhood of a solution x

is defined as any solution x′ differing in configuration by a single pipe whose size is above or
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Algorithm 1 Simulated Annealing Algorithm

Input: A combinatorial optimisation problem with a domain set for each decision variable.
An initial configuration x1, an initial temperature T1, a stopping temperature Tf , and a cost
function C(x) providing the cost of configuration x.

Output: An approximation of the global optimum.

1: Set j ← 0.
2: Set j ← j + 1.
3: Choose a random neighbour x′

j ∈ N(xj), where N(xj) is the neighbourhood of xj .
4: Generate a random u ∈ [0, 1].
5: if u ≤ exp([C(xj)− C(x′

j)]/Tj) then
6: Set xj+1 ← x′

j

7: else
8: Set xj+1 ← xj

9: end if
10: Choose Tj+1 ≤ Tj

11: if Tj+1 ≥ Tf then
12: Repeat from step 2.
13: end if

below its current size. Whether or not a new solution is accepted as the new starting point is
based on the Metropolitan criterion, exp((f(x)− f(x′))/T ). Note that f(x)− f(x′) is negative
when new solutions are more expensive than the originals, so that the Metropolitan criterion
yields a probability value in (0,1). This allows solutions to be considered even if they are worse
than the current solution. Furthermore, improved solutions are always selected (ez > 1 for
z > 0). As the temperature lowers, worse solutions will have an increasingly lower probability
of acceptance. The initial temperature should therefore be defined to provide a reasonably high
probability of moving from a better solution to a worse one. Cunha and Sousa used an initial
probability of 20–90% as a guideline. They also performed a 10–90% reduction of temperature
at each temperature stage, calculating 10, 40 and 70 iterations per stage [46]. In 1985, Aarts
and Van Laarhoven [1] demonstrated that the number of iterations the algorithm should make
at each temperature is an exponential function of problem size. This permits the system to
move close to its stationary distribution before making a temperature reduction. As such, a
global optimal solution will occur with a probability equal to 1 as the temperature is reduced to
zero [46]. This does not bode well for large water distribution networks which have a problem
size which grows exponentially as a function of number of constituent components.

Simulated annealing may be applied to highly non-linear problems with multiple local optima
and many constraints. It is considered to be a robust and general technique which frequently
approaches a global optimum. The algorithm (given some assumptions on the cooling of the
temperature) is proven to converge to an optimal solution of a problem. Unfortunately, this
may take infinitely long to achieve [176]. SA was first used for WDS design by Loganathan et al.
[166] in 1995. In 1999, Cunha and Sousa [46] achieved high quality solutions to two benchmark
problems from the literature. However, SA is not considered further in this dissertation, as
the focus is on population-based metaheuristics, which lend themselves more readily to multi-
objective optimisation.
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3.7.5 Tabu Search

The method of tabu search, proposed by Glover [102] in 1986, makes systematic use of various
memory structures, storing an itinerary of visited solutions. This information is used to restrict
the choice of moves by prohibiting the reversal of recently employed moves, thereby avoiding
cyclic local searches. It functions as a neighbourhood search, with a single current solution
which is updated during successive iterations. Essentially, it is a steepest decent search with
a short term memory, although variations may include a long term memory which stimulates
diversification. A pseudocode listing for a generic tabu search appears in Algorithm 2 [73].

Algorithm 2 Simple Tabu Search Algorithm

Input: A combinatorial optimisation problem specification including a domain set for each
decision variable. An initial configuration x1, a memory size m̂. An objective function f(·)
to determine solution fitness. An adjustment function to reach neighbours.

Output: An approximation of a global optimum solution.

1: Set the current solution x to the initial solution x1. Set the tabu list T to be the empty
set, T → ∅.

2: Generate a set of neighbours of x (the set of solutions accessible by an elementary movement
or modification). If the complete set of neighbours N (x) is too large, apply a reduction or
filtering technique to reduce its size. Let the remaining set be V (x) ⊂ N (x).

3: Remove all candidates x′ ∈ V (x) for which the move x→ x′ appears in the tabu list.
4: Evaluate the objective function f(y) for each remaining y ∈ V (x). Let y∗ be the solution

which has the best objective function value amongst these elements.
5: Replace the current x with y∗, even if it has a worse objective function value. Insert the

reverse move, (y∗ → x), into the tabu list T . Remove the oldest element of the tabu list if
its size exceeds m̂.

6: Repeat steps 2 to 4 until a termination condition is reached.

The choice of a neighbourhood is important for effective search and computational reasons. A
neighbourhood that is too large may be reduced by, for example, randomly choosing a subset
of N (x), also known as a candidate list [101]. Considered in terms of a set of attribute mod-
ifications M, which cause a movement to a neighbour, this reduction of the neighbourhood
may be achieved by partitioning M into a number of subsets and examining only one subset
per iteration. Another method is to compute the entire current neighbourhood of the current
solution for allM, and to order it in terms of increasing objective function values. This list may
then be used for consecutive solutions by assuming that a good move for a nearby neighbour is
also a good move for the current solution. As the current solution moves away from this original
neighbour, the ordered list of moves will become less relevant and will have to be updated and
resorted [73].

The size of the tabu list m̂, also known as the tabu tenure, is normally only a fraction of the
size of M, typically a few tens of moves. However, it is advised that a sensitivity analysis be
performed on the tabu tenure, as the effect thereof may vary substantially from problem to
problem. The use of the tabu list allows the search to progress in different trajectories from the
same solution. The larger the tabu tenure, the more likely a search will be to move out of a local
optimum valley, but also the less thoroughly it will be able to explore that valley. Tabu search
proves to be more effective when the tabu tenure is not static, but rather varies stochastically
between certain limits, or changes dynamically on the basis of characteristics observed during
the search [73].
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Long term memory may be employed to reduce the probability of revisiting solutions [101].
Long term memory may be required as a mechanism to escape local optima, especially in cases
of extended valleys in objective space. One technique in use is an additional tabu list which
prohibits moves whose frequency of occurrence has exceeded a predefined threshold, or the
penalization of solution fitness proportional to the frequency of their appearance in the search.
This penalization method may also be of benefit for cases where the objective function assumes
a limited number of values. An obvious problem is the selection of an appropriate penalty factor,
which should neither be too small nor too large. Another mechanism for achieving long term
memory is to oblige moves which have not yet been executed after a large number of iterations.
It is possible to oscillate periodically between using long term and short term memory, or to use
the two simultaneously. If such oscillation occurs, this may be understood in terms of periods
of diversification (long term memory) and intensification (short term memory) [73, 101].

Tabu search was utilized for WDSs design optimisation by Fanni et al. [85] in 2000, and by
Cunha and Ribeiro [47] in 2004, who used a neighbourhood wherein an individual differs from
its neighbour by exactly one pipe whose diameter is one size larger or smaller. They employed
moves to increase and decrease pipe sizes in periods of diversification and intensification, making
use of frequency memory, including the number of times a pipe’s diameter was changed, the
number of times it was assigned a particular value, and the number of iterations for which a pipe
maintained its current size. Although they were able to achieve high quality solutions in times
competitive with alternative methods, such as genetic algorithms, no general conclusions could
be drawn about which is the most appropriate design metaheuristic [47]. Tabu search is not
considered further as a solution methodology for WDS design in this dissertation, as the focus
is on population-based metaheuristics, which lend themselves more readily to multi-objective
optimisation.

3.7.6 Genetic Algorithms

Genetic algorithms (GAs) draw parallels from Darwinian evolution, the principles which underly
the development and diversification of life. They use a simplified evolutionary model to ‘evolve’
good solutions, and determine solutions to highly complex problems which may be intractable
to classical optimisation techniques [251]. The original theory underlying GAs was formulated
by Holland in 1975 [123], and further developed by others including Goldberg [105, 106, 107]
and Deb [56, 57].

GAs incorporate ideas such as a population of diverse solutions to a problem, the survival and
reproduction of the fittest solutions (with fitness determined by the objective function value), the
inheritance of genetic material by child solutions from their parents by means of genetic crossover
operations, and occasional mutations which cause lateral movement through the solution space,
thus avoiding local optima. The transition operators are governed by probabilistic rather than
deterministic rules [105]. Although GAs use stochastic mechanisms to perform their simulation,
they are distinctly non-random in that there is pressure to ‘evolve’ by improving their fitness.
Mutation constitutes the small but necessary random-search component of genetic algorithms
[251]. Whereas conventional optimisation techniques commonly search from a single point, GAs
search from an entire population of points, capable of climbing many peaks in parallel, also
known as a multimodal search. If special knowledge of the solution space is known beforehand,
seed solutions may be planted to assist the search [105]. In order to be used by GAs, solutions
must be described by a finite coded representation (typically a binary string) or chromosome,
made up of a linear succession of genes, such that both gene value and position within the
chromosome have meaning. This is analogous to the chromosomes found in human DNA. Each
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chromosome represents a possible location in a multidimensional search space. A chromosome
may represent a set of decision variable values, such as pipe sizes, which require optimisation.
GAs are highly flexible with respect to the shape of the feasible region and genetic encoding of
a system solution, so that they may be used in a wide variety of problems [6, 105, 106, 209].

A pseudocode listing for the standard genetic algorithm formulation is provided in Algorithm
3 [251].

Algorithm 3 Standard Genetic Algorithm

Input: A combinatorial optimisation problem specification including a domain set for each
decision variable. A population size N , a probability of crossover pc, and a probability of
mutation, pm. A genetic code formulation with a function mapping code substrings to a
decision variable values. An objective function f(·) to determine individual fitness.

Output: A converged population of solutions containing an approximation of a globally optimal
solution to the combinatorial optimisation problem.

1: Randomly generate an initial population of N solutions.
2: Calculate the fitness of each individual solution by means of the objective function.
3: Generate a new population using the crossover and mutation operators, applied with proba-

bility pc and pm respectively. Individuals with higher fitness must have a higher probability
of reproducing.

4: Calculate the fitness of the new solutions.
5: Repeat steps 3 to 5 until a termination condition is reached.

It is suggested that GAs employ a moderate population size, a high crossover probability, and
a low mutation probability, although GAs may be rather insensitive to the actual probability
values applied. Typical values for a population size is between 50 and 1 000, depending on the
size of the search space and computational complexity of calculating fitness [6, 105].

Individuals are selected to mate based on their fitness. A popular selection method is fitness-
proportionate selection, whereby the number of times an individual is expected to reproduce
is proportional to the ratio of its fitness to the total fitness of the population. This method
may be implemented using roulette-wheel selection proposed by Goldberg [106] in 1989. This
assigns every individual a slice of a simulated roulette wheel, with the size of the slice depending
on their fitness, so that those with a larger slice have a greater chance of selection when the
wheel is ‘spun’ [251]. Selection pressure is the probability that the best solution is chosen for
reproduction. To avoid premature convergence this should usually be in the region of twice the
probability of selecting a solution of average fitness. Binary tournament selection is another
selection mechanism whereby two solutions are selected at random from the population and the
fitter of the two are selected as a parent. This provides more consistent selection pressure than
roulette-wheel selection throughout the optimisation [56].

GAs usually incorporate soft constraints in the form of fitness function penalty terms used to
penalize insufficient levels of service (such as low pressure) or exceeding normally hard constraint
limits. This may result in infeasible solutions becoming members of the population, but ideally
the penalty term should ensure that they have a lower fitness relative to the feasible members.
Stated another way, penalty functions should be graded as a function of distance from feasibility.
This is sometimes achieved in the form of a squared error added to the base fitness [105]. A
penalty multiplier is often used to normalize the penalty values to the same scale as the basic
fitness [105, 251]. Another technique frequently used is a repair operator, which attempts to
‘fix’ infeasible solutions. This typically requires heuristic information from the problem domain.
Such operators are recommended when available [6].
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The reproduction operation occurs either as a direct copy of a solution into a successive gener-
ation [105], or as a chromosome crossover operation, analogous to how paired chromosomes in
nature exchange pieces of genetic material. The crossover operator takes two individuals and
cuts their chromosome strings at some randomly chosen point, typically selected using a uni-
form probability distribution [105]. The front section of each chromosome remains in place and
the tail section is swapped between the two. This produces two new individual chromosomes.
Crossover need not always occur and typically takes place with a probability in the range 0.5
to 1 [251].

Mutation plays a secondary role in the reproduction phase. It is not the dominant force in
evolution, as is popularly believed. Mutation randomly alters the individual genes (chromo-
some string characters or bits) with a small probability, introducing desired diversity. If the
probability of mutation is too high, the algorithm degenerates into a random search, which is
undesirable. The change in the frequencies of specific gene values (alleles) in a population due
to randomness (i.e. mutation) is known as genetic drift, which, if excessive, is degenerative. The
frequency of mutation to obtain good results in empirical studies is of the order of 1 mutation
per thousand bit transfers. This rate is similar to that found in nature. The typical values of
probability of mutation are between 0.001 and 0.01. Another suggestion is that mutation prob-
ability be inversely proportional to population size N , 0.1/N < pm < 5/N . Mutation should
theoretically enable any solution to be reached from any other solution (albeit with a minuscule
probability) in order to guarantee convergence to the global optimum given infinite processing
time [105].

The GA may terminate after a specified number of generations, or when the differences in
total population fitness of successive generations stabilize within a specified range for enough
consecutive generations [105]. An example of a GA applied to a simple quadratic maximisation
problem is presented in Appendix C.1.

Where specialized techniques for solving a problem exist, these may well outperform GAs in
terms of speed and accuracy. GAs may be computationally intensive depending on the applica-
tion, and populations tend to improve more slowly as the search approaches a global optimum
[251]. GAs calculate the objective function value of every generated solution. Since they produce
a population of solutions, they are ideally suited for multi-objective analysis, which requires a
set of alternative solutions [265]. Moreover, GAs seem capable of meeting WDS design needs
without distorting or oversimplifying the optimisation problem. GAs are free from a partic-
ular program structure, require a minimum of auxiliary information about the problem (only
a fitness function), and have a perspective which may be considered global [105]. They are
considered to be efficient and extremely robust, capable of yielding good solutions even in cases
of highly nonlinear problems with multiple optima, discontinuities, and non-differentiable func-
tions. They are able to perform a thorough search of the solution space, and have the ability
to approach global optimality, as has been demonstrated in numerous investigations [105, 251].
For these reasons the use of GAs is considered in this dissertation within the context of WDS
design.

In fact, GAs have become extremely popular for use in WDS design and rehabilitation. They
were successfully applied by Goldberg and Kuo [105] in 1987, Walters and Lohbeck [253] in
1993, Simpson and Murphy [178] in 1992, Simpson et al. [218] in 1994, Dandy et al. [51] in
1996, Halhal et al. [116] in 1997, Savic and Walters [209] in 1997, Wu and Simpson [262] in
2001, Wu et al. in 2001 [264] and 2002 [265].
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3.7.7 Ant Colony Optimisation

Ant colony optimisation (ACO) is a discrete combinatorial optimisation metaheuristic inspired
by the observation of the foraging behaviour of real ant colonies. It was first suggested by Dorigo
and his colleagues in the early 1990s, and the generic metaheuristic formulation was proposed in
1999 [168]. ACO algorithms (ACOAs) have been used to solve various benchmark instances of
combinatorial optimisation problems. Numerous variants of the original Ant System algorithm
by Dorigo et al. [70] have been devised, including a class of ACOAs which guarantee convergence
to a global optimum.

A colony of ants locates food by sending out foragers who initially explore their surroundings
in an essentially random manner. Once a food source is located, the ant returns to the nest,
while depositing a chemical substance called pheromone on the ground [70, 168]. Other ants
can detect these pheromone trails and choose to follow, with higher probability, paths which
are marked by greater pheromone concentrations. Ants can reinforce trails by leaving their
own pheromones, and may choose alternative paths with a smaller probability [168]. This
reinforcement is a positive feedback mechanism which allows more ants to locate food. A
negative feedback mechanism is provided by pheromone decay [251]. The exploration of new
paths helps to find improved solutions. It should also be noted that shorter paths between
destinations will increase in pheromone intensity due to shorter traversal times, allowing more
ants to travel along them in a given time period. These simple mechanisms constitute a form
of indirect communication which enables the ant colony to solve the difficult problem of finding
a shortest path to a food source. The seemingly intelligent behaviour that emerges from a
group of social insects working together is referred to as swarm intelligence [168, 251]. A simple
example of how the ants find a shortest path to a food source is presented in Appendix C.2.

The first applications of ACO were to the traveling salesman problem by Dorigo and Di Caro
[70] in 1999. The heuristic is particularly suited to routing and networking problems which
involve finding shortest or most efficient paths [251]. It has since been applied to many difficult
combinatorial optimisation problems [71]. Ant colony optimisation was applied to WDS design
by Simpson et al. [219] in 2001, Maier et al. [168] in 2003, and Zecchin et al. [274, 275] in 2005
and 2007.

ACO is similar to GAs in that both rely on generating a population of solutions using nature
inspired stochastic models. The major difference between the two is that the memory (evo-
lutionary information) of the ACOA is associated with the environment itself in the form of
pheromone concentrations, whereas the GA stores its evolutionary information intrinsically in
the current population of solutions [168].

In general, ant colony algorithms make use of a parameterized probabilistic model known as the
pheromone model. This employs a vector of model parameters, T , which typically represents
the components of a model solution (such as pipe sizes), each associated with a pheromone trail.
These pheromone trail parameters Ti ∈ T have variable pheromone values τ̂i, which are directly
related to the probability of choosing a particular component when constructing a solution [71].

An ACOA employs a colony of artificial ants cooperating to find a solution to a discrete opti-
misation problem. These ants adopt a stochastic decision-making policy using the pheromone
model which stores local information about the environment. These model ants typically incor-
porate features not found in their natural counterparts, including memory, sight and a discrete
time model [168, 274]. The optimisation search proceeds in iterations. Each iteration consists
of N cycles whereby each of N individual agents (ants) constructs a single solution by sampling,
using the pheromone vector T . The pheromone vector is updated only once an iteration has
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been completed [274].

To implement an ACOA, the combinatorial optimisation problem in question must be mapped
to a graph G(x,L, C), where x = {x1, x2, . . . , xκ} is a vector of κ decision points, Li =

{
li(j)

}

is a set of options (j is the option index) available at the decision points i = 1, . . . , κ, and
C =

{
ci(j)

}
is the set of costs associated with each option at each decision point. A finite set

of constraints, V(x,L), may be assigned over the elements of x and L. A feasible path over G
is any solution x, which is a member of the solution space S, including an optimal solution x∗.
The cost of a solution is measured by means of a cost function, C(x) so that C(x∗) < C(x) for
all x ∈ S \ x∗ [71, 168].

It is important to note that ACO cannot deal with constraints explicitly so that, if they are
present, algorithms must be adapted to include penalty functions which penalize solutions
outside of the feasible region. This may actually be a benefit in some cases, since it allows more
flexible movement through the solution space. There are many different forms that penalty
functions can assume, which may account for the number of constraints violated, the degree of
violation, and extent of the search [274].

Source

x1

x2 x3 x4 x5

l3(1)
l3(2)
l3(3)
l3(4)
l3(5)

Figure 3.3: Ant colony optimisation applied to a simple water network.

Figure 3.3 is a schematic showing how ACO may be visualized with regards to WDSDO. Each
pipe has a decision point associated with it. Decision point x3 has been expanded to show five
pipe options l3(1) − l3(5). These potential pipes are associated with their respective costs and
pheromone intensity values. The cost function would therefore be C(x) =

∑n
i=1 C(i,j)∈xLi,

where C(i,j)∈x is the cost per unit length for chosen option j at pipe i, and Li is the length of
pipe i.

In 2003, Maier et al. [168] developed a problem formulation for applying the Ant System algo-
rithm to WDSDO. This was improved upon by Zecchin et al. [274] in 2005 who conducted an
extensive parametric study to determine guidelines for assigning values to the various param-
eters in the algorithm specifically for WDS design optimisation. A pseudocode listing of the
adapted formulation may be found in Algorithm 4.
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In step 1 of Algorithm 4 the pheromone vector elements are initialized to a base value τ̂0. This
affects the relative importance of pheromone additions, especially during the early stages of
algorithm execution. It is advised that τ̂0 should be proportional to an average or ‘best’ update
amount. In steps 2 and 3, the ants take turns to construct sample solutions by traversing the
network and stochastically selecting options at each decision point based on the pheromone
vector concentrations and a local heuristic factor which favours cheaper options. The relative
importance of these are controlled by exponent parameters α and β, whose values must be
determined empirically. In step 4, the total cost, CT, of each solution is computed based
on physical cost and a penalty cost, which uses as input the pressure deficits at the nodes
obtained using a hydraulic simulator. The penalty function is typically zero if the solution
is feasible, or equal to the maximum pressure deviation across all the nodes multiplied by a
user-defined penalty factor, pf , possibly representing cost per meter of head violation. That
is, P (x) = pf ×maxi=1,...,n {hmin,i − hi(x), 0}, where n is the number of nodes in the network,
hmin,i is the pressure requirement at node i, and hi(x) is the simulated pressure at node i for
solution x. Step 5 involves updating the pheromone vector, whereby a pheromone decay process
reduces concentrations evenly using a pheromone persistence factor ρe, and the most recently
generated solutions contribute to the deposition of additional pheromone using a function with
pheromone reward factor Ψ.

This mechanism is designed to ensure that lower cost solutions obtain more pheromone, and
typically makes use of only the best solution in an iteration. The algorithm continues for a
predefined number of iterations or until convergence occurs.

One of the major problems with ACO is that its performance depends heavily on user selected
parameters. Based on experimentation with three WDS case studies, Zecchin et al. [274] devel-
oped deterministic and semi-deterministic expressions for the ACO parameters as summarized
in Table 3.1. The value α represents the relative importance of the pheromone concentration
of an option, or the ‘learned importance’ thereof. The value β represents the relative impor-
tance of the local cost, or the ‘intrinsic desirability’ of an option. As α→ 0, the importance of
the pheromone scheme diminishes and so does the algorithm’s performance. For α > 1, as α
increases, the pressure on convergence increases, resulting in premature convergence. Solution
quality is even more sensitive to the value of β. For high values of β (> 1.5), the algorithm
was found to be unable to explore the solution space thoroughly enough, because too much em-
phasis is placed on local costs. The best results were obtained by choosing α = 1 and β = 0.5,
suggesting that learned importance is the most critical for the success of the algorithm. The pa-
rameter τ0 was found to be a relatively robust parameter, but an expression was still developed
in accordance with the idea that its value should be related to the total potential pheromone
additions (as per (3.4)), and obey a simple proportional relationship with respect to Ψ (as
demonstrated in Appendix C.2). This yields the expression τ̂0 = Ψ

√
κ× nopt/C(x∗), where

κ denotes the number of decision variables, where nopt denotes the average number of options
per decision variable, and where C(x∗) denotes the cost of a near optimum solution (typically
some known low cost solution). It was found that higher values of ρe (as ρe → 1) resulted
in superior solutions, but slower convergence. However, at exactly 1 there is no pheromone
decay and the algorithm does not sufficiently explore the solution space, possibly resulting in
an inability to find feasible solutions. A value of ρe = 0.98 was found to produce the best
performance overall. The value of N must be scaled according to the size of the problem.
An excellent approximation of the best performing value of N in the three case studies was
found to be N = κ

√
nopt. The parameter Ψ was found to be a relatively insensitive parame-

ter which did not heavily influence the performance of the algorithm. Setting Ψ = C(xmax),
where C(xmax) is the cost of the most expensive solution, was chosen for the convenience of
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Algorithm 4 Ant Colony Algorithm Applied to WDS Optimisation

Input: A WDS network layout with n nodal inputs and associated demands, and minimum
pressure requirements, hmin,1, . . . , hmin,n. A set of configuration options for each sizable ele-
ment. A base pheromone value τ̂0, a penalty factor pf , number of ants N , pheromone exponent
α and local cost exponent β controlling their relative importance, a pheromone persistence
factor ρe ∈ (0, 1), a pheromone reward factor Ψ, and the maximum number of generations,
Gmax.

Output: A converged pheromone vector and design solution which is an approximation of a
global least-cost design satisfying the pressure requirements.

1: Initialize the pheromone vector elements with the value τ̂0. Set iteration counter t← 0.
2: The N ants are allowed to enter the network consecutively and each construct a single trial

solution by traversing the network.
3: Each ant constructs a solution incrementally by sampling an option at each of n decision

points using probabilities derived from the pheromone vector. The probability that option
j is selected at decision point i at the kth cycle of the tth iteration is given by

pi(j)(k, t) =

[
τ̂i(j)(t)

]α [
ζi(j)(t)

]β

∑
li(j)∈Li

[
τ̂i(j)(t)

]α [
ζi(j)(t)

]β
, (3.3)

where τ̂i(j) is the concentration of pheromone associated with option li(j) at iteration t,
ζi(j) = l/ci(j) is a heuristic factor favoring local options that have a smaller cost, and α and
β are exponent parameters which control the relative importance of pheromone and the
local heuristic factor, respectively.

4: The solution is then evaluated by a hydraulic simulator and its cost computed. Total cost,
CT, is the sum of the total component cost, C(x), and a penalty function, P (x), derived
using the maximum pressure deviation from hi,min requirements, CT = C(x) + P (x). The
process of an ant generating a solution and calculating its cost is called a ‘cycle’.

5: Update the pheromone vector after the completion of one iteration (t), of N cycles. The
update equation has the general form τ̂i(j)(t + 1) = ρeτ̂i(j)(t) + ∆τ̂i(j)(t), where ρe is the
pheromone persistence factor < 1 which models the pheromone decay process (and assists
in avoiding premature convergence), and ∆τ̂i(j) is the change in pheromone concentration
associated with option li(j) as a function of the solutions found in iteration t. A common
method to compute ∆τ̂i(j)(t) is known as the iteration best method, whereby

∆τ̂i(j)(t) =

{
Ψ

CT(xt
best)

if edge (i, j) ∈ xt
best

0 otherwise,
(3.4)

where Ψ is the pheromone reward factor, ideally chosen so that an infeasible solution is
guaranteed to be more expensive than a feasible one, and xt

best is the best solution in terms
of lowest cost found in iteration t.

6: Set t ← t + 1. Stop if the t reaches the predefined maximum, Gmax, or the solution has
converged. Otherwise, repeat from step 2.

automatically scaling the reward factor to within the magnitude of the problem network costs.
The value of the penalty factor, pf , was assigned to ensure that all infeasible solutions would
be more expensive than the most expensive solution, C(xmax), guaranteeing that they would
not be selected as locally optimal solutions. To facilitate this, pf may be defined such that the
smallest total network cost is CT(xmin) = C(xmin) + P (xmin) = C(xmin) + pfd, where d is an
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assumed maximum pressure deficit, and is equal to C(xmax). That is, C(xmin)+pfd = C(xmax).
Therefore pf =

[
C(xmax)− C(xmin)

]
/d. Now, if d is chosen using a very conservative estimate

for the particular case study (Zecchin et al. used d = 0.01m in all their cases), then infeasible
solutions should always be more expensive than feasible ones [274, 275].

Parameter Description Value

α Exponent for pheromone values 1

β Exponent for desirability values 0.5

τ̂0 Initial pheromone value Ψ
√

κ.nopt/C(x∗)

ρe Pheromone persistence factor 0.98

N Number of ants κ
√

nopt

Ψ Pheromone reward factor C(xmax)

pf Penalty factor
[
C(xmax)− C(xmin)

]
/d

Table 3.1: Parameter guidelines for Ant Colony Optimisation [274].

Algorithms developed from the ACO metaheuristic include the original Ant System (AS) and
the ASelite algorithms, devised by Dorigo et al. [70] in 1996, the Ant Colony System (ACS) by
Dorigo and Gambardella [72] in 1997, the ASrank algorithm by Bullnheimer et al. [23] in 1999,
and the Min-Max Ant System (MMAS) by Stützle and Hoos [222] in 2000. In 2007 Zecchin et al.
[275] conducted a comparative study of five different ant colony algorithms applied to four case
study WDSs. These sample networks included the two-reservoir problem (TRP) introduced
by Simpson et al. [218] in 1994, the New York tunnels problem (NYTP) first proposed by
Schaake & Lai [212] in 1969, the Hanoi problem (HP) originally considered by Fujiwara &
Khang [95] in 1990, and the doubled New York tunnels problem (2-NYTP) devised by Zecchin
et al. [274] in 2005. Their results showed that the ASrank and MMAS algorithms produced
consistently superior performance for all the case studies, with MMAS being the slower but
stronger algorithm in terms of solution quality [275].

One significant disadvantage of ACO is the large number of parameters involved, which requires
extensive parameter tuning, and makes the method impractical for rapid application to real-
world problems. Finally, it is interesting to note the similarity between ACO and Estimation of
Distribution Algorithms (EDAs), both of which build a probability model of variable distribu-
tions. Unlike ACO, EDAs are population-based algorithms which rely on pure statistics. EDAs
shall be considered further in Chapter 5.

3.7.8 Shuffled Complex Evolution

The Shuffled Complex Evolution (SCE) metaheuristic was developed by Duan et al. [75] in 1992
as a means to efficiently calibrate rainfall-runoff models. SCE uses a combination of probabilistic
and deterministic operations. It employs the systematic evolution of a complex of points, based
on a competitive evolution concept (proposed by Holland [123] in 1992). Finally, it makes use of
complex shuffling, a technique which allows information interchange between different solution
families (complexes) [76, 162]. Although it was developed for continuous optimisation problems,
it may be adapted for discrete problems by rounding a decision variable value to the nearest
discrete value [80].

The algorithm is initiated with a random population of N points from the feasible space. The
points are sorted in order of increasing fitness, calculated by means of an objective function.
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The population is then partitioned into several complexes (ẑ complexes each consisting of ŵ
solutions). Each complex is allowed to evolve independently to search the solution space in
different directions. Each individual point in a complex has the potential of participating in
the reproduction process to obtain new points. For each complex, points are selected with a
probability based on individual point fitness, to form a subcomplex consisting of o individuals.
The modified Nelder and Mead Simplex Method (NMSM) [181] is then applied to each sub-
complex. Any improved solution point replaces the point with the worst performance in the
simplex. Thereafter solutions in the evolved complexes are pooled together, sorted, shuffled and
reassigned to new complexes in order to enable information sharing. This process is repeated
until some stopping criterion is met [162].

Liong and Atiquzzaman [162] applied Shuffled Complex Evolution to least-cost optimisation of
pipe systems, using a penalty term C1 devised by Abebe and Solomatine [2] in 1998, to penalize
nodal pressure below specified minimum values. If the pressure is below the minimum limit,
hmin, and greater than zero, the penalty function is

C1 = pf × Cmax ×max {hmin − hi}, for i = 1, . . . , n,

where pf is the penalty function multiplier used to ensure a smooth transition from feasibility
to infeasibility, where Cmax is the maximum possible network cost using the most expensive
components only, and where max {hmin − hi} is the maximum of the pressure deviations for the
n nodes in the network. If the pressure is below zero, the penalty function changes to

C1 = 2 (pf × Cmax − Cmin) ,

where Cmin is the current minimum network cost.

A pseudocode listing of the SCE algorithm is presented in Algorithm 5 (taken from Liong
and Atiquzzaman [162] with some minor adaptations from [184]). The algorithm includes a
competitive complex evolution sub-procedure, which may be visualized as a local search within
the complex. A pseudocode listing for this sub-procedure is presented in Algorithm 6.

In 1994 Duan et al. [77] compiled a report on the proper selection of the SCE optimisation
parameters and recommended the following identities: ŵ = 2ϕ+1, o = ϕ+1, α = 1, β = ŵ and
ẑ = ẑmin, where ϕ is the number of parameters being estimated. This leaves only the selection
of the number of complexes, ẑ, which depends on the dimensionality of the problem.

Liong and Atiquzzaman [162] applied the SCE algorithm in 2004 to the design optimisation
of two test networks and professed categorically better performance in terms of computational
speed compared to previous methods. However, they did not describe their discretization scheme
and the author was unable to replicate their results. For this reason SCE is not employed in
this dissertation. SCE was used by Nunoo and Mrawira [184] in 2004 for infrastructure works
programming to maximize the cost-effectiveness of maintenance (benefits divided by cost) over
a period of time. They listed the benefits of the algorithm as:

1. The ability to achieve rapid global convergence in the presence of multiple local optima,

2. The robustness of the search against local traps in “pits” and “bumps” in the objective
surface,

3. Robustness against differing parameter sensitivity or parameter interdependence,

4. The ability to model a problem with high parameter dimensionality [184].
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Algorithm 5 Shuffled Complex Evolution Algorithm Applied to WDS Optimisation

Input: A combinatorial optimisation problem specification including a set of options for each
decision variable. An initial configuration x1, a population size N = ẑ × ŵ, where ẑ is the
number of complexes and ŵ (ŵ ≥ 2) is the number of individual solutions in each complex,
a cost function and penalty factor, and a minimum number of complexes ẑmin.

Output: A converged population of solutions which contains an approximation of a global
optimum to the combinatorial optimisation problem.

1: Randomly generate an initial solution population of size N = ẑ × ŵ. The population is
therefore P = {x1, x2, . . . ,xN}, where xi is the ith solution.

2: Compute the basic cost, C, of each point in the population.
3: Perform a hydraulic analysis of each solution. Compute nodal pressure head deficits and

note the maximum pressure deficit.
4: If necessary, compute the penalty cost, C1, using the maximum pressure deficit.
5: For each solution, calculate the total network cost as the sum of the base and penalty cost.
6: The total cost, fi = C+C1, is used as a measure of fitness — the lower the better [162]. Sort

the N solution pairs (xi, fi) in order of decreasing fitness [184] (renumber the subscripts to
reflect this new order).

7: Partition the sorted points into p complexes, A1,A2, . . . ,Aẑ, of size ŵ each. This is achieved

by letting Ak =
{

(xk
j , f

k
j ) | xk

j = xk+ẑ(j−1), f
k
j = fk+ẑ(j−1), j = 1, . . . , ŵ

}
[184].

8: Evolve each complex according to the competitive complex evolution process (described in
Algorithm 5).

9: Recombine the complexes into a single population. At this stage complexes may be discarded
by excluding the one with the lowest total fitness and setting ẑ equal to ẑ−1, with ẑ ≥ ẑmin

[184].
10: Stop if the relative change in the fitness values within the last j (10 ≤ j ≤ 15) shuffling loops

is less than a pre-specified tolerance, or if the maximum user-specified number of function
evaluations is reached;

11: Otherwise repeat from step 6 with the new population.

3.7.9 Particle Swarm Optimisation

Particle swarm optimisation (PSO) is a metaheuristic inspired by the flocking behaviour of
birds and insect swarms. Kennedy and Eberhart [144] proposed the original PSO algorithm
in 1995, and it has steadily gained popularity, owing to its features of robustness and rapid
convergence. Although PSO was originally developed for continuous optimisation, it may be
adapted for discrete optimisation [132].

In PSO, individual solutions in a population are treated as particles flying through the decision
space, each associated with a current velocity v, a memory of its previous personal best position
pbest, knowledge of the global best position gbest and, in some cases, a local best position
lbest, within some neighbourhood — defined either in terms of euclidian distance in decision
or objective space, or by some neighbourhood topology. Particles are initialized with a random
velocity at a random starting position. For particle i at position xt

i during iteration t, velocity
and position are updated as

vt+1
i = wvt

i + c1u1(pi,best − xt
i) + c2u2(gbest − xi

t), and (3.5)

xt+1
i = xi

t + vt+1
i + u3x

t
i (3.6)

respectively, where w denotes the inertial weight, controlling the effect of a particle’s previous
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Algorithm 6 Competitive Complex Evolution Sub-algorithm

Input: A number of complexes each containing ŵ individual solutions, number of offspring per
evolution Gα, and number of evolutions per complex shuffling, Gβ . The domain set of the
feasible region F .

Output: The set of modified complexes which have evolved according to a mixture of deter-
ministic and stochastic rules.

1: For each complex, select o points (2 ≤ o ≤ w) from the complex based on a triangular
probability distribution to construct a sub-complex. This has the form P (yk = xk

i ) = (pi) =
(2(w + 1− i)/(w(w + 1)), for i = 1, . . . , w, where yk represents a point selected for the kth

sub-complex. Note that this gives the maximum probability of selection to the point with
the greatest fitness p1 = 2/(w + 1), and the minimum probability of selection to the point
with the worst fitness pw = 2/(w(w + 1)).

2: Sort the sub-complex in decreasing order of fitness.
3: Compute the centroid of the sub-complex, g =

∑o−1
i=1 yi, excluding the worst point, yp.

4: Generate a new point by reflecting yp through the centroid, u = 2g − yp.
5: if u ∈ F then
6: Compute its fitness, fu.
7: else
8: Calculate the smallest hypercube containing Ak and randomly generate a point, yr, within

this space and compute its fitness, fyr . Set u = yr and fu = fyr .
9: end if

10: if fu < fyp then
11: Set yp = u.
12: else
13: Compute a contraction point which is halfway between the centroid and the worst point,

c = 1
2(g + yp) and calculate its fitness fc.

14: if fc < fyp then
15: Replace yp with c.
16: else
17: Randomly generate a point yr in F , compute fyr and replace yp with yr. This may be

seen as a mutation step.
18: end if
19: end if
20: Repeat steps 3 to 19 Gα times. This may be seen as the number of offspring which are

generated. The new offspring replace the original members of the sub-complex.
21: Repeat steps 1 to 20 Gβ times. This may be seen as the number of evolutions which occur

for each complex per complex shuffling.

velocity, where c1 and c2 are the learning factors for cognitive and social learning respectively,
where u1, u2 ∈ [0, 1] are uniform random variables, and where u3 ∈ [−1

2 , 1
2 ] is a uniform random

variable controlling turbulence [244]. A pseudocode listing for the basic PSO algorithm appears
in Algorithm 7.

Izquierdo et al. [132] applied PSO to WDSDO in 2008. They developed an adaptation of the
original algorithm whereby solution collisions (a problem that occurs frequently in PSO) are
checked using several of the fittest particles, and any colliding solutions are randomly regener-
ated with a new position and velocity. This adaptation greatly improves population diversity
and global convergence characteristics. Furthermore, they employed an adaptive inertial weight
of the form w = 0.5 + 1

(2 ln(t)+1) , where t is the generation number. This has the effect of ac-
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Algorithm 7 Particle Swarm Optimisation Algorithm

Input: A combinatorial optimisation problem with a domain set for each decision variable, an
inertial weight w, a cognitive learning factor c1, and a social learning factor c2, minimum and
maximum velocity values vmin and vmax, and a fitness function f(x) providing the fitness of
configuration x, a population size N , a maximum number of generations Gmax

Output: An approximation of a globally optimal solution to the combinatorial optimisation
problem.

1: Set t← 0.
2: Initialize a random population P of N solutions x0

i , with random initial velocities v0
i ∈

[vmin, vmax], i = 1, . . . , N .
3: Set the best position of each solution p0

i,best = x0
i and set gbest = x0

1

4: for each xt
i ∈ P do

5: Calculate the fitness f(xt
i) and set gbest = xt

i if f(xt
i) > f(gbest).

6: Set pi,best = xt
i if f(xt

i) > f(pi,best).
7: end for
8: for each xt

i ∈ P do
9: Generate random numbers u1, u2 ∈ [0, 1] and u3 ∈ [−1

2 , 1
2 ].

10: Set vt+1
i = wvt

i + c1u1(pi,best − xt
i) + c2u2(gbest − xt

i)

11: Set xt+1
i = xt

i + vt+1
i + u3x

t
i

12: end for
13: Set t← t + 1.
14: if t ≥ Gmax then
15: Repeat from step 4.
16: end if

celerating the search in the initial stages, and gradually reducing the importance of the current
velocity, ideally such that the particle converges to an optimum. They also used values of c1 = 3
and c2 = 2. Finally, they adapted the algorithm to accomodate discrete variables by discretizing
the velocities in order to create discrete step trajectories for these variables. Izquierdo et al.
[132] tested their algorithm on the NYTUN and HANOI WDS benchmarks, and achieved large
computational savings (an order of magnitude better than previous methods) whilst closely
approximating known global optimum solutions.

PSO is employed in later chapters of this dissertation. However, it requires adaptation in order
to be used for multi-objective optimisation. A multi-objective version of PSO shall be presented
in Chapter 5.

3.7.10 Shuffled Frog Leaping Algorithm

The Shuffled Frog Leaping Algorithm (SLFA) is a memetic metaheuristic proposed by Eusuff
and Lansey in 2003 [83]. Such metaheuristics are based on an extension of genetic evolutionary
concepts which include the analogy of social memes. Memes was first conceptualized by the
biologist Richard Dawkins in his book The Selfish Gene [54]. They may be defined as social
ideas or behaviours which are passed on laterally through a population (that is, in theory, from
any individual to any other individual), as opposed to only from parent to child, and may be
thought of as a unit of cultural evolution. The SLFA very closely resembles the Shuffled Complex
Evolution algorithm in structure, except for the memetic evolutionary phase which replaces the
modified Simplex algorithm, and the fact that it is specialized for discrete optimisation. This
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memetic evolutionary phase is similar in concept to Particle Swarm Optimisation [83].

SFLA develops from the analogy of a population of frogs leaping about in a swamp in order to
locate food, and communicating with each other about their success. The frogs leap onto rocks
positioned at discrete locations. The frog in the worst position takes a leap in the direction of
the frog in the best position, and this continues for a specified number of frogs. The concepts
of a complex and sub-complex are replaced with the similar concepts of a memeplex and sub-
memeplex which may be thought of as different communities of frogs. Memeplexes are generated
in an identical fashion to the complexes of the SCE algorithm. The various memeplexes also
undergo shuffling at the end of each evolutionary phase, in an analogy of exchanging information
across cultures [83].

Algorithm 8 Competitive Memeplex Evolution Sub-algorithm

Input: A number of memeplexes each containing ŵ individual solutions. Number of required
evolutions Gα, the domain set of the feasible region F .

Output: A set of modified memeplexes which have evolved according to a mixture of deter-
ministic and stochastic rules.

1: For each memeplex, select o points from the memeplex based on the triangular probability
distribution used in SCE.

2: The sub-memeplex is sorted in decreasing order of fitness, stored in the vector y, with y(1)
and y(o) being the positions of the best and worst frog respectively.

3: The goal of a frog is to improve its individual meme by learning from the best frog in the
sub-memeplex, or from the best frog globally. Record the positions of the best and worst
frog as xB = y(1) and xW = y(o) respectively.

4: Update the position of the worst frog. The step size is calculated as s = min[int(u× (xB −
xW )), dmax] for a positive step and s = max[int(u × (xB − xW )),−dmax] for a negative
step, where u is a random variable ∈ [0, 1] and dmax is the maximum step size allowed
(could be the maximum incremental change in pipe diameter value in the context of WDS
optimisation). The new position for the worst frog becomes y(o) = xW + s.

5: if y(o) ∈ F then
6: Compute its fitness, fyo.
7: else
8: Go to step 13.
9: end if

10: if the new value fyo is better than the old fyo value then
11: Replace the old y(o) value with the new y(o) value and go to step 16.
12: end if
13: if the frog’s new position is either infeasible or not better than the old position then
14: Stop the spread of defective meme by randomly generating a new frog at some feasible

location, u, to replace the old frog. Set y(o) = u and compute fu.
15: end if
16: Upgrade the memeplex. After the memetic change for the worst frog in the sub-memeplex,

replace y in their original locations in the memeplex and sort it in order of decreasing
performance value.

17: Repeat steps 1 to 16 Gα times.

Before each shuffling phase, the position of the globally best frog, xB, is recorded. The com-
petitive complex evolution sub-procedure of the SCE is supplanted by the memetic evolution
sub-procedure, which proceeds as described in Algorithm 7.
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In 2003 Eusuff and Lansey [83] tested SFLA on three sample WDSs from the literature and
found previously best solutions for the two of them and a very nearly optimal solution for the
third. However, SFLA found the optimal solutions in fewer iterations than GAs and simulated
annealing [83]. Liong and Atiquzzaman [162] claim to have achieved superior results using
the ordinary SCE, however this could not be replicated. The SFLA was developed for single-
objective optimisation only, and shall not be used in this dissertation.

3.8 Chapter Summary

A broad introduction to the problem of WDSDO has been provided in this chapter in fulfilment
of Objective 3(a) in §1.3 and in partial fulfilment of Objective 2. The WDS design process
was presented, and a generic mathematical formulation of the least-cost WDSDO problem was
given. This model caters for the design of all standard WDS components, including pipes,
tanks, pumps and valves, and allows for constraints in addition to those normally placed on
nodal pressure.

Several practical WDS design issues were examined, with the outlook towards achieving a design
algorithm catering for real water systems. Some of the topics discussed included the uncertainty
of data, the requirement of loops for redundancy, objectives in addition to cost which express the
benefits of a design, using extended period analysis to design tanks and pumps, and designing
for fire-flows.

A concise history of research into the WDS problem was included, showing how the problem
evolved over the years from simple pipe network design to complex multi-objective design of all
WDS components, including layout. The single-objective optimisation methods used over the
years were described in some detail, including an in-depth look at several of the most impor-
tant techniques and metaheuristics used to solve the problem in the past. These methods are
Partial Enumeration, Linear and Nonlinear Programming, Simulated Annealing, Tabu Search,
Genetic Algorithms, Ant Colony Optimisation, Shuffled Complex Evolution, Particle Swarm
Optimisation, and the Shuffled Frog Leaping Algorithm.



68 CHAPTER 3. SINGLE-OBJECTIVE WDS DESIGN OPTIMISATION



Chapter 4

Essential Topics in WDS Design

In this chapter, the stage is set for a more realistic WDSDO model. The main topics of
this chapter include WDS model parameter uncertainty, water demand estimation for normal
operations and extreme events such as fires, the incorporation of operational costs in WDSDO,
WDS reliability quantification and network layout design. Secondary topics described include
tank design, water quality, transient analysis, leakage models, and valve design.

4.1 The Certainty of Uncertainty

WDSs are subject to a great deal of uncertainty, particularly in terms of water demand placed
upon the system, and its temporal variation. Furthermore, uncertainty may exist in terms of
actual pipe characteristics, which alter as the system ages, in terms of reservoir water levels,
which generally depend on operational practices, and in terms of both changes in physical
layout and functional requirements over time [141]. Owing to the great complexity inherent
in hydraulic systems, models are always rough approximations of reality. In order to build a
model that is robust to input uncertainty, the effects of this uncertainty must the quantified.
The tendency in hydraulic engineering is towards deterministic design employing large safety
factors and heavily over-designing WDSs [103]. At the other extreme, the least-cost optimisation
paradigm produces designs at the limit of feasibility, for which unforeseen events or population
growth will result in failure of the WDS. Uncertainty is a common theme in several of the topics
in this chapter, and although it shall primarily be considered in terms of demand uncertainty in
this dissertation, uncertainty shall also be discussed in the ensuing sections within the context
of pipe roughnesses, operational costs, and reservoir levels.

4.2 Demand Estimation

Demand estimation refers to the process of assigning spatially distributed temporal water de-
mand quantities (or loads) to new or existing WDSs, and potentially predicting future demands,
thus determining the required system capacity for WDS design or rehabilitation. WDSs are sub-
ject to water balance constraints, which means simply that all input water to the system must
equal all water exiting the system (accounting for changes in storage). The International Wa-
ter Association (IWA) [131] has recommended an international ‘best practice’ standard water
balance for use in WDS assessment. A schematic of this water balance appears in Figure 4.1,

69
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demonstrating the broad range of outputs which must add up to the total system input volume.
These outputs are what one is interested in estimating.

An estimate of demands must consider (1) ordinary consumer demands (including non-revenue
consumers), (2) water losses, such as leakage, unauthorized usage, and metering inaccuracies,
and (3) fire flow demands (which usually place the most extreme demands on the system). A
simplified water balance constraint for a given period may be expressed as

Vinflow = Vdemand + Vlosses + Vfireflow + ∆Vstorage,

where Vinflow denotes the total input or production volume, where Vdemand denotes the sum of
demands, where Vlosses denotes the total losses, where Vfireflow denotes the total water used for
fire-fighting, and where ∆Vstorage denotes the change in storage volumes.
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Figure 4.1: IWA international standard water balance [131].

4.2.1 Baseline Demands

Baseline demands characterize the expected (mean) value of water demands, and are usually
assigned to individual nodes (typically these demands include both consumer demands and wa-
ter losses). In the case of an existing WDS, demands are allocated to nodes on the basis of
historical production and consumption (billing) records. Customer billing records are not usu-
ally grouped by node, so that some aggregation method is required (nearest node, pipe analysis,
etc.). Assigning land parcels to nodes is frequently performed as a GIS1-based procedure, with
polygons representing land parcels superimposed on a network graph of the WDS, and the
allocation of polygons to nodes.

In the case of a new WDS, or the extension of an existing WDS, demands are typically assigned
using expected unit demands, based on the land use type, facility type, or the number of

1A Geographic Information System is a software package which allows the storage, manipulation, and advanced
querying of spatial and geographic data. This typically includes digital maps and layers of associated meta-data.
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customers of a particular type, being served by a node. For example, supposing one knows the
average consumption ℓ per person in a particular suburb, and the number of people n being
served by a node, then the total average demand at that node is taken as nℓ. This technique
is also known as unit loading. Expected water consumption for different unit types is derived
from historical water utility records, frequently summarized in engineering and governmental
guidelines. Information regarding the consumption patterns of neighbouring WDSs may also
assist in improving the accuracy of demand estimates, and regional guidelines are often compiled
for this purpose. Demands at a node may also be composite, in that several different unit types
are served by a single node, in which case unit loading must be applied in a proportional manner
[251].

In South Africa the average annual daily demand (AADD) is used as a baseline, which is
then multiplied by peak-to-average ratios in order to estimate peak design demands. The most
commonly used South African guideline for municipal water-demand estimation appears in
the CSIR Red Book [44]. This guideline was first published in 1983, and has not changed
significantly since. For domestic-water demand estimation in developed areas it advises AADD
based on stand area (single residential stands), and for developing areas it provides per capita
estimates for communal water points, stand pipes and yard taps. A 2008 study by Van Zyl et
al. [242] revealed that the CSIR Red Book guideline requires revision, as it only accounts for
53% of the observed municipal demands in South Africa. They found that the most influential
factors affecting water demand are stand area, stand value and geographical location (inland
or coastal), but that stand value was too uncertain a descriptor to be used in a fixed guideline.
They developed a new guideline curve for AADD based on stand area within various confidence
limits [242]. Typical values of AADD for different land-use types appear in Table 4.1, as
supplied by GLS Software2 [103], which have been adapted from the Johannesburg Water and
Tshwane Metropolitan Municipality guidelines [103]. Note that these values are expressed both
in kiloliters (kl) per plot per day and kl per hectare (ha) per day, and that all estimates include
water losses. In order to assign demands to nodes, one may estimate the AADD required
from the area of land a node is servicing and its land use type. Baseline hourly demand
is then simply AADD/24. The majority of water utilities maintain water usage records for

AADD Demand AADD Demand
Land Use (kl/plot/day) (kl/ha/day)

Low cost housing 0.75 13.0
Small sized residential 1.00 15.0
Medium sized residential 1.75 12.0
Large sized residential 2.50 12.0
Cluster housing 0.75 18.0
Cluster housing > 30 units/ha 0.65 25.0
Agricultural holdings 3.00 3.0
Business/Commercial 5.00 20.0
Light Industrial 5.00 20.0
Heavy Industrial 5.00 25.0
Mixed Zoning 3.00 18.0

Table 4.1: AADD of water by land use types for Gauteng Province, South Africa, supplied by
GLS Consulting (Pty) Ltd [103].

existing systems (usually at least for water production and customer usage) for billing and
management purposes. These data are usually not available at the required time scale, so that
additional, typically more intensive measurements may be necessary at representative points in

2A South African hydraulic engineering consultancy, based in Technopark, Stellenbosch.
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the system. Large consumers, such as industries and hospitals, often warrant their own special
measurements, particularly if they account for a few percentage points or more of total demand.
New technologies allow for real-time and remote data logging, which facilitates significantly
improved estimates of baseline demand variation [169]. However, whichever data are gathered,
it is rarely sufficient to fully specify the demand loadings for an existing WDS. Losses will
generally occur and must still be associated with individual nodes, despite a lack of knowledge
regarding their exact location. All water losses must be disaggregated amongst users, frequently
done on a uniform basis, or proportional to known nodal demands [251].

4.2.2 Demand Variation

A WDS must be designed to accommodate temporal demand variation. The typical procedure
is to begin with baseline demands and apply a series of periodic demand multipliers (also known
as a demand pattern) to mimic cyclic demand variation, or individual demand multipliers to
simulate steady state demands, such as peak flow conditions. Fire flows and other special
demand scenarios are usually also simulated separately, and demands are sometimes projected
into the future for long term planning [251].

Different demand multiplier patterns are sometimes used for nodes serving different zones or
land-use types, and sometimes a large consumer may have their own demand pattern. A typical
diurnal (daily) pattern for a residential area exhibits relatively low demand at night, and has
two demand peaks during daylight hours; a morning peak before working hours, and an evening
peak after people return home. Most demand patterns repeat in a cyclic fashion; however,
additional variation may be modelled, depending on the WDS.

Extended period analysis is necessary for tank design and pump scheduling, and peak flow
analysis is required to design the WDS so that it may accommodate the maximum expected
demand loading. The types of demand analyses which are frequently conducted include [251]:

1. Average-day demand scenario: The baseline is the average rate (e.g. m3/h) of the average
daily demand (e.g. annual demand / 365), occurring for a given planning horizon. A series
of hourly demand multipliers may be used to simulate diurnal demand variation. This
may be used to design the overall WDS for efficient operation on an average day.

2. Maximum-day demand scenario: The baseline is the average rate of the maximum ex-
pected daily demand, occurring for a given planning horizon. A series of hourly demand
multipliers may be used to simulate diurnal demand variation. This may be used to de-
sign the overall WDS to cater for a maximum day (especially with regards to storage and
pumping). An example of a maximum day factor is twice the AADD as baseline hourly
demand [103].

3. Peak-hour demand scenario: The demand rate during the maximum hour of usage, oc-
curring for a given planning horizon. This may be used to size pipes in order to handle
maximum flow capacities.

Note that these scenarios may account for historical demands only, current demands, or pro-
jected future demands (e.g. possibly considering a 1, 5, 10, or 20 year projection). Other
potential scenarios may include weekly demand patterns (e.g. 7 × 24 = 168 demand multipli-
ers), maximum historical day demand, and seasonal demand variation (affected by climate and
social activities such as tourism and gardening).
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Figure 4.2: WDS demand multipliers for a typical residential zone (24 hour demand cycle),
supplied by GLS Software [103].

As an example of demand multipliers, one might have a series of 24 demand factors to represent
the hourly variation over the course of an average day. Typical hourly demand multipliers in
a diurnal cycle for a generic residential zone are provided in Figure 4.2, and similarly typical
multipliers for a generic industrial zone appear in Figure 4.3. These multipliers were supplied
by GLS Software [103].

Water losses such as leakage may have a relatively constant flow rate. In a system with relatively
high losses, it may be necessary to treat this separately from other demands, since it does not
vary in the same manner as do other demand types [251]. In this case losses would be subtracted
from baseline demands, the demand multipliers would be applied to the remainder of demands,
and losses would then be added to the result. However, including water losses is erring on the
safe side, since it produces higher effective demand quantities.

Demand patterns vary widely from customer to customer. In a new system, the best one can
do is to employ typical patterns for various customer types. In an existing system, accuracy
of demand patterns increases with the number of flow metering points that support periodic
data-logging [251].

4.2.3 Fire Flow Demands

In the event of a fire, additional flow demands may constitute a large fraction of total demand
[251]. Numerous standards exist for determining required quantities of fire flow, typically de-
pending on the size, structure, proximity and construction materials of buildings, materials
stored in a building, and on other aspects such as the operational or financial importance of
the structures under fire protection. Fire flows are critical in determining the sizes of pipes,
particularly for smaller pipes, typically leading to larger minimum sizes.
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Figure 4.3: WDS demand multipliers for a typical industrial zone (24 hour demand cycle),
supplied by GLS Software [103].

Fire protection is not required in all WDSs, but the tendency is to include them, particularly in
urban areas, where potential fire damage may be extensive. Including fire protection also lowers
building insurance rates. The American Insurance Services Office (ISO)3 evaluates water supply
systems on the basis of Needed Fire Flow method [129], with different formulas for categories
such as residential, commercial or industrial buildings. One such a formula for needed fire flow
FN is

FN = 18KCA0.5O(Xf + Cf),

where KC denotes the construction class coefficient of the building, where A is the effective
area (ft2), where O is the occupancy factor expressing the nature of the building contents (e.g.
chemical / combustible), where Xf is the exposure factor determined by the distance to nearest
buildings and their type, and where Cf is the communication factor which is determined by the
locations and types of doors and windows [251]. The method is documented in the ISO Fire
Suppression Rating Schedule [129] and the American Water Works Association (AWWA) M-31
manual [14].

In South Africa, more basic guidelines are used to specify expected fire flows by means of
location / risk categories. This risk is primarily focused on potential financial damages, risk of
spread, loss of life, and damages to critical infrastructure. The guidelines appearing in Table
4.2 constitute a combination of the Johannesburg Water, Tshwane MM guidelines, and SANS 4

100090 fire flow standard, as supplied by GLS Software [103]. These conditions are modelled
under a maximum day scenario (2 × AADD plus the appropriate fire flow according to the
area’s fire risk assessment), and only one fire at a time is considered per reservoir zone. WDSs
for low cost housing and agricultural land do not usually cater for fire flows in South Africa,
which is why no guidelines are provided for them.

3Not to be confused with the International Standards Office.
4South African National Standards are compiled by the official national standards bureau SABS.
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Although it is assumed that the likelihood of multiple fires occurring during a peak day is very
small, analysis should be site-specific and may depend on the size of the WDS.

It is unlikely that one would be able to specify a realistic probability distribution for the location
and frequency of fire events in a new system. The following represents a novel procedure
towards the stochastic automated incorporation of fire flow analysis in the design process. In
this procedure a number of candidate nodes may be identified for fire events, for which fire flow
demands are added to peak hour demands. The following nodes may be selected for analysis:

1. a node with largest demand rate,

2. a node with lowest pressure,

3. a node at the output end of a smallest pipe,

4. a node at the output end of a pipe with the smallest flow,

5. a node at the output end of a pipe with the largest flow,

6. a node furthest from a source,

7. a node nearest the centroid of the system, and

8. a random node in each different zone type (e.g. as per Table 4.2).

In this procedure the same node may be identified more than once, in which case only a single
fire scenario is analyzed at that node. Note that, depending on the number of hydrants involved,
several adjacent nodes may also experience fire flow simultaneously (assuming a hydrant at each
node). Such nodes are to be selected as those nearest the identified node. Owing to the dynamic
alteration of designs during WDSDO, and the stochastic elements used in this fire location
scheme, different nodes would be selected during the course of optimisation. Even though only
a few simulations are conducted per design during a single optimisation iteration (the minimum
being one randomly selected scenario per iteration), the WDS designs will be subjected to a
wide range of fire scenarios over the course of multiple iterations. The philosophy behind this
identification procedure is that WDSs should be robust under all possible fire conditions. An
extension to this scheme is the simulation of fire conditions for a number of consecutive periods,
as part of a maximum day simulation (in order to determine whether tanks have sufficient fire
flow storage). It is further recommended that any special fire conditions be specified manually,
particularly through the identification of critical infrastructure which requires fire protection.
The testing of this automated fire scheme is left as future work.

Total fire Flow at one Min head at Min head at
Fire location / Risk flow (ℓ/s) hydrant (ℓ/s) fire node (m) other nodes (m)

High risk: CBD and other 200 25 15 10
Med risk 1: Industrial, Business 100 25 15 10
Med risk 2: Cluster Housing, High Rise Flat 30 30 15 10
Low risk: Single Residential Housing 15 15 8 8

Table 4.2: Fire flow demands for Gauteng Province, South Africa, supplied by GLS Software
[103].
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4.2.4 Emergency Storage

Emergency storage is required in the event that flow along the supply mains is interrupted. In
this case ordinary demands must be satisfied entirely from emergency storage (assuming that
such storage is available). This is discussed in more detail later in this chapter (§4.5.2).

4.2.5 Handling Demand Uncertainty

Only deterministic demand strategies have been touched upon thus far in this chapter. Al-
though these are frequently used in practice, they do not account for the high levels of uncer-
tainty present in real WDSs. Babayan et al. [16, 17] demonstrated that ignoring uncertainty in
parameters (particularly demand) may result in the serious under-design of a network.

Schemes towards incorporating uncertain demands have been based on assigning demand prob-
ability distributions to individual nodes (e.g. both Xu and Gouler [267] and Babayan et al.
[16] assumed a Normal (Gaussian) distribution), and then either sampled from these distribu-
tions to simulate demand variation (such as the reduced sampling methodology of Kapelan et
al. [141]), or used analytical techniques (such as the integration method of Babayan et al. [16]
which incorporates safety factors based on some multiple of the nodal head standard deviations
(SDs)). These methodologies are also discussed in more detail later in this chapter (§4.3.1).
Deterministic mean values of demand were employed in both papers; Babayan et al. [16] use a
SD equivalent to 10% of the mean.

A serious deficiency of the techniques mentioned previously is the assumption of independent
probability density functions. In actual WDSs, nodal demand is highly correlated in time
[251]. This calls for some technique to obtain correlated demand samples, either by means of
some artificial demand sampling pattern, or some statistical technique to induce correlation by
ordering random samples. The latter method is employed in this dissertation towards reliability
analysis. Demands were assumed to be normally distributed and temporally correlated at a
coefficient of 0.5 between any two nodes (as per Kapelan et al. [141]). The method used to yield
correlated samples is that of Iman and Conover [128].

4.2.6 Correlated Demands

In 1982 Iman and Conover [128] developed a distribution-free approach to inducing rank cor-
relation among model input variables. This method was used by Kapelan et al. [141] in 2005
to obtain temporally correlated, normally distributed nodal demands. The technique works by
constructing an s×n matrix D of normally sampled demands, where s is the number of demand
samples for each node. An equivalently sized Van der Waerden matrix V is then generated in
which each element is sampled from N(0, 1). An n×n correlation matrix C is created with the
desired correlation coefficient (e.g. one’s on the main diagonal and 0.5 elsewhere), to which a
Cholesky decomposition is applied (C = UL) in order to obtain the lower triangular Cholesky
matrix L. Then a ranking matrix R∗ with the desired correlation coefficient matrix is obtained
as R∗ = VL. The samples in D are finally rearranged column-wise to have the same rank or-
dering as R∗, producing D∗, a set of demand samples with the desired inter-nodal correlation.
Each row of D∗ now represents a single correlated demand loading condition.
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4.2.7 Projecting Future Demands

Predicting future water demands is extremely difficult, as the number of factors affecting the
outcome is enormous. Demand changes are affected by population growth, economic growth or
downturn, climatic changes, social changes (such as water conservation efforts or restrictive leg-
islation), technology improvements (such as the installation of low-water plumbing), changing
water tariffs, and so forth. Possibly the best way to accommodate this problem is the consid-
eration of a few alternative future scenarios. One might, for example, consider linear growth,
constant percentage growth, growth levelling off to a plateau, and so forth [251].

One technique for analyzing demand growth is employing a GIS, with a polygon layer storing
data regarding expected future conditions. After these polygons are assigned to the appropriate
nodes, the unit loading method may be applied in order to estimate demands. Such information
may be available from government studies or census data regarding predicted population growth
and future land-use [251].

Some researchers have developed sophisticated demand projection models, which use disaggre-
gated functions of other economic and social growth variables to predict future water demands.
One such model is the 1998 IWR-Main model of Optiz et al. [186].

4.3 Reliability: The Other Objective

Reliability is a measure of system performance, generally expressed as the ability of a system
to meet the demands placed on it. Reliability may be quantified as the proportion of time that
a system functions as intended (also termed availability). However, reliability in the context of
WDSs is a somewhat nebulous concept, owing to the vast number of different interpretations
over the years, and the lack of a universally accepted definition [112]. In a common sense
interpretation, one wishes a WDS to be reliable such that consumers receive desired quantities of
water within the required pressure range as often as possible, subject to the full range of possible
demand conditions, combined with possible component failure scenarios. These demand and
failure conditions are associated with different probabilities of occurrence and this definition
of reliability is often referred to as hydraulic reliability, as it is focussed on user hydraulic
requirements [4, 141]. Reliability is strongly related to the amount of spare capacity available
to meet extreme demands (such as fire-flows) and to pathway redundancy (or loops) which
provide alternate flow pathways in the event of pipe failure [268]. The ability of a network
to respond gracefully to component failure by means of alternate flow pathways is sometimes
termed the flexibility of a WDS.

Component failure scenarios usually entail a component being unavailable due to breakage or
maintenance, which means that the WDS must continue operating at reduced capacity and may
not be able to meet performance requirements. Component failures may include taking com-
ponents off-line for maintenance, rupture of pipes, joint and valve failures, pump breakdowns,
or failure may be caused by externalities such as power failures. A more insidious type of com-
ponent failure is due to the gradual aging of the system, whereby deposition or corrosion may
cause pipe characteristics to deteriorate. Such failure is typically not handled explicitly as a
component failure, but is rather accommodated by conducting sensitivity analysis on pipe char-
acteristics. The final type of failure is when the demand loading exceeds the system capacity.
This may occur due to extreme events beyond the design capacity, or due to the natural growth
of the population or economy. A WDS cannot be expected to perform without a degradation
of service during these situations. However, WDSs should be designed to meet appropriate



78 CHAPTER 4. ESSENTIAL TOPICS IN WDS DESIGN

minimum performance standards during emergencies or system failures [112, 268].

It is obvious that the sizing of WDS components has a considerable effect on the ability of
a system to meet its goals. In addition to larger capacity systems being able to satisfy more
extreme demand conditions, there is also a strong correlation between pipe size and breakage
rates, with smaller pipes breaking more frequently. Component breakage probabilities may be
inferred from historical records, and modelled using appropriate probability distributions [112].
Pipe breakages have also been modelled using data-driven techniques such as artificial neural
networks and neuro-fuzzy systems, as well as multivariate linear regression models (Tabesh et
al. 2009). The location of shut-off valves also plays an important role in system reliability, since
they directly affect which parts of the system may be isolated, and consequently define the
available flow paths [251].

A probabilistic approach to reliability best matches the definition of hydraulic reliability (i.e.
the probability that a design satisfies hydraulic requirements at any given moment). In general,
probabilistic models may be solved analytically or by means of stochastic simulation. Analyti-
cal solutions are obtained either by conditioning over all possible events (provided that this is
computationally feasible and that conditional probabilities are known), or by using some ana-
lytical approximation technique which replaces the stochastic formulation with a deterministic
one. Stochastic simulation involves repetitive random sampling from probability distributions
in order to determine their effects on output variables. The latter method is more generally
applicable; however, it may be several orders of magnitude slower [17].

Alternative techniques for reliability quantification include so-called reliability surrogate mea-
sures (designed to have a strong positive correlation with probabilistic reliability) [194, 226],
graph theoretic techniques which focus on redundancy and connectivity analysis (such as count-
ing the number of independent paths to a source from every demand node) [4], severity indices
such as the ratio of the total available annual supply to the total annual demand, frequency
and duration indices which measure how frequently and for how long failure events of a given
severity occur [112], and economic indices which measure the financial impact of failure events,
such as revenue lost and repair costs [112]. In this dissertation it was decided to focus on
probabilistic reliability and reliability surrogate measures, owing mainly to their generality and
popularity in the hydraulic engineering community.

If a numerical quantification of reliability may be calculated for candidate designs, then it makes
good sense to include this in the WDSDO model as an additional objective to be maximized.
The following subsections contain discussions on probabilistic reliability, reliability surrogate
measures, and graph theoretic reliability indicators.

4.3.1 Probabilistic WDS Reliability

Let Ś(x; z) denote a feasibility function for a design x, under a given state combination z ∈
Dx ⊗Fx, where Dx denotes the set of possible demand loading conditions and Fx denotes the
set of possible failure events (including the event of no failures). Let Ś(x; z) = 1 in the event
that the nodal demands are satisfied in the network (i.e. outflows qi are equal to nodal demands
di), and the nodal heads are within the permissible range (hmin ≤ hi ≤ hmax), for all nodes
i = 1, . . . , n; and S(x; z) = 0 otherwise. In DDA, demand flows are satisfied automatically;
therefore reliability only depends on the satisfaction of head constraints. One may express the
probabilistic reliability R of design x as

R(x) = P (Ś(x; z) = 1).
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Reliability R may be described as the probability of finding the system in the feasible state
at any given moment. This is not the only possible formulation of probabilistic reliability.
For example, one may consider probabilistic functions of individual node reliabilities, or the
probabilities of attaining different grades of feasibility (e.g. the probability that c% of nodes
attain their pressure goals, and (100− c)% are within 5% of their goals).

Each sample combination z ∈ Dx ⊗ Fx is associated with a non-negative probability of occur-
rence p(z) during a similar time period, which is subject to the condition that

∑
z p(z) = 1. In

order to determine whether Ś(x; z) = 1, one must conduct a hydraulic simulation for condition
z and evaluate the hydraulic constraints. This must be evaluated for every z ∈ Dx ⊗ Fx in
order to determine the value of R. The analytical evaluation of R may be achieved as

R(x) =
∑

z∈Dx⊗Fx

p(z)Ś(x; z).

Note that this may require an extremely large number of hydraulic simulations, growing expo-
nentially with the size of the WDS. It is very unlikely that these probabilities p(z) are known,
but the problem may be subdivided into the constituent events. For example, Fx may be condi-
tioned over the events of no components failing Fx,0, one component failing Fx,1, and so forth,
up to κ = |x| component failures Fx,κ.

Let Ix,k denote a set of k components, which is a subset of the κ components constituting
design x. There are

(
κ
k

)
sets of this type. Let Ii

x,k denote the i-th such set, containing k specific

components. Let F̂
(
Ii

x,k

)
= F i

x,k denote the event of this set of components failing. It is often

assumed that events of individual component failure are independent of the failure condition of
the other components [267]. This would yield the probability of failure as

p(F̂
(
Ii

x,k

)
) =

∏

xj∈Ii
x,k

p(F̂ ({xj})),

where p(F ({xj})) is the probability of failure of a specific component xj .

In a similar manner, given the independence of demand loadings and failure events, one may
condition over the various demand scenarios dj ∈ Dx with their associated probabilities of
occurrence p(dj). Reliability may then be calculated as

R(x) =

|Dx |∑

j=1

p(dj)
κ∑

k=0

(κ
k)∑

i=1




∏

xj∈Ii
x,k

p(F̂ ({xj}))


 S

(
x; z =

〈
dj ,F i

x,k

〉)
. (4.1)

There are several problems with this model (including the assumption of independence), but
the most serious one remains the number of hydraulic simulations required to compute the
value of R. Even for a medium-sized WDS consisting of 100 components, limited to 24 demand
conditions, and assuming that the probability of more than three simultaneous component
failures is negligible, more than 4 million hydraulic simulations would be required. This makes
the full analytical calculation of probabilistic reliability for large WDSs virtually impossible.
The majority of researchers simplify the problem by considering only single component failures
[267]. This significantly reduces the number of simulations required to evaluate the reliability
of a single design to |D| × (κ + 1).

Another problem is the uncertainty associated with the demand loadings and component failure
probabilities. It may be very difficult to determine exact probabilities of the different events,
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particularly for a new system with no historical record [112]. In a more realistic model, param-
eter interdependence would have to be accommodated, requiring integration over a continuous
joint probability distribution for demands. Such a joint probability function is typically not
known, and would require extensive computation to determine [267]. Dependency might also
exist between other parameters. For example, a single pipe failure may cause a chain of failures
in a section of the WDS, owing to the additional strain placed on the working components.
Unfortunately, there is very little research available on this topic. However, it is generally
found that component availability in a WDS scenario is high, with multiple simultaneous fail-
ures occurring infrequently. Furthermore, there exists empirical research on pipe break rates
which may be used to implement the assumption of component failure independence [112]. The
method of Cullinane et al. [45] uses historical data to estimate the probability of component
failure for component i as p(F̂ ({i})) = λi/(µi + λi), where λi is the mean value of the time for
which a component is in a failed state, and µi is the mean value of the time between component
failures.

Numerous researchers have demonstrated that ignoring uncertainty in demand and model pa-
rameters can lead to overestimation of WDS reliability [112]. In 2005 Babayan et al. [16] defined
robustness as the ability of a network to provide adequate supply to customers despite fluctua-
tions in the design parameters. Uncertainty in pipe characteristics (diameter / roughness) and
reservoir levels may also be considered in a reliability model. Xu and Goulter [267] found that
reliability was most sensitive to demands and minimum pressure head limits, less sensitive to
initial reservoir levels, and relatively insensitive to pipe roughnesses.

The first model to consider uncertainty in nodal heads was that of Lansey et al. [158] in 1989.
However, head was not expressed as a function of uncertain input parameters in this model. Xu
and Goulter [267, 268] were the first to develop fully probabilistic models for WDS design, which
use approximation techniques for the estimation of individual nodal reliabilities. These values
are used either to constrain the optimisation model to minimum reliability levels at a number
of critical nodes, or are aggregated by some function to express overall system reliability. The
probability of node failure Fi for node i is taken as

Fi = P (hi < hmin) = 1−Ri,

where Ri is the reliability of the node. They developed two different reliability approximation
models in 1998 and 1999. The first model uses the mean value first-order second-moment method
(MVFOSM) of Yen et al. [270] in 1986 to compute the first two moments of nodal pressure heads.
The second model uses the more accurate first order reliability method (FORM) of Hasover
and Lind [120] in 1974 to develop a reliability index for constrained nodes. Unfortunately, both
models suffer from drawbacks which make them impractical to use on a large scale, including the
repetitive computationally expensive calculation of derivatives and matrix inversions (although
FORM is more accurate, it is even more computationally demanding), assumptions of parameter
independence, and potential numerical errors [16]. However, it is very informative to consider
the approaches adopted in these models [267].

The 1998 WDS probabilistic reliability model of Xu and Goulter [267] is a linear approximation
model which caters for uncertainty in demands d, pipe roughness coefficients c, and reservoir
levels h0

R. The following simplifying assumptions are made: (1) All uncertain parameters (de-
mands, etc.) are normally distributed, and (2) sufficient accuracy may be achieved by using a
linear approximation of the nonlinear hydraulic model, which employs expected values of the
uncertain parameters, provided that the original nonlinear model is solvable at these expected
values. This linearized system is constructed by a first-order Taylor series expansion on the
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expected values h (nodal heads), d, c, and h0
R, that is

G(h, d, c, h0
R) ≈ G(h, d, c, h0

R) +
∂G

∂h
(h− h) +

∂G

∂d
(d− d) +

∂G

∂c
(c− c)

+
∂G

∂h0
R

(h0
R − h0

R)

= G(h, d, c, h0
R) + J∆h + Jd∆d + Jc∆c + Jh0

R
∆h0

R,

where J denotes the Jacobian matrix with respect to heads, and Jd, Jc, and Jh0
R

denote the
Jacobian or sensitivity matrices for demands, pipe roughnesses and initial reservoir levels. This
yields the following linear model for nodal pressure heads,

h = h− J−1Jc∆c− J−1Jh0
R

∆h0
R − I∆d, (4.2)

where I is the identity matrix. The inverse Jacobian may be calculated by hydraulic simu-
lation using the expected values (Xu and Goulter calculated inverses by means of Zollenkopf
bi-factorization [267]). Since the uncertain parameters are pairwise statistically independent,
the nodal head variances σ2

i may be calculated using MVFOSM as

σ2
i =

n+np+nR∑

j=1

b̂ijσ
2
xj

, i = 1, . . . , n,

where n is the number of nodes, where np is the number of pipes, where nR is the number of

reservoirs, where b̂ij is the appropriate element of matrix
[
−J−1 : −J−1Jc : −J−1Jh0

R

]
, and σ2

xj

is the variance of the random variable. Since the parameters are all normally distributed, the
linear approximation of heads is also normally distributed. Thus, given Φ(·) as the standard
normal cumulative distribution function, the probability of hydraulic failure at a specific node
i may be calculated as

Fi = P (hi < hmin) = 1− Φ(Zi) = 1−Ri

where Zi is defined by

Zi =
hi − hmin

σi
.

In order to calculate the system reliability, the linear model has to be re-evaluated for each
different network configuration under component failure. As before, one may then condition over
the various events of failure conditions. Xu and Goulter [267] only consider single component
failure. In order to simplify the notation, let P̃ i

f denote the probability of failure of component

i, with P̃ 0
f the probability of no failures. Nodal reliability Ri is therefore estimated as

Ri =

∑|d|
j=1 p(dj)

∑κ
i=0 P̃ i

f P (hi < hmin | P̃ i
f )

∑|d|
j=1

∑κ
i=0 P̃ i

f

,

where the denominator normalizes the events to single component failures only. Unfortunately,
owing to dependencies between the nodal heads, this technique may not be used to estimate
system reliability as per (4.1). Instead a weighted aggregation method is used, so that system
reliability is

R =

n∑

i=1

wiRi,
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where the weight wi may be assigned according to the importance of feasibility at node i.
One method of doing so is setting wi as the ratio of the demand at i to the total demand.
Provided

∑
i wi = 1, system reliability is taken as the weighted mean of nodal reliability. Xu

and Goulter [267] verified their method by means of Monte-Carlo simulation (MCS) and found
it to be accurate within the region of the expected values. However, the results deteriorated as
variation in uncertain parameters increased, particularly in the case of large demand variation.
This is due to the linearity assumption, whereas real systems have a nonlinear relationship
between input variables and head.

Babayan et al. [16] developed an integration-based method whereby the stochastic probability
constraint

P (h > hmin) ≥ Pmin

is converted to a set of deterministic constraints of the form

ξhi ≥ hi,min + ϑσhi , i = 1, . . . , n,

where ξhi and σhi are the mean and SD of the head at node i, and ϑ is a safety factor for the nodal
heads (e.g. a value of ϑ = 3 would include most of the range of hi). Babayan et al. assumed that
heads are a function of uncertain demands and pipe roughnesses only, and used independent
Gaussian PDFs for the nodal demands, as well as independent uniform distributions for the
pipe roughness coefficients [17]. Furthermore, they assumed the validity of the superposition
principle, which is

hi (ξχ1 + δ1, . . . , ξχυ + δυ)− hi (ξχ1 , . . . , ξχυ)

≈
υ∑

j=1

[
hi

(
ξχ1 , . . . , ξχj + δj , . . . , ξχυ

)
− hi (ξχ1 , . . . , ξχυ)

]

=
υ∑

j=1

[hi (χj)− hi (ξ)] ,

where χ = {χ1, . . . , χυ} is the set of uncertain parameters, where ξ =
{
ξχj

}
is the vector

of parameter means, and where δj is some perturbation of the j-th mean. This yields an
approximation for the mean and SD of nodal heads as

Γi,j =

∫ ∞

−∞
[hi(χj)− hi (ξ)] pj(χj) dχj (4.3)

ξhi ≈ hi(ξ) +
υ∑

j=1

Γi,j (4.4)

σ2
hi

=
υ∑

j=1

∫ ∞

−∞
[hi(χj)− hi (ξ)− Γi,j ]

2 pj(χj) dχj , (4.5)

where pj(χj) is the PDF of parameter χj . These expressions may be evaluated by means of nu-
merical integration [24] (see Appendix B.4). Babayan et al. [16] used an optimisation technique
whereby the head means and SDs were computed for an initial configuration, using (4.3)–(4.5),
in order to identify nc critical nodes as those which violate their head constraints. Significant
variables χj are also identified from their percentage contribution to (4.5), for example by taking
all those variables which contribute more than 2%. Optimisation proceeds with a GA, using a
penalty function of the form P = pf

∑nc
i=1 max(0, hi,min + ϑσhi − ξhi) in order to improve head

deficit at the critical nodes. Computational efficiency is improved by only using the significant
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variables in (4.3)–(4.5). Every few generations the sets of critical nodes and significant variables
are updated.

Instead of analytical calculation, a common strategy is to estimate reliability by means of Monte-
Carlo simulation (MCS). This requires a large number trials (typically more than 1 000), where
each trial uses a stochastically sampled combination of input parameters (demands, roughnesses,
etc.), and each uncertain parameter value is sampled from its own PDF. Reliability would then
be estimated as the ratio of those trials which are feasible to the total number of trials. As the
number of trials tends to infinity, the MCS estimate approaches the actual reliability exactly.
Xu and Goulter [267] conducted an empirical study for WDSs of different sizes, and concluded
that the distribution of hydraulic results changed very little after 3 000 trials. Nevertheless, they
employed 5 000 trials in later studies. It is also uncertain whether this would be sufficient for
very large systems with thousands of variables. Regardless, this still entails too many hydraulic
simulations to be computationally efficient during WDSDO, where MCS must be conducted for
each candidate design. Numerous researchers have attempted to simplify the problem, such as
by using sampling reduction techniques [141], by making assumptions such as the probability of
multiple simultaneous component failures being negligible [112], or by using meta-models such
as artificial neural networks to speed up hydraulic simulations significantly [22].

The 2005 model of Kapelan et al. [141] uses a multi-objective GA combined with the notion
of Latin Hypercube Sampling (LHS) introduced by McKay et al. [173] to significantly reduce
the number of samples required per generation. The goal of LHS is to achieve a more uniform
sampling which requires far fewer samples in order to be representative of a distribution than
traditional pseudo-random sequence sampling used in MCS. It remains desirable, however, to
maintain differences between consecutive samplings. Suppose that N samples must be generated
from a decision space D which is continuous and uniformly distributed. LHS proceeds by
generating a sequence of N draws in probability space [0,1] using the formula

Ω(j) =
j − 1

N
+ uj , j = 1, . . . , N,

where uj is a uniform random variable between 0 and 1
N . This sequence is then mapped to

decision space using the inverse cumulative probability distribution function in order to obtain
a sample, d(j) = F−1(Ω(j)) [121]. LHS may easily be adapted for discrete variables. In the
WDS problem, for a np pipe system and a solution population of size N , it is required to draw
N × np samples for initialization. Using LHS and a uniform distribution of pipe sizes, one may
generate a sequence si of N draws for each pipe i = 1, . . . , np. Each of these np sequences may
then be shuffled randomly, after which a solution xj may be constructed by setting the value
of its i-th pipe variable to the j-th entry of si.

Kapelan et al. [141] combined LHS with an averaging technique over the lifetime of a solution
in order to reduce the required number of samples per generation even further. This works
by assigning an initial age ai,t0 = 0 to a solution i when it is first created in generation t0,
incrementing the age in each consecutive generation for which it survives, and taking reliability
Ri as the average of the computed reliabilities over the generations (i.e. Ri =

∑tn
t=t0

Ri,t/ai,tn ,
where tn is the current generation and Ri,t is the computed reliability in generation t). Using this
methodology they were able to obtain good results with very few samples (5–20) per generation.

In 2006 Babayan et al. [17] compared the analytical integration model [16] to the LHS sampling
method [141], both employing GAs, towards the single-objective, reliability-constrained optimi-
sation of the NYTUN WDS benchmark under uncertainty of demands and pipe roughnesses.
Both methods are capable of producing near-optimal solutions with a similar computational
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efficiency, outperforming MCS by two orders of magnitude. They favoured the use of the LHS
method because of its generality, slightly improved robustness, and ease of use [17].

Reliability is usually measured in terms of feasibility, defined as the situation of attaining
minimum pressure at all nodes. This is typical of analysis employing a demand-driven hydraulic
model. If instead one uses a pressure-driven model, then a more fine-grained analysis may be
employed, allowing one to quantify how much of the required demand is satisfied. To this end
two demand satisfaction (DS) measures were employed in this dissertation rather than simply
providing the probability of feasibility, providing additional knowledge regarding the degree of
failure of a WDS. The first measure is average demand satisfaction under uncertainty, denoted
by ADSU = AVGD(

∑n
i=1 qi/

∑n
i=1 di), where di is the demand and qi is the actual outflow at

node i under uncertain demands in a MCS setting. The second DS measure is average demand
satisfaction under pipe failure (ADSF) calculated for each design, defined as before, but averaged
across all single-pipe failure conditions F . The Object Oriented Toolkit for EPANET (OOTEN)
developed by Van Zyl [240] in 2007 was used in this dissertation. Rather than conducting PDA
by means of simulating demand nodes as emitters (which failed to converge to stable solutions
for the larger WDS benchmarks), a more robust methodology was employed whereby DDA was
repeatedly conducted, adjusting the nodal demands until minimum pressures were satisfied.

Another avenue of future computational acceleration entails parallel processing, enabling the use
of multiple networked computers or highly parallel processors, such as graphics cards. This has
the potential to reduce hydraulic simulations to linear time complexity. Although these advances
may have the effect of reducing the number of combinations and computational requirements by
orders of magnitude, the growth of scenario combinations is still exponential in the number of
components, and uncertainties grow with the size of the system. Whether this may be overcome
by the named techniques and technological advances alone remains to be seen. In order to
address this issue, several researchers have suggested reliability surrogate measures which are
computed for a critical subset of demand scenarios [194, 227]. These shall be discussed in the
following subsection.

4.3.2 WDS Reliability Surrogate Measures

To avoid the computational extravaganza of MCS a surrogate reliability measure may be em-
ployed instead, using a critical subset of demand loadings (typically a peak loading condition
and perhaps some failure / fire scenarios). Minimum excess nodal head or the sum total of excess
nodal heads may be used as very simple reliability surrogate measures. Three more advanced
measures are presented in this section, namely the Resilience Index, Network Resilience, and
Flow Entropy.

Resilience Index

Introduced by Todini [227] in 2000, the Resilience Index is an indicator of excess system power
(energy per unit time). It is based on the notion that internal energy losses will increase when
demand increases or pipe failure occurs. Therefore it is desirable to provide more power at each
node in a looped network than is required, so that a sufficient surplus exists to be dissipated
internally in case of failures. This surplus is then used to characterize the resilience.

If Pr,tot = γ
∑nR

k=1 qR,khR,k is the total available power supplied to the system, where qR,k is the
flow and hR,k is the pressure head supplied by the kth reservoir, and γ is the specific weight of
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water, then
Pr,tot = Pr,int + Pr,ext,

where Pr,int is the power dissipated in the pipes, where Pr,ext = γ
∑n

i=1 qihi is the power delivered
to users in terms of flow qi and head hi at node i, and where n and nR denote the number of
nodes and the number of reservoirs in the network, respectively.

Todini introduced a Resilience Index Ir = 1 − P ∗
r,int/P ∗

r,max, where P ∗
r,int = Pr,tot − γ

∑n
i=1 q∗i hi

is the power dissipated in the network to satisfy the total demand (at any given pressure —
typically in excess of that required) and P ∗

r,max = Pr,tot − γ
∑n

i=1 q∗i h
∗
i is the maximum power

available to be dissipated internally if the constraints in terms of both demand and head are
satisfied at the nodes. After appropriate substitutions, the Resilience Index may be written as

Ir =

∑n
i=1 q∗i (hi − h∗

i )∑nR
k=1 qR,khR,k −

∑n
i=1 q∗i h

∗
i

. (4.6)

Network Resilience

Prasad and Park [194] developed the Network Resilience metric in 2004 in response to the
Resilience Index of Todini described above. The advantage of Network Resilience is that it
explicitly rewards reliable loops of similarly sized pipes by penalizing sudden changes in pipe
diameter. The Todini Resilience Index does not explicitly reflect the effects of redundancy. A
branched network with sufficient surplus head may therefore still be desirable, so that max-
imisation of surplus head or power alone may not be sufficient for a reliable network. Prasad
and Park demonstrated that increases in the value of the Resilience Index did not necessarily
improve network reliability, and that using Network Resilience as an objective instead of the
Resilience Index, produced more robust designs, in that the designs were better able to handle
component failure [194].

The notion of Network Resilience (In) incorporates the effects of both surplus power and reliable
loops. The surplus power at any node i is given by Pr,i = γqi(hi−h∗

i ). A loop may be considered
reliable if the pipes incident with a node are not widely varying in diameter. If d1 > d2 > d3

are the diameters of three pipes incident with node i, then the uniformity of that node is given
by Ui = (d1 + d2 + d3)/(3d1) and in generalized form as

Ui =

∑ni
p

j=1 dj

ni
p ×max

{
d1, . . . , dni

p

} ,

where ni
p is the number of pipes incident with node i. Note that Ui = 1 if pipes incident with

a node all have the same diameter, while Ui < 1 if pipes incident with a node have different
diameters. For nodes incident with only one pipe, the value of Ui is taken to be one. The
combined effect of both surplus power and connecting pipe uniformity of node i, called weighted
surplus power, is expressed as Xi = UiPr,i. For the network as a whole, it is given by

X =
n∑

i=1

Xi =
n∑

i=1

UiPr,i =
n∑

i=1

Uiqi(hi − h∗
i ).

This may be normalized by dividing with maximum surplus power to obtain Network Resilience
as

In =
X

Xmax
=

∑n
i=1 Uiq

∗
i (hi − h∗

i )∑nR
k=1 qR,khR,k −

∑n
i=1 q∗i h

∗
i

, (4.7)
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where Xmax is the maximum surplus power. Network resilience may also be viewed as equivalent
to the Resilience Index with surplus power at node i given a weight of Ui based on the uniformity
in diameter of pipes incident with it. Care should be taken before applying Network Resilience
blindly. In some cases, such as when service lines are connected to mains pipes, differences of
diameter are essential. However, this problem may be overcome by the fact that service lines
are typically not designed at the same time as the primary bulk pipe system, and their demand
is lumped together at the nodes [194].

Flow Entropy

Information entropy is a statistical measure developed by Shannon [215] in 1948 which quantifies
the degree of uncertainty present in a probabilistic system. Entropy is commonly expressed as

E = Υn (p1, . . . , pn) = −
n∑

i=1

pi ln pi,

where pi is the probability associated with the i-th outcome, and − ln pi is the so-called self-
information of a random variable. Entropy theory is often used to determine the least-biased
probability distribution for a system given limited data [67]. Entropy has the property that it is
maximal if all probabilities are equal, i.e. Υn (p1, . . . , pn) ≤ Υn

(
1
n , . . . , 1

n

)
, which concurs with

the notion that uncertainty is highest when all events are equiprobable.

In 1990 Awumah et al. [15] were the first to consider entropy measures of WDS reliability based
on Shannon’s function. In 1993 Tanyimboh and Templeman [225] defined Flow Entropy for use
in WDS analysis. The Flow Entropy of a WDS is given as

Ef = ER +
n∑

i=1

Qi

Q
Ei (4.8)

= −
∑

k∈R

qR,k/Q ln(qR,k/Q)− 1

Q

n∑

i=1

Qi


di/Qi ln(di/Qi) +

∑

j∈Ni

qj,i/Qi ln(qj,i/Qi),




where ER denotes the entropy of the sources (all reservoirs, tanks or external source nodes
k ∈ R), where n is the number of nodes, where Qi denotes the total flow reaching node i and Ei
denotes the entropy of node i, where Q is the sum of nodal demands, where qR,k is the inflow
from source k, where di is the demand at node i, where Ni denotes the set of all the nodes
immediately upstream from and connected to node i, and qj,i is the flow in pipe from node j to
node i.

Flow Entropy is a measure of the uniformity of pipe flows [195]. Therefore, higher values of
Ef characterize a more balanced system, able to respond more gracefully to component failure.
Flow Entropy has the desirable characteristic that it intrinsically rewards pathway redundancy
(or loops), since distribution of flow across additional pathways will increase the entropy value.
This is in contrast to the previous two reliability measures which only increase pathway redun-
dancy incidentally, particularly if pipe failures are simulated. Despite this pressure on pathway
redundancy, the system will not degenerate into a dense grid of small pipes, because there is
a balancing force of smaller pipes limiting flow, increasing velocity and causing greater head
losses, which is penalized by the WDS model constraints. The ability of entropy maximisation
to enhance network reliability has been demonstrated by several researchers [195, 226].
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Mixed Reliability Surrogate

It was surmised that a more practical representation of real-world reliability requirements could
potentially be attained by a combination of the reliability surrogates, thereby incorporating
the strengths of the different techniques. This is simply taken as normalized Flow Entropy Ef ,
multiplied by the Resilience Index Ir. This yields

Ic = Ef/Ef,max × Ir.

This measure has the advantage of addressing uniformity of flow and pathway redundancy by
means of Flow Entropy, and excess nodal power by means of the Resilience Index. Since both
terms are in the range [0,1], they are assigned equal importance.

In this dissertation it was decided to compare these four surrogate measures, namely the relia-
bility index, Network Resilience, Flow Entropy, and the Mixed Surrogate measure.

4.3.3 Graph Theoretic Reliability Measures

A WDS is usually represented as a network graph of nodes and edges (links). Graph theoretic
techniques for WDS reliability estimation deal with the application of algorithms to analyze
connectivity between graph nodes in order to quantify pathway redundancy (typically between
demand nodes and sources). Reliability indices based on connectivity analysis alone are usu-
ally classed mechanical reliability, since they do not consider hydraulic operations. It should
immediately be noted that the connectivity of a demand node to a source is a necessary but
not sufficient condition for demand satisfaction [112], so that while these reliability indices do
provide some insight into the flexibility of a WDS — they constitute a rough approximation
only of hydraulic success.

The first use of graph theory for the reliability assessment of WDSs was by Goulter [109] and
Jacobs and Goulter [133] in 1988. The most popular graph theory technique in WDS design
involves the calculation of minimum cut sets. A cut-set is a set of edges which, when removed,
disconnects one or more nodes in a graph. A minimum cut set is the smallest set of edges for
which this will occur. Minimum cut-sets may also be defined in terms of demand-source pairs,
that is any set of edges disconnecting a particular node from a particular source, or in terms of
an individual node and all sources. If the probabilities of pipe (edge) failures are known, and the
individual node to source minimum cut-sets have been computed, then one is able to calculate
the probability that a node, or any node in a set of nodes (including the entire network) is
disconnected from all sources [269].

One of the difficulties with the minimum cut-set method is that the problem of finding a
minimum cut-set is NP-hard, which essentially means that the complexity of the problem is
exponential in the size of the network when using the best known algorithms to solve the
problem. Researchers have attempted to simplify the problem by edge reduction techniques
(e.g. lumping a series of edges and nodes together as a single entity), but these techniques still
constitute a significant computational burden [112]. Graph theoretic reliability measures are
therefore not employed in this dissertation.

4.4 Network Layout Design

Traditionally, the pipe network layout is designed by the engineer and taken as fixed during
the process of component sizing. In reality, network layout design is tightly coupled to the
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WDSDO problem, both in terms of costs incurred and WDS reliability. It would be ideal
to conduct optimisation on both problems simultaneously. However, this may easily cause the
complexity to explode to infeasible levels (especially if one considers all possible interconnections
between nodes). The problem may still be tractable if approached from a practical engineering
perspective. In reality there are many physical limitations to the actual routes a pipeline may
follow, owing to buildings, roads, other infrastructure and natural features. These elements
allow the designer to immediately eliminate the majority of potential links from consideration,
resulting in a maximal practical layout comprising several redundant links5. Another approach
is for the engineer to design the basic layout in the traditional manner, and then insert as many
useful redundant links as the layout permits (referred to from now onwards as a redundant
layout).

The design methodology of Afshar et al. [4] calls for an initial maximal layout for a WDS
network, in which all potentially useful links are provided. During the course of optimisation,
links may be eliminated (by sizing them to zero) whilst still satisfying given engineering con-
nectivity constraints, thus achieving simultaneous layout and component optimisation. It is
recommended that an initial layout satisfy at least a level 2 reliability, i.e. each demand node
is connected via two or more independent paths to source nodes (tanks or reservoirs), thereby
guaranteeing that no additional part of the network will be isolated in the event of a single-pipe
failure [4]. The approach of Afshar et al. is adopted in this dissertation in the context of a
redundant layout, permitting a basic level of network layout design.

4.5 Additional Topics

There are several additional topics in WDSDO which warrant investigation, but could not be
included in this dissertation due to scope constraints. The following topics constitute features
which should appear in a comprehensive WDSDO model.

4.5.1 Total Costs: Incorporating Maintenance and Energy Costs

Embracing a long-term view with regard to WDS design is desirable, especially in a developmen-
tal setting where infrastructure is frequently inadequate and planning tends to be short-term.
Towards this end, objective function costs may include replacement and maintenance costs over
the lifespan of the system. There exists a relationship between the capacity or size of the in-
stalled WDS and its maintenance costs, owing to the fact that larger components have a smaller
frequency of breakage. However, this relationship is non-trivial, since larger pipes and other
components are more expensive to fix and replace. Therefore, the probabilities of breakage must
be taken into account together with the cost to repair in order to obtain a useful estimate of
maintenance costs over some time-span. In some cases, additional initial capital costs may be
justified in view of minimizing costs over the WDS lifespan. The idea then is to adapt the cost
objective function by adding the present value6 (PV) of repair and maintenance costs over an
expected lifespan (frequently 20 or 25 years) to capital costs.

5This is another topic which warrants further research — using a GIS to derive such a layout from a given
specification of nodes and a data layer of land-use polygons.

6Determining the present value of a future cost entails adjusting the cost to zero-time by means of discounting
inflation and interest. This is equivalent to the amount of money required now to pay the cost in the future. The
formula for present value PV (at time zero), given a future value FV|t, is

PV = FV|t/(1 + ir)
t,
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Furthermore, there is a trade-off between the capacity of installed pumps and pipe sizes, since
larger pipes lose less energy to friction and may potentially be supplied by a smaller pump.
However, in order to evaluate the true costs involved, one must consider the present value of
the energy costs of pumping in addition to the initial pumping equipment costs. Energy costs
may be calculated from an energy price, pump power consumption, and the operating point on
a pump’s volume-efficiency curve.

4.5.2 Tank Design

Tanks are important components of WDSs, particularly for large systems. They provide al-
ternative water sources during periods of high demand or emergency conditions (such as pipe
outages and fires), thereby improving WDS robustness. Furthermore, by storing a backup sup-
ply of water in alternative locations, they engender a larger effective delivery capacity for the
same set of pipe sizes (since the water may flow from different sources and aggregate at the
outflow nodes), which enables a reduction in the size of the supply mains (and associated cost
savings). They fulfil the purpose of pressure equalization, particularly when they are located
at the extremes of a system (where accumulated head losses along the path from the primary
reservoir may be significant) [249].

The design of tanks poses a formidable challenge, owing to the difficulty of simulating the
tank water cycle (particularly in a multi-tank environment), and the host of potential pitfalls
associated with tanks. These include (1) water quality issues, such as water stagnating in a
tank (which causes deterioration of disinfectant and poses a threat to human health), (2) tank
overflow problems (causing water loss and drainage issues), (3) tank location and sizing concerns
(tanks are large, unsightly and typically need to be raised), (4) tank management difficulties
(intervention in terms of flow control into or out of a tank may be required, or tanks may
have to be taken off-line for maintenance), (5) and even security issues, such as the threat of
contaminants being introduced (perhaps maliciously) into the system [249]. Tank design was
traditionally conducted as a manual process. However, this is a difficult process, particularly
when the designer must enable several tanks to work together effectively.

A more technical problem pertaining to design optimisation is that tanks naturally introduce
continuous variables, since tanks may be sized quite arbitrarily. One way to accommodate this
is the adaptation of a mixed optimisation model, which caters for both discrete and continuous
variables [195]. Another technique is the discretization of the search space, reducing the possible
values of tank parameters [238].

Tank design requires an extended period of simulation over the course of a daily or weekly
cycle, in order to determine tank operational behaviour and make adjustments where necessary.
The primary goals in tank design are (1) that pressure constraints are satisfied throughout the
system, (2) that tanks empty and fill over their operational range in order to avoid stagnation
problems, (3) that tank water levels are returned to their original high level at the end of

where ir is the discount rate, equivalent to the interest rate one could earn on an investment, and t is the time
in years. If the current cost is C, then the pumping cost in t years is C(1 + fr)

t, where fr is the inflation rate.

Therefore the future value of a cost is F
[C]

V|t = C(1 + fr)
t, which may be discounted to present value as

P
[C]
V = C(1 + fr)

t/(1 + ir)
t = C

(
1 + fr

1 + ir

)t

.

There is obviously uncertainty regarding the future rates of inflation and interest. In the absence of predictive
economic models, one may simply use the current rates. This may also present an opportunity for sensitivity
analysis on a range of inflation and interest values.
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the demand cycle (a tank would typically be full in the morning, feed water into the system
during the day, and recharge overnight)7, and (4) that tanks provide emergency storage to
cater for increased demand during fire flows, or supply the system in case flow from the primary
reservoir is interrupted (a common guideline is a total emergency storage of AADD + [fire flow
requirements]) [103, 238, 249]. In the case of advanced tank analyses, the actual water mixing
and chemical properties may be simulated for water quality estimation. However, this requires
intensive fluid modelling, which is beyond the scope of this dissertation.

Tanks are typically raised, owing to the requirements of supplying water at a minimum head,
and due to the space restrictions on the ground [238]. A tank may be fully specified by a number
of parameters. Assuming a cylindrical tank, these parameters include the location of a tank in
the WDS, the diameter and length of the connecting pipe (commonly known as a riser), the
tank base elevation, the height, and the diameter. Researchers often identify temporal hydraulic
properties of a tank as additional parameters (sometimes used explicitly as decision variables
during optimisation), such as the initial water level (at the start of the simulation period),
the maximum normal operating water level, the overflow water level, and the minimum normal
operating water level8. The most important of these is the minimum normal operational water
level, since tanks are frequently designed to cease supplying water upon reaching this level,
unless an emergency occurs [238]. Technically, one is also required to know the initial water
level of a tank for simulation purposes, although this may be assumed to be some fraction of
the height (e.g. 90%) [195]. In general, it is a good idea to employ fewer decision parameters in
order to assist optimisation convergence. Vamvakeridou-Lyroudia et al. [238] take this to the
extreme, by assuming that a fixed proportion of each tank is used for emergency storage, that
tanks obey a fixed diameter-height ratio, and by ignoring riser diameters during optimisation.
This enables them to specify a tank using only three variables, namely node location, volume
and minimum normal operational level.

The following tank parameters may be considered as decision variables in a comprehensive tank
model:

1. tank diameter dT,

2. tank top elevation tT,

3. tank base elevation bT,

4. tank node location nT,

5. tank riser diameter rT, and

6. minimum normal water level ℓT.

Assumptions made might be that initial water levels h0
T, are at 90% of the tank height HT =

tT− bT, that overflow occurs when water reaches the top of the tank, and that tank parameters
are within specified limits. The minimum water level may accommodated in two distinct ways.
Firstly, if the designer wishes that the tank connection should close upon reaching this level,
then this may be done. Otherwise, the specified minimum water level may be ignored during
the course of simulation, and the actual simulated minimum water level would replace ℓT.

The following set of restrictions may be placed upon tank parameters in order to avoid unrealistic
designs (such as an extremely tall, thin tank, or a very tiny tank):

7It is typically assumed that the demand cycle starts with full tanks just before the morning peak at 6am, in
accordance with [238].

8Note that tank water level equates to pressure head in a tank.
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1. tank diameter to height ratio is bounded as dhmin ≤ dT/HT ≤ dhmax,

2. tank volume is bounded as VT,min ≤ VT = πHTd2
T/4 ≤ VT,max,

3. tank base elevation is bounded as bT,min ≤ bT ≤ bT,max,

4. tank node location nT is limited to a set of viable nodes NT,

5. tank risers are treated as ordinary pipes in the WDS,

6. tanks are limited to a maximum number in the system (e.g. 4).

These restrictions on tank parameters have been adapted from Prasad and Tanyimboh [195],
although this formulation is slightly less restrictive.

The capital costs of tanks depend on their size (a tank cost function should be available), and
may be included in the WDSDO cost objective function. Tanks in a system may also be subject
to a number of performance constraints evaluated for a given demand cycle. The following are
commonly used. Firstly, the water level at the end of the demand cycle must equal the initial
water level, that is h̺

T = h0
T, where h̺

T denotes the water level at the end of the final period of
a cycle. Secondly, the emergency storage capacity (volume) for all tanks (VT1,min, . . . , VTnT

,min)

must sum to the total required WDS emergency storage SE in m3 (fire flow plus interruption
of mains requirements),

nT∑

i=1

VTi,min =

nT∑

i=1

(ℓT,i − bT,i)πd2
T,i/4 = SE.

Thirdly, for each tank VTi,min must be less than some percentage of the total tank volume
to avoid stagnation problems, i.e. VTi,min ≤ ςVTi (Prasad and Tanyimboh [195] use ς = 0.6).
Finally, no tank should overflow during any period in the simulated demand cycle, but this
condition is already satisfied by the first constraint.

If the penalty method were to be used for constraint handling, a penalty function may be
constructed for tank operational constraints of the form

P̂T =

nT∑

i=1

|h̺
T − h0

T|
h0

T − ℓT
+

∣∣∣∣∣(SE −
nT∑

i=1

(ℓT,i − bT,i)
πd2

T,i

4
)

∣∣∣∣∣ /SE +

nT∑

i=1

min[(ςVTi − VTi,min)/ςVTi , 0].

EPANET 2 [203] may be used to conduct a simulation of tank hydraulics over the course of
a demand cycle. In practice it makes sense to design for a maximum day cycle, especially to
ensure that sufficient spare capacity is available for fire flows. It makes good sense to also
consider tank performance over the course of an average day, since there is the possibility that
tanks may be used inefficiently, which may result in water quality problems. Finally, in practice
tank design is usually closely related to pump design and pump scheduling, since gravity flows
alone may not fulfil the tank recharge requirements.

4.5.3 Pump Design

Pump design refers to the process of determining the capacity and number of pumps in order
to satisfy the hydraulic requirements of a WDS. These pumps would typically be located in a
pumping station, positioned after the water treatment facility [169]. A further task regarding
pump design is the design of a pumping schedule (typically daily, divided into 24 hours) [108].
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Finally, if required, booster pumps may be located in non-looped segments of the WDS [18].
There are typically at least two pumps in a pumping station (perhaps three or four in large
systems) in order to provide a level of redundancy. These are often sized similarly in order to
simplify maintenance [169].

Pumps have two primary purposes: adding energy to the WDS in order to overcome friction
and gravity so as to satisfy consumer hydraulic requirements, and filling tanks as part of a
demand cycle analysis. Pump capacities and number may be adjusted during the course of
optimisation in order to achieve feasible pressures. Pumps should be able to satisfy a peak
hour demand scenario. An additional rule of thumb is that the system should be able to satisfy
fire flow demands with the largest pump out of commission [195]. Incorporating pump design
as a cost objective requires pump capital costs and the present value of energy costs over the
WDS lifetime. This requires simulation of pumping over the course of an extended period
analysis (typically maximum day or maximum week), in order to determine pump schedules.
The simplest type of scheduling is an on/off setting for individual pumps during each pumping
period (usually chosen to coincide with demand periods). Pump costs may then be expressed
as

CP = CP
c + CP

e =

npmp∑

i=1

CP
c,i +

Y −1∑

y=0

(
1 + fr

1 + ir

)y

365

npmp∑

i=1

T∑

t=1

CU,tPr,(i,t)

ηsr,(i,t)
D(i,t), (4.9)

where npmp is the number of pumps, where CP
c,i is the investment cost of the i-th pump, where

Y is the number of years considered for the system lifetime (e.g. Y = 20), where fr is the
inflation rate (e.g. fr = 0.07), where ir is the interest rate (e.g. ir = 0.1), where 365 denotes
the number of days in year y, where T denotes the number of pump scheduling periods in a
day (typically T = 24), where CU,t is the energy unit cost of pumping during period t (e.g. in
units of R/kW-hr), where Pr,(i,t), ηsr,(i,t) and D(i,t) denote the power, efficiency and duration of
operation time respectively, of pump i during period t [108]. Note that pump design requires
pump performance curves both in terms of pressure and volume, and in terms of efficiency and
volume.

4.5.4 Water Quality

Water quality is commonly measured at all outflow and storage points (e.g. tanks) in the
WDS in terms of the concentration of disinfectant (typically chlorine), which must occur within
specified limits [169]. This chemical is generally added at the source (although booster sites
may also exist) and decays as it moves through the system, reacting with the pipe walls and
pollutants in the water. Undesirable residual byproducts may also form depending on the water
characteristics. However, the basic requirements for a water quality model are equations for
conservation of chemical mass to simulate chemical dispersion and decay. This may be expressed
as

∂(Ki,j)t

∂t
=

(qi,j)t

Ai,j

∂(Ki,j)t

∂xi,j
+ Θ(Ki,j)t, i, j ∈ [1, . . . , n], i < j,

where (Ki,j)t is the concentration of chemical in pipe i, j as a function of distance and time,
where xi,j is the distance along the pipe, where Ai,j is the cross-sectional area of pipe i, j, where
Θ(Ki,j)t is the reaction (decay) rate of chemical within pipe i, j at time t [108].

EPANET [203] may be used to conduct water quality analyses. In each time period the hydraulic
state variables are solved, and then chemicals are routed through the WDS, simultaneously
undergoing decay. Decision variables may include the quantity of chemicals introduced at the
entry point, the location of chemical booster sites, and the quantity introduced at the booster
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sites. Constraints on minimum and maximum chemical concentrations may then be specified at
the demand nodes and in storage tanks, in accordance with national water standards [32, 108].

4.5.5 Leakage

Leakage is frequently a large component of water losses. This results in significant revenue
losses due to water losses and wasted energy, and affects system hydraulic performance [100].
In general there is a strong correlation between the age of a system and the amount of leakage.
Leakage may vary from as little as 5% leakage in new systems to 40% or higher in old systems
[251]. Although one is able to combat leakage by means of a leakage detection and repair
program, the design of the WDS may also affect leakage. Designing against leakage involves
pressure control (higher pressures cause more leakage), and the selection of stronger (larger)
pipes. Through the use of a leakage model, one is able to incorporate leakage minimisation as
an additional objective in WDS design, or instead add lost revenue from leakage to the cost
objective function. Leakage models require the use of pressure-driven analysis to accurately
estimate pressures in the system across all operational conditions [100]. Todini [229] conducted
a review of state-of-the-art WDS leakage models in 2008.

4.5.6 Uncertainty in Pipe Characteristics

Pipe characteristics are also subject to uncertainty, typically experiencing degeneration as the
WDS ages. Changes depend on the pipe material, the range of pressures and velocities in the
system, and the corrosiveness and mineral content of water. It may be impossible to predict the
change of pipe characteristics of a new system accurately as a function of time, yet performance
degradation should be taken into account to accommodate future demands. Babayan et al. [17]
use a uniform distribution for Hazen-Williams roughness coefficients in the range [90,110].

4.5.7 Valves

Valves are essential to the effective operation and maintenance of a WDS. In a system with no
valves, the water must be cut off at the source in order to conduct any maintenance operations.
Additional valves in the system allows a more accurate isolation of pipe failures in the system,
thereby affecting fewer customers. Furthermore, if accurate simulations of the effects of compo-
nent failure are required, then knowledge of the exact location of valves is also required. Ideally
one should be able to isolate each segment of a loop, and this forms a common rule of thumb
for valve location. One guideline is placing a minimum of three valves at each intersection,
and two valves at each T-junction [103, 112]. The placement of valves constitutes an optimisa-
tion problem in its own right, although strictly it is a sub-problem of WDSDO. The cost of a
valve obviously increases with valve size, and a valve is sized according to the diameter of the
pipe in which it is fitted. Apart from minimizing cost, objectives in valve placement include
minimizing the impact of valve closures on hydraulic reliability due to segment maintenance,
and minimizing the number of valve closures required to isolate segments (ideally this should
never be greater than four). Although valve selection and placement are not addressed in this
dissertation, there is no practical reason why the optimisation model cannot be extended to do
so in future.
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4.5.8 Transient Analysis: A Warning

As mentioned in Chapter 2, failure to consider the effects of transients may cause serious damage
to a WDS. It is therefore strongly advised that any important WDS design project include some
form of transient analysis, even if only at a basic level. Although commercial software exists for
transient analysis, it would be ideal if commonly used hydraulic simulation software (such as
EPANET) were adapted to include the ability to conduct at least a crude analysis of maximum
pressures during critical transient events. This will enable the designer to select pipe sizes which
are rated for transient pressures rather than normal operating pressures alone. In addition to
correct operating procedures, transients may be mitigated by means of accumulators (such as
air chambers or open surge tanks) connected near a valve, or through the use of pressure relief
valves at critical points in the system, which open automatically when pressures exceed safe
limits [43]. A broad discussion of transient analysis appears in [251].

4.6 Chapter Summary

This chapter featured a number of topics required in the development of a more realistic WDSDO
model, in fulfilment of Dissertation Objective 2 in §1.3 and in partial fulfilment of Objective
3(b). Furthermore, information was presented regarding objectives in addition to cost, in partial
fulfilment of Objective 5.

The topics of water demand estimation (including the consideration of uncertainty), demand
variation and emergency demands were discussed. These considerations are extremely important
during the design of WDSs which are robust under the full range of possible conditions.

The topic of WDS reliability estimation was presented in some detail, focussing on probabilistic
reliability (the probability that hydraulic requirements are met under a range of demand con-
ditions and failure events) and reliability surrogate measures. It was concluded that a reduced
sampling methodology combined with an evolutionary algorithm (e.g. LHS and distributed sam-
pling across generations [141]) may the be best way of approaching the former, while the latter
is investigated in the course of this dissertation by comparing the Resilience Index, Network
Resilience and Flow Entropy measures.

Finally, several additional topics were discussed which should be considered in a comprehensive
WDSDO model, yet could not be included in this dissertation owing to scope limitations. The
topics of tank and pump design were presented in some detail, since these are important in a
comprehensive model. In addition to capital and operating costs, potential hydraulic perfor-
mance constraints were discussed. Other topics discussed included uncertainty in terms of other
design parameters (including pipe roughnesses and initial reservoir levels), the consideration of
running costs over the lifetime of the WDS (in order to merit a long-term design paradigm),
water quality analysis, designing for leakage abatement, valve design and transient analysis.
This constitutes material for possible future work.



Chapter 5

Multi-objective WDS Design
Optimisation

This chapter concerns multi-objective optimisation (MOO) techniques and the essential ex-
tension of WDS design to the multi-objective case. It includes a literature review of MOO
approaches to the WDS design problem, a generic mathematical formulation of the new prob-
lem, and a discussion of MOO in general, including performance evaluation in this context.
Additionally, several multi-objective metaheuristics are discussed. There is a strong focus here
on so-called Multi-objective Evolutionary Algorithms (MOEAs). However, alternative method-
ologies are also presented, including a hyperheuristic named AMALGAM. This is a generic
evolutionary framework for the simultaneous incorporation of multiple diverse algorithms in
the solution process.

5.1 Introduction

Multi-objective optimisation methods allow the user to examine the trade-off between multiple
objectives by finding a set of Pareto-optimal solutions in objective function space. Multi-
objective analysis is considered a more realistic approach in real engineering projects, where
cost is very rarely the only consideration. It generally identifies a wider range of alternative
solutions and provides more information about these solutions, empowering the decision maker.
Water distribution problems may be considered inherently multi-objective. While minimizing
capital cost and maximizing capacity are perhaps the most obvious conflicting objectives, other
objectives may include minimizing risk, maximizing reliability, minimizing deviations from de-
sired performance levels, maximizing water quality, minimizing operational cost, and so on. In
a study of real water distribution system planning situations, Walski et al. [248] showed in 2000
that decision makers consistently preferred more robust designs over least-cost designs.

MOO yields a set of compromised solutions, also known as Pareto-optimal solutions. These
solutions are non-dominated in the sense that no other solution is better with respect to all
objectives, and moving from one Pareto-optimal solution to another results in the improvement
of one objective but the degradation of another. A typical trade-off between cost and system
reliability is shown for a solution set in Figure 5.1. An inferior solution is said to be dominated,
because another solution exists that is better with respect to at least one objective, and no
worse in terms of all other objectives. The hyper-curve which may be drawn through the
Pareto-optimal solutions in multi-objective solution space is commonly known as the Pareto-
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Figure 5.1: The trade-off between cost and reliability in a WDS design scenario.

optimal front. There may exist several sub-fronts into which a set of solutions may be classified,
each lower front being dominated by the one above it. These fronts are typically ranked in order
from best to worst, so that the first front is the current non-dominated front, and the number
of the front to which a solution belongs is known as its front depth or Pareto-rank [251].

Consider a WDS optimisation problem with the M = 2 objectives of maximizing reliability, and
maximizing the inverse of cost (see Figure 5.2). Let d = [d1, d2, . . . , dκ] be the decision vector
representing a solution in decision space D. An objective function f : D→ Y maps the decision
vector to an objective function vector y = [y1, y2], representing the fitness of the solution.
In accordance with the concept of Pareto-dominance for a maximisation problem, objective
function vector y1 is said to dominate objective function vector y2 (denoted by y1 ≺ y2) if,
for at least one i ∈ {1, 2}, y1

i > y2
i and for j 6= i, y1

j ≥ y2
j . Thus, one may say that a solution

d1 is better than a solution d2 when f(d1) ≺ f(d2) (as illustrated in Figure 5.2). The non-
dominated set which represents the best possible trade-offs between different objectives is the
Pareto-optimal set, D∗ ⊆ D.

Multi-objective search algorithms must employ limited memory and finite running time; hence
they cannot guarantee finding all members (or any for that matter) of the true Pareto-optimal
front. The outcome of such a search therefore constitutes an approximation of the full Pareto-
optimal set (for a continuous problem, this set has infinite cardinality). The goal of optimisation
is to find a good approximation of the Pareto-optimal set A∗ ⊆ D∗. However, this is an
idealization — since the Pareto-set is not available in real world problems, it is not possible to
test whether the algorithm has attained any Pareto-set members. More accurately, one may
define A∗ ≈ D∗

S ⊆ D∗, where D∗
S is any finite, representative subset of the Pareto-set with the

property of good spread along the Pareto-front. That is, one strives to find an A∗ that is a
suitable D∗

S, but there are no guarantees in the metaheuristic domain. There may exist many
different approximations, and different algorithms may produce sets of differing quality in terms
of their closeness to the true Pareto-optimal front, and their diversity along it. Performance
assessment must necessarily take the form of comparative analysis between approximation sets.
One Pareto-approximation set A is said to dominate another set B (A ≺ B) if for each y ∈ B,
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Figure 5.2: Solution fronts in objective space. Solution d1 dominates solution d2 (d1 ≺ d2).

there exists an x ∈ A, such that x ≺ y. Similarly, set A is said to weakly dominate set B (A⊳B)
if for each y ∈ B, either y ∈ A or there exists an x ∈ A, such that x ≺ y. Various measures of
quality assessment exist, which will be discussed in §5.5

Traditional methods for MOO include weighted aggregation of objectives, alternating selection
between objectives, replacing objectives with constraints [37], and goal programming [259]. In
weighted aggregation methods, single-objective optimisation techniques may be used to generate
a subset of the Pareto-optimal set by weighing the various objectives in a single lumped func-
tion. However, care should be taken when assigning weights to different objectives, especially
when they cannot all be expressed in common units (such as monetary value). The weights
may be varied systematically over the course of optimisation to obtain different Pareto-optimal
solutions. This procedure was formalized by Cohon [37] in 1978 in what is known as the weight-
ing method. This method suffers from several drawbacks. The first problem occurs when one
objective value differs from another by orders of magnitude, so that large changes in weights
may have a negligible effect on the outcome, or alternatively small changes may have a dramatic
effect. Another major disadvantage is that it cannot generate all members of the Pareto-optimal
front when this front is not convex [251]. In cases where it is difficult to equate objectives in
terms of a common unit, it may be desirable to replace an objective with a constraint. This
paradigm alludes to the constraint method, also by Cohon [37]. It operates by optimizing one
objective while constraining the others to a realistic target value, and possibly varying that
target value over the search period. Practically this has the effect of restricting the original
feasible region. This approach fails to take advantage of certain methods’ ability to thoroughly
search the solution space, such as that of GAs [251]. Criterion-based methods switch between
different objectives in determining which individuals are selected for the mating process. An
example of this is the VEGA algorithm developed by Schaffer [213] in 1985, which has since been
superseded by improved techniques [278]. Goal-programming involves the assignment of target
values to objectives and minimizing the summed deviation from these targets (typically nor-
malized to the objective operating ranges) [259]. These traditional methods suffer from several
drawbacks, such as the exclusion of certain members of the Pareto-optimal set when the front
is not convex, difficulty in determining an appropriate set of weighting coefficients to specify
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the relative importance of objectives, or realistic targets in the case of goal programming, and
relatively high computational costs [251].

Current generation MOO algorithms (MOAs) tend to focus on approximating the Pareto set
and frequently employ a Pareto-based solution fitness strategy. In particular, there has been a
recent deluge of research in the field of Multi-objective Evolutionary Algorithms (MOEAs), such
as the Non-dominated Sorting Genetic Algorithm II (NSGA-II) [61]. These may be thought of
as GAs which have been generalized for multiple objectives, seeking to evolve the population to
be a representative approximation of the Pareto-optimal set. MOEAs are capable of searching
for multiple non-dominated solutions in a single run. This makes them ideal for solving MOO
problems [92].

5.2 History of Multi-objective Optimisation in WDS Design

Multi-objective WDS design came into popular use with the first well-known attempt by Halhal
et al. [116] in 1997. Several researchers have since made important contributions, such as Xu
and Goulter [268] in 1999, Todini [227] in 2000, Dandy and Engelhardt [48] in 2001, Farmani et
al. [86, 87] in 2003 and 2005, Prasad and Park [194] in 2004, Tolson et al. [230] in 2004, Kapelan
et al. [141] in 2005, Keedwell and Khu [143] in 2006, Olsson et al. [185] in 2009, and di Pierro
et al. [68] in 2009.

In 1997 Halhal et al. [116] were the first to consider a multi-objective GA approach to address
the problem of WDS rehabilitation under a limited budget. They accommodated the goals of
maximizing benefit (carrying capacity, physical integrity and system flexibility) and minimizing
cost, using the concepts of Pareto rank and fitness sharing introduced by Goldberg in 1989
[106]. They used the notion of incremental solution building in developing a structured messy
GA (SMGA), a method which exploits the fact that for a fixed budget, only a small number
of the total possible rehabilitation options may be implemented. Whereas the conventional
GA represents all decision variables in a chromosome (even if many are inactive), solution
representation in SMGA begins with a single decision variable (rehabilitation option), and
incrementally builds longer genetic strings up to a maximum number of rehabilitation options,
effectively pruning the search space enormously (reduced from order ωκ to ωk

(
κ
k

)
, were κ is

the number of decision variables, ω is the number of options per variable, and k ≪ κ is the
maximum chromosome length). Their technique is laudable for its dramatic improvements in
efficiency and utility. However, their initialization procedure requires a complete enumeration
of all single-option solutions, which may not be scalable for large systems. Furthermore, their
benefit function is difficult to work with as it requires the specification of weights between a
number of incommensurate system properties. Finally, the fitness sharing technique requires
user-specified cost neighbourhoods. Also in 1997, Savic and Walters [209] used a standard
GA integrated with the EPANET hydraulic solver of Rossman [203], which they tested on
three WDS benchmarks from the literature. They found that the results were sensitive to
Hazen-Williams head-loss coefficients of the pipes. Halhal et al. [254] augmented their SMGA
technique in 1999 to enable the selection of pumps and tanks, including the location of the
latter at any node and inclusion of new operational constraints for tank water cycles. This was
applied to create improved designs for the renowned “Anytown” benchmark (see Walski et al.
[246]). Halhal et al. [116] enforced the structural restriction of recombining chromosomes of
the same length only. In 2002, Wu and Simpson [262] demonstrated that this is unnecessary,
applying the full version of the fast messy GA (fmGA) designed by Goldberg et al. [107] in
1993 to least-cost WDS design. The fmGA employs probabilistically complete initialization and
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explicit building-block (or schemata) filtering and juxtaposition to find good gene combinations
very quickly. They demonstrated dramatically improved performance for the design of a real-
world Moroccan WDS. A disadvantage of their method was that it is not formulated for MOO.
As opposed to the SMGA it can handle completely new designs. In 2004 Tolson et al. [230]
combined the first-order reliability method (FORM) of Xu and Goulter [268] with a basic GA to
find Pareto-optimal solutions for WDS design by means of goal-programming (numerous single-
objective optimisation problems are solved for different reliability goals). This method may
work for small problems, but is computationally expensive as it requires intensive calculation of
derivatives and matrix inversions. Babayan et al. [16] responded in 2005 with a more effective
integration-based methodology designed to accommodate uncertainty in demand inputs, which
is still limited by its single-objective formulation.

In 2003 Farmani et al. [86] compared four MOEAs for WDSDO and concluded that NSGA-II
[61] was the best. In 2002 Wu and Simpson [263] investigated a self-adaptive penalty function
to pressurize the optimisation search towards the region at the boundary of feasibility where
optimal solutions are typically located, thereby boosting performance. This self-adaptive tech-
nique was later incorporated into a multi-objective version of the fmGA by Wu and Walski [266]
in 2004, and applied to the optimisation of the Hanoi network. In 2004 Nicolini [182] compared
three MOEAs (ENGA, NSGA-II, and the controlled elitist NSGA-II [60]) towards the design
of the two-loop network introduced by Alperovits and Shamir [9], finding that the latter two
outperformed the ENGA. Prasad and Park [194] employed the NSGA in 2004 for MOO using
objectives of cost and a novel surrogate measure of reliability called Network Resilience, de-
signed to reward reliable loops in the network explicitly. They found that this produced more
robust designs than previous methods. In 2005 Farmani et al. [88] compared the NSGA-II to
the Strength Pareto Evolutionary Algorithm 2 (SPEA-II) with respect to three WDS bench-
marks, and found that the latter produced improved solution quality (at the cost of increased
running time). They applied these algorithms to the large Exeter WDS benchmark [84] with
three objectives, and concluded that while both algorithms were somewhat successful, further
research was needed in locating better Pareto-optimal sets, particularly in high-dimensional
objective spaces. In another study [87], they applied the NSGA-II to the multi-objective de-
sign of the Anytown WDS [246], which includes the design and placement of tanks, using the
Resilience Index as an objective. In 2005 Kapelan et al. [141] implemented an adapted robust
version of the NSGA-II algorithm (RNSGA-II) which uses reduced sampling fitness evaluation
(requiring fewer hydraulic simulations) to solve the stochastic WDS design problem with the
objectives of minimizing cost and maximizing probabilistic hydraulic reliability. They employed
this approach to solve the famous NYTUN problem [212] in a multi-objective fashion.

In 2009 Olsson et al. [185] compared three estimation of distribution algorithms (EDAs), namely
the Hierarchical Bayesian Optimisation algorithm, the Chi-square matrix method for building
block identification, and the Univariate Marginal Distribution algorithm, the results of which
are discussed in §5.7.3. In 2009 di Pierro et al. [68] analyzed two modern multi-objective, hy-
brid algorithms, namely ParEGO [147] and LEMMO [140], with respect to the design of a real
medium-size network in Southern Italy, and a real large-size network in the UK. Both algo-
rithms were designed for dealing with expensive multi-objective optimisation problems, able to
operate under a scenario of severely restricted function evaluations, and were compared with
the more traditional MOEA PESA-II [39]. ParEGO uses a dynamic approximation technique
based on Gaussian processes (Kriging) to substitute the expensive objective function evaluation,
and LEMMO is a hybrid of a machine learning technique (the C4.5 rule induction algorithm of
Quinlan [198]) and the NSGA-II, which learns induction rules in order to modify the child pop-
ulation in the hopes of speeding up the search. They demonstrated that both algorithms were
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capable of dramatic speed enhancements, and although ParEGO was shown to be unsuitable
for designing large systems, LEMMO could be successfully extended to the efficient design of
large-scale WDSs.

A notable problem with all of these studies is the relatively few WDS benchmarks employed,
making it difficult to make general claims about algorithmic performance.

5.3 Multi-objective Formulation of the WDS Design Problem

A generic formulation of the multi-objective WDS design problem is given in this section. Con-
sider a WDS system with discrete variables xd (including np pipe diameters and other discrete
component sizes, settings and locations), continuous variables xc (including tank dimensions
and valve settings), nR reservoirs and n nodes. A complete solution is therefore x = {xd, xc}.
The multi-objective WDSDO problem for such a system may be expressed as that of finding an
approximation to the Pareto-optimal solution set of designs with objectives of

minimizing C = Cc(x) + Co(x, d, e), [Cost]

minimizing P̂ = P̂ (d, h, q, o), [Penalty]
maximizing R = R(x, d, h, q), [Reliability]
maximizing K = {K1, K2, . . . , Km}, [Misc]
subject to xd = [xd

1 , x
d
2 , . . . , x

d
r ], xd

i ∈ X i, [Discrete]
xc = [xc

1, x
c
2, . . . , x

c
s], xc

i,min ≤ xc
i ≤ xc

i,max, [Continuous]

g(h, q) = 0, [Hydraulic]
h(d)min ≤ h(d) ≤ h(d)max, [Pressure]
wmin ≤ w(x, h, q, d, o) ≤ wmax, [Other]





(5.1)

where d denotes the demand loading conditions at the nodes, h is a 1× n vector of computed
nodal pressure heads, where q is a 1×np vector of pipe flows, where o denotes other computed
hydraulic properties such as tank capacity and water level deviations from those required at the
end of a cycle. Here C denotes the cost of the network as a function of decision variables, includ-
ing capital investment cost Cc and operational costs Co (which may include the present value
of energy costs e for pumping as well as maintenance and repair costs), and P̂ = P̂ (d, h, q, o) is
a penalty function which uses the magnitudes of pressure and other constraint violations. Such
a penalty function is commonly added to the cost function, using a penalty factor to express
violations in terms of cost. The objective R denotes some reliability measure (such as Network
Resilience) as a function of components, nodal heads and pipe flows, and K denotes a set of
miscellaneous objective functions such as maximizing water quality and redundant pathways to
sources.

The hydraulic constraints g = 0 ensure continuity of flow and zero head loss around loops.
These are hard constraints and may be satisfied intrinsically by means of a hydraulic solver
which is called to evaluate the flows and pressures for every network configuration. EPANET2
[203] is employed for this purpose in this dissertation. The remaining constraints are usually
considered soft constraints, in that slight violations may still be acceptable. For this reason
these constraints are typically handled by means of a penalty function, such as the objective P̂ .
If the penalty function is zero, then all constraints are satisfied. The nodal pressure constraints
specify a vector of minimum heads hmin, which ensure a minimum customer service level, and
a vector of maximum heads hmax, which guards against leakage and component damage. The
discrete design constraints specify that every decision variable takes on a value from a discrete
set X i =

{
x1

o, . . . , x
ω
o

}
, where xi

o is the i-th available discrete option. Continuous constraints
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impose maximum and minimum limits on xc. The other constraints, denoted by w, may include
upper limits on flow velocity, tank operational constraints, and budgetary constraints. A truly
generic formulation of this problem is difficult, owing to the large variety of potential objectives
and constraints, and the option to incorporate phased design over time [251]. The WDSDO
formulation presented here is further referred to as the standard multi-objective formulation,
which is adapted for the various benchmark systems in later chapters.

5.4 Multi-objective Evolutionary Optimisation Concepts

The most important issues pertaining to MOEO are solution fitness assignment, diversity preser-
vation, selection, elitism, population management, constraint handling, and variational opera-
tors. A multitude of schemes have been proposed for each of these mechanisms, demonstrating
varying levels of success. The NSGA-II [61] and the SPEA-II [277] are two highly successful
modern MOEAs which have demonstrated superior performance over many of their peers. As
such, these two algorithms will be used to illustrate the algorithm design concepts in the fol-
lowing sections. These algorithms are also used as a benchmark against which to compare new
methods [278].

5.4.1 Fitness Assignment

In order to benefit solutions according to the principle of survival of the fittest, one needs to
adapt the concept of fitness to accommodate multiple objectives. Most modern MOEAs employ
a Pareto-dominance based fitness assignment strategy, whereby the fitness of an individual is
calculated in relation to all other population members using some Pareto ranking measurement.
This idea was first proposed by Goldberg [106]. Several different approaches to dominance
measures have been proposed, unfortunately the naming conventions differ between researchers.
In this dissertation the following conventions are used: dominance count is the number of
solutions by which an individual is dominated, dominance strength is the number of solutions
an individual dominates, and dominance depth, or Pareto-rank is the depth of the front to which
a solution belongs (generally a population may be divided into several fronts, which successively
dominate each other). Various combinations of these measures are also employed [278].

NSGA-II assigns fitness as the Pareto-rank rp of the solutions, which it determines using a
fast non-dominated sorting algorithm to partition solutions into various fronts. A lower rank is
better, and the solutions in current non-dominated front have rank 1 [61]. SPEA-II calculates
the dominance strength value Ŝ of each solution, and then assigns the raw fitness R̂ as the
summed strengths of all solutions which dominate a particular individual. Here raw fitness is
to be minimized [277].

A graphical comparison of these two fitness assignment schemes is provided in Figure 5.3 for
eight solutions in cost-reliability space.

5.4.2 Diversity Preservation

Diversity preservation is the ideal of achieving a representative approximation of the Pareto-set,
such that solutions are spread evenly along the Pareto-front. This is typically achieved by using
solution density information in decision variable space or objective function space. In order
to promote thorough exploration of the search space, individuals will have a greater chance of
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Figure 5.3: Graphical comparison of Pareto-based fitness schemes of NSGA-II and SPEA-II.

being selected as the number of individuals in their neighbourhood is decreased. Density is
most frequently calculated in terms of objective space distances [278].

Kernel methods are sometimes used to quantify density. These methods define the neighbour-
hood of a point j in terms of a Kernel function K which takes the distance d′j,i to another point i
as an argument. The density of solution point j is then D′

j =
∑n

i=1 K(d′j,i). A popular approach
using this technique is called fitness sharing, as employed by the MOGA and NPGA algorithms.
This was proposed by Goldberg [106]. It requires the user to specify a niche radius in objective
function space, so that the fitness of an individual is diluted by the number of solutions within
its niche neighbourhood. The drawback of this method is the difficulty in specifying a good
niche radius, which usually requires a trial-and-error approach.

NSGA-II uses a so-called crowding distance measure to quantify solution density. This is basi-
cally the perimeter of the isolation hypercube around the individual in objective function space.
Solutions are sorted in increasing order along each objective axis, and the difference between
a previous solution’s objective function value and a next solution’s objective function value is
one side of the hypercube. These distances are normalized by the objective range in order to
avoid disparities in magnitude. All sides of the hypercube are then added together to yield a
crowding measure. Solutions with larger crowding distance values are more isolated and there-
fore favoured for selection. Finally, boundary solutions with the lowest and highest objective
values along each axis are assigned infinite crowding distance to ensure that they are selected
[61].

SPEA-II uses the distance to the k-th nearest neighbour as a density estimate. It does so
by calculating the objective space distance between every solution, sorting these distances in
increasing order, and selecting the k-th largest distance value d′k. An adapted inverse, 1/(d′k+2),
is then added to the raw fitness of the solution, in order to discriminate between solutions of
identical raw fitness [277].

A graphical comparison of these two density estimation schemes is provided in Figure 5.4 for a
solution in cost-reliability space.
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Figure 5.4: Graphical comparison of density estimation schemes of NSGA-II and SPEA-II.

5.4.3 Selection, Elitism and Population Management

In evolutionary optimisation, selection occurs both for offspring creation (parent selection),
when potential parent solutions must compete for genetic mastery, and in selection for survival
to the next generation (environmental selection). It is common practice here to employ some
form of elitism so that population degradation is avoided. This is often achieved by the inclusion
of an additional population, known as an archive, which typically stores only non-dominated
solutions. However, given the constraint of finite memory, it is usually not possible to store all
non-dominated solutions, calling for pruning mechanisms to limit population and archive sizes
[278].

The NSGA-II uses binary tournament selection for reproduction, such that the solution with the
lower Pareto-ranking is chosen as a parent and, in the case of identical rank, the solution with
the largest crowding distance is chosen. NSGA-II does not employ an archive. Once offspring
have been produced, NSGA-II calculates the Pareto-rank and crowding distance for all solutions
in the combined parent and offspring population. Solutions are then selected for survival in an
elitist manner, with all the rank 1 solutions being selected first, followed by the rank 2 solutions,
and so forth. If including all solutions of the next rank will increase the selected population
size beyond the original size N , solutions are selected in order of decreasing crowding distance
until the new population size is N [61].

SPEA-II uses binary tournament selection with replacement to define a mating pool. Variational
operators are then applied to the solutions in the pool to create offspring. In contrast to
NSGA-II, SPEA-II employs an archive of fixed size in which it stores the best solutions. If the
non-dominated solutions in each generation are too few to fill the archive, additional solutions
are included in order of increasing fitness. Alternatively, if there are more non-dominated
solutions than the size of the archive, a truncation operator is applied which iteratively removes
individuals. In each iteration the solution with the smallest distance to an archive member
neighbour is removed. If two solutions have the same smallest distance to neighbours, then
their second smallest distance is compared, and so forth.

Several studies have shown that SPEA-II exhibits improved performance over NSGA-II [87],
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especially in terms of diversity and the evenness of solution spread. This may be attributed
to the more finely grained truncation analysis conducted by the former algorithm. However,
this comes at the expense of higher computational costs, which are quadratic in the size of the
population.

5.4.4 Constraint Handling

In evolutionary optimisation it is not normally possible to handle constraints explicitly, except
by the rejection method whereby infeasible solutions are simply discarded. In the majority of
cases this makes it extremely difficult to establish a feasible population, resulting in prema-
ture extinction. This is particularly relevant in WDS design, where most constraints can be
considered soft, in the sense that it may not be possible to satisfy them in all parts of the
system.

Both NSGA-II and SPEA-II are formulated for unconstrained optimisation. Constraints have
therefore typically been handled by means of a penalty term which is added to the basic cost.
This penalty is based on the magnitude of the constraint violation, multiplied by a penalty
factor which scales the violation to the same order of magnitude as the cost. Ideally, this
should result in an infeasible solution being slightly more expensive than a feasible one, so
that the population evolves towards feasibility. The penalty factor would typically require
trial and error fine tuning, although some authors have suggested methods for auto-adaptive
penalties in the single-objective, single constraint case. The auto-adaptive technique of Afshar
and Marino [5] functions by attempting to maintain a balance of feasible and infeasible solutions
in each generation, effectively guiding the search along the boundary of the feasible region. This
provides a significant efficiency enhancement in the single objective case. However, this idea
does not scale automatically to multiple objectives, where a static penalty factor was found
to be more effective. This is presumably since Pareto-optimal solutions do not necessarily lie
on the boundary of the feasible region. Multiple constraints have been dealt with by means
of weighted aggregation, which further complicates matters by requiring weighting coefficients
which specify the relative importance of constraints. This may require an additional level of
fine tuning.

An example of a penalized cost function for WDS systems is C(x, h, v) = Cc(x) + P̂ (h, v),
where Cc(x) is the capital cost and P̂ (h, v) is a penalty term as a function of nodal pressure
heads and pipe velocities v. The penalty term incorporated in this dissertation takes the form

P̂ = pf




np∑

j=1

vj−vmin

vmax−vmin
− 1, if vj > vmax +

n∑

i=1




− hi−hmin

hmax−hmin
, if hi < hmin

hi−hmin
hmax−hmin

− 1, if hi > hmax


 , (5.2)

where pf is the penalty factor. This formulation penalizes constraint violations normalized
by the size of the feasible range of each constraint. This makes specifications of weighting
coefficients easier by removing order disparities between different constraints and also enables
more meaningful aggregation of minimum and maximum constraint violations. Such a penalty
term may be used directly as an indication of feasibility, since it is zero when all velocity and
head values are in their feasible ranges. It is normally unnecessary to include pressure limits
for individual pipes since most pipes are rated for heads above the typical hmax value (although
this may become relevant in the presence of transient effects). Note that velocity here refers to
absolute velocity, since flow may occur in either direction. It is not common practice to specify
a vmin value other than zero [251]. It is further recommended that pressure head limits only
be enforced at nodes with non-zero demand, and velocity limits at pipes which are connected
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to such nodes. It is frequently the case that pressures and flows near the sources are outside
the ranges (pressure heads are lower and flows much higher) normally required by the end-user
(typical in a gravity system).

The penalty factors adopted in this dissertation were determined experimentally with the as-
sistance of an empirical expression, pf = Cmax/0.01, where Cmax is the maximum possible cost
of a network. This expression ensures that a total head deficit greater than 0.01m will result in
a configuration which is more expensive than the most expensive system.

Since the WDS design problem inherently has multiple constraints, it was decided to investigate
a second constraint-handling method by Oyama et al. [190]. This method uses the concept of
constrained domination. Solution i is said to constrained-dominate solution j if any of the
following are true:

1. Both solutions are feasible, and solution i dominates solution j in objective space.

2. Solution i is feasible, but solution j is infeasible.

3. Both solutions are infeasible, and solution i dominates solution j in constraint space (i.e.
it is smaller in terms of at least one constraint violation and no greater in terms of any
other).

If two solutions are non-constrained-dominated with respect to each other, then diversity infor-
mation in objective space and/or constraint space may be used to distinguish between them.
This is applicable even when both solutions are infeasible and neither dominates the other in
constraint space. The two methods used in this dissertation for choosing between two solu-
tions will be called the crowded comparison with penalty method tournament (Algorithm 9) and
constrained domination crowded comparison tournament (Algorithm 10).

5.4.5 Variational Operators and Chromosome Encoding

Variational operators for evolutionary optimisation include crossover and mutation operators.
The purpose of these operators is to apply variation to an existing solution pool in order to
further explore the solution space with the goal of improving the average population fitness. It
is therefore desirable that the operators capitalize on existing solution structure, and are able
to uncover novel genetic encodings of improved fitness. Gene values and gene substrings which
are present in individuals of high fitness are known as building-blocks, and several algorithms
have been designed to work directly with building blocks. Traditional GA variational operators
are based on similar mechanisms in nature; gamete exchange and gene recombination during
sexual reproduction, and imperfect gene copying which is termed mutation [106].

Crossover operators allow the exchange of genetic information between two or more solutions
in order to produce a new (offspring) solution. They should constitute an effective mechanism
for exploring recombinations of the existing advantageous structure embodied in the current
population. Mutation operators cause the random alteration of gene values, thereby providing
fresh ideas and mobility to explore new regions of the search space, in the hope of finding
serendipitous new encodings and avoiding premature convergence. Both operator types are
associated with probabilities of occurrence. Crossover operators typically have a high probability
of occurrence, as they are considered the primary mechanism for variation. Mutation typically
occurs with a low probability, as too much would result in population degradation.
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Algorithm 9 Crowded Comparison Tournament with Penalty Method

Input: Solutions a and b with their objective vectors and constraint violation data
Output: Superior of a and b in terms of objective and diversity information

1: if a is feasible and b infeasible then
2: return a

3: else if b is feasible and a infeasible then
4: return b

5: else if both a and b are infeasible then
6: if penalty term of a is smaller than penalty term of b then
7: return a

8: else
9: return b

10: end if
11: else if both a and b are feasible then
12: if a dominates b in objective space then
13: return a

14: else if b dominates a in objective space then
15: return b

16: else
17: return solution with least objective space crowding CrO.
18: end if
19: end if

The traditional variation operators for binary-coded GAs are the single-point crossover, uniform
crossover and bitwise mutation. Both the single- (or multi-point) and uniform crossovers take
two parent solutions as input. In single-point crossover, a point along the genetic chromosome
string is selected uniformly, the two genetic codes are cut at this point, and the heads and tails of
these code strings are exchanged to form two new solutions. This operator is based on a similar
phenomenon in nature, pertaining to DNA strings. It has the advantage of preserving building
blocks since the solution is only broken at a single point. The uniform crossover creates a new
child by assigning bit values (or whole gene values) from either parent with an equal probability
(0.5). It achieves maximum allele mixing, which works well if there is no interaction between
variables, but which is unsuitable for most real-world problems. A common mutation operator
is the bitwise mutation for a binary-coded genetic string, whereby bits are flipped from 0 and
1 and vice versa, with a low probability (typically of the order 1/n where n is the number of
bits) [106].

It is well-documented that the use of binary-coded strings to represent real values performs
poorly when applying traditional variation operators [58]. Real-coded variables differ from those
in conventional GAs in that the genes (genotype) and the decision variable values (phenotype)
are identical, so that no gene decoding is necessary. Several crossover operators have been
developed especially for real-coded chromosomes. The Simulated Binary Crossover (SBX) was
developed by Deb and Agrawal [58] in 1994, in order to match the search power of the single-
point crossover for binary encodings. The SBX operator is now widely used in continuous
evolutionary optimisation, and is the operator of choice for the NSGA-II algorithm [61]. The

SBX operator is applied between similar genes in different solutions. If x
(1,t)
i and x

(2,t)
i are

variables denoting gene i for two different solutions at time t, and their derived offspring values

at time t + 1 are x
(1,t+1)
i and x

(2,t+2)
i , then a spread factor Ψi is defined as the ratio of the
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Algorithm 10 Constrained Domination Crowded Comparison Tournament

Input: Solutions a and b with their objective vectors and constraint violation data
Output: Superior of a and b in terms of objective or constraint dominance and diversity

information

1: if a is feasible and b infeasible then
2: return a

3: else if b is feasible and a infeasible then
4: return b

5: else if both a and b are infeasible then
6: if a dominates b in constraint space then
7: return a

8: else if b dominates a in constraint space then
9: return b

10: else
11: return solution with least constraint space crowding CrC.
12: end if
13: else if both a and b are feasible then
14: if a dominates b in objective space then
15: return a

16: else if b dominates a in objective space then
17: return b

18: else
19: return solution with least objective space crowding CrO.
20: end if
21: end if

absolute difference between the offspring gene values to that of the parent gene values,

Ψi =

∣∣∣∣∣
x

(1,t+1)
i − x

(1,t+2)
i

x
(1,t)
i − x

(2,t)
i

∣∣∣∣∣ .

The SBX operator uses a probability distribution for Ψi which has been designed to mimic the
spread of a binary crossover applied to a single gene, and such that ‘near-parent’ solutions are
monotonically more likely to be chosen as offspring than solutions distant from parents. This
distribution is

f(Ψi) =





0.5(nc + 1)Ψnc
i , if Ψi ≤ 1,

0.5(nc + 1) 1
Ψnc+2

i

, otherwise,
(5.3)

where nc is a non-negative real number called the distribution index which affects the probability
of selecting offspring close to parent solutions. A high value of nc yields a higher probability
of near-parent solutions, thereby focussing the search around the parents, and a small value
does the opposite. In the literature a value of nc = 2 is typically used. Although schemes have
been suggested to adapt nc during the course of optimisation [63], they were found to perform
poorly compared to a static index in MO WDS design. In order to generate offspring, a random
number ui ∈ [0, 1] is first generated. Then a value of Ψi is found such that the area under the
distribution (5.3) equals ui. This value of Ψi is then used to generate offspring as

x
(1,t+1)
i = 0.5

[
(1 + Ψi)x

(1,t)
i + (1−Ψi)x

(2,t)
i

]
,

x
(2,t+1)
i = 0.5

[
(1−Ψi)x

(1,t)
i + (1 + Ψi)x

(2,t)
i

]
.



108 CHAPTER 5. MULTI-OBJECTIVE WDS DESIGN OPTIMISATION

Differential Evolution is a simple yet powerful optimisation algorithm that uses a differential
crossover operator, employing three solution vectors. These solutions are selected at random
from the population, and the first (or base) vector is adapted by some factor of the difference
vector between the next two solutions. The new solution is then compared to the base solution,
and replaces it if it constitutes an improvement [152]. The Simplex Method may also be used
as a crossover operator, as is the case in SCE (described in Chapter 3). Another interesting
crossover operator is the Jumping Gene (JG) mechanism, whereby genes or gene substrings
called transposons are allowed to change position stochastically within a chromosome. This
mimics the JG transposition phenomenon discovered by Nobel Laureate, Barbara McClintock,
in her work on corn genetics [171, 172]. Transposons may be cut or copied and pasted in different
positions within the same genome or between two different genomes, either overwriting the genes
in that position, or causing them to shift. Chan et al. [27] performed extensive analysis of a
jumping gene MOEA, and demonstrated the superiority of this algorithm over six other popular
MOEAs for the majority of 13 common benchmark problems. In preliminary trials for this
dissertation, the JG operator was applied to WDS design, but the results were unsatisfactory.
It is thought that JG is better suited to problems where variable structure is more homogenous
or balanced. Pipe networks tend to form a natural hierarchy of large diameters near reservoirs,
with smaller pipes at the system outskirts. On average, this hierarchy is disrupted by the JG
operator.

Mutation operators are harbingers of disruption, typically disturbing building blocks. As such,
it is essential that they are used as secondary variation mechanisms, and are applied with a low
probability. Despite their semi-chaotic effect, it is still desirable that mutation is ‘smooth’, such
that mutated gene values have a higher probability of occurring close to the original values. The
classical bitwise mutation operator suffers from the problem of Hamming cliffs, where certain
bit flips may cause extreme alterations in value, owing to each bit having a different order of
magnitude [51].

For this dissertation a novel mutation operator, based on the triangular distribution (TD), was
developed for real and integer coded genes. The TD function involves three parameters a, b, and
c, where a is the lowest possible value of a range of variation, b is the mode, and c is the highest
value attainable. The probability density function (PDF) of the TD is graphed in Figure 5.5(a),
and is formulated as

f(x|a, b, c) =

{
2(x−a)

(c−a)(b−a) , for a ≤ x ≤ b,
2(c−x)

(c−a)(c−b) , for b ≤ x ≤ c.

The cumulative distribution function (CDF) associated with the TD is shown in Figure 5.5(b),
and is given by

P (x|a, b, c) =

{
(x−a)2

(c−a)(b−a) , for a ≤ x ≤ b,

1− (c−x)2

(c−a)(c−b) , for b ≤ x ≤ c.

The TD is applied with the current gene value assigned to the mode b, with a and c taken as
the lower and higher limits of gene values. In order to mutate a gene x→ x′, a random number
u ∈ [0, 1] is generated and the inverse CDF applied as follows,

x′ =

{
a +

√
(c− a)(x− a)u, for u ≤ (x−a)

(c−a) ,

c−
√

(c− a)(c− x)(1− u), for u > (x−a)
(c−a) .

Polynomial mutation is a popular operator developed in conjunction with the SBX method
[58]. In 2008 Deb and Tiwari [64] presented a modified form of polynomial mutation

δ1 =
xp − xℓ

xu − xℓ
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Figure 5.5: Probability density and cumulative density functions for the Triangular Distribution.

δ2 =
xu − xp

xu − xℓ

δq =

{
[2r + (1− 2r)(1− δ1)nm+1]

1
(nm+1) − 1 if r < 0.5

1− [2(1− r) + 2(r − 0.5)(1− δ2)nm+1]
1

(nm+1) if r ≥ 0.5

xc = xp + δq(xu − xℓ),

for their Omni-optimizer algorithm which improves on its predecessor. Here xp is the parent
solution (a real variable), xc is the child solution (a real variable), xℓ is a lower bound on the
solution variable, xu is an upper bound on the solution variable, r is a random number uniformly
distributed in [0, 1], and ηm is the index for polynomial mutation. This formulation uses two
different probability distributions in two different regions (xℓ to xp and xp to xu) of the search
space, thereby assigning a non-zero probability of generating an offspring in the entire search
space, even if the parent is near a boundary value [64].

Another example of a mutation operator for real-coded chromosomes is Non-uniform mutation.
Here, offspring yt+1

i is generated from parent xt+1
i as

yt+1
i = xt+1

i + τ(xu
i − xl

i)(1− u
(1−t/tmax)b

i ),

where xu
i and xl

i are the upper and lower limits on the values of gene xi, where the factor τ
is 1 or −1 with an equal probability, where ui ∈ [0, 1] is a random number, where t is the
generation counter, where tmax is the maximum number of generations, and where b is a user-
defined parameter. This operator has the property of increasing the probability of generating
near-parent solutions as time progresses [200].

A modern revolution in population based optimisation which departs from classical genetic oper-
ators was spawned by the so-called estimation of distribution algorithms (EDAs) or probabilistic
building block algorithms. These algorithms attempt to build probability distributions for chro-
mosome values from the current population, sometimes incorporating gene linkage information
by means of joint probability distributions. These distributions are then used to sample gene
values in order to create new offspring solutions. A simple Univariate Marginal Distribution
(UMD) algorithm is described later in this chapter, as well as a variation on this, the Parti-
tioned UMD, developed by the author. Another interesting approach is the so-called Fast Messy
Genetic Algorithm which attempts to identify good gene schemata or building-blocks explicitly,
by employing a messy or partial representation of chromosomes [107]. These building blocks
are then recombined using traditional operators with the help of a template solution to fill in
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the missing information. This may be generalized to MOO by considering a diverse archive of
non-dominated template solutions.

Chromosome encoding obviously restricts which operators may be applied. In this dissertation
only integer coded genes were employed, however, the software model was designed to addition-
ally allow for real coded genes. An emphasis was therefore placed on using variational operators
that are applicable to both integer and real gene encodings. Hence, the answer was to inves-
tigate real-coded operators combined with a discretization scheme in order to map results to
integer values.

In preliminary trials on the simplified pipe network optimisation problem, the SBX operator
with simple rounding (applied at random to each corresponding gene pair with a probability
of 0.5) was found to outperform single- and double-point crossover. Triangular mutation was
similarly found to be superior to polynomial mutation for use in WDSDO. These variation
schemes were therefore employed in this dissertation for many of the algorithms tested (e.g.
within the NSGA-II and SPEA-II frameworks).

5.4.6 Population Sizing

Traditionally population sizing for genetic algorithms was performed on an ad hoc basis, with
a size in the region of 50–100 solutions most commonly used [164]. Population size is a critical
parameter with respect to the correct functioning of evolutionary algorithms. This is due to the
requirement for sufficient genetic schemata (solution building blocks), allowing a multi-modal
search to cover the search space adequately. This means that the required population size
depends on the size and complexity of the problem. If the population is too small, then the al-
gorithm will become trapped in localized regions of the search space. However, if the population
is too large, then the algorithm will unnecessarily waste computational resources [165]. The
majority of current MOEAs and other multi-objective metaheuristics employ static population
sizes, and hence sensitivity analysis should be conducted with respect to the population size
used, since it will have an effect on the performance of a particular algorithm.

In 1999 Harik and Lobo [119] introduced the parameter-less GA that incorporates adaptive
population sizing using multiple competing populations of consecutively increasing sizes, which
undergo optimisation simultaneously and independently. At any one time there are two pop-
ulations, the larger of which is double the size of the smaller. Populations are evolved for an
equal amount of time (or perhaps benefiting the smaller population by some factor m > 1). The
average fitnesses of the populations are compared, and if the larger population has a superior
average fitness, then the smaller population is discarded and a new population is introduced
whose size is again doubled. Harik and Lobo argue that since the smaller population receives
the same (or a larger) allotment of computational resources, its average fitness being lower
is compelling evidence that it contains insufficient building blocks. This process is repeated,
evolving the larger population for an equivalent period of time until either the smaller popu-
lation is again discarded or outperforms the larger one — evidence that the larger population
is wasting computational resources unnecessarily. The current smaller of the two populations
then represents the ‘optimized’ population size [164]. For multi-objective optimisation some
other measure of fitness is required which summarizes the quality of the entire population.

In this dissertation the following convention with respect to static population sizing has been
applied: For each algorithm-benchmark pair, the above procedure was executed by starting with
populations of size 25 = 32 and 26 = 64, and for larger populations progressively incrementing
the size by doubling the previous size. A time budget consisting of the time to conduct 20 000
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hydraulic simulations of a particular benchmark was used for each population. The measure
of fitness employed is the population hypervolume (a measure of the area (or volume) domi-
nated by a population in multiple objective space). The sizing process was repeated 10 times
with randomized initial populations for each algorithm-benchmark pair. It was found that the
‘optimal’ population size of an algorithm for a particular benchmark varied from sizing to siz-
ing. However, there was a tendency for a particular population size to dominate in the sizing
outcomes for each algorithm-benchmark combination. In the case of a tie, the population size
that produced the higher average hypervolume was chosen. To analyze the robustness of this
sizing scheme, trials were performed using the times for 10 000 and 30 000 hydraulic simula-
tions respectively. Here it was found that different ‘optimal’ population sizes were occasionally
produced for a particular algorithm.

There are two primary concerns with population sizing, namely (1) that the population is
large enough to provide sufficient representative schemata, and (2) that a particular algorithm
employs the population size that optimizes its performance. The first concern is addressed by
the sizing method above. The optimal size for algorithmic performance is a more thorny issue.
There are two primary components of algorithmic performance: speed and solution quality.
There are also two general observations to be made regarding the effect of population size.
Firstly, in general, the larger the population, the slower the convergence to a relatively stable
Pareto-optimal approximation set. Secondly, it was observed empirically that larger populations
tend to produce higher quality Pareto-set approximations once they have converged. Therefore,
an algorithm with a smaller ‘optimal’ population size will usually have a speed advantage over
another algorithm but produce approximation sets of inferior quality.

By assigning a similar population size to all algorithms and conducting convergence analyses,
one can observe the relative speed of the algorithms. Then, taking the longest convergence time
amongst the algorithms, one may allow all algorithms to execute for a similar length of time in
fair time trials, and proceed to compare the quality of the solutions produced (without concerns
about differences in the size of the approximation sets produced by the different algorithms).

In this dissertation, algorithms tested were divided into two classes, depending on their popula-
tion size requirements (the classes of EDAs and MOEAs). For each class, the sizing methodology
described above was applied and the largest ‘optimal’ population size found amongst all sizing
trials for a particular benchmark was identified. This population size was then employed for all
algorithms in a class in both the convergence trials and the fair time trials.

5.4.7 Epsilon-domination and Grid-based Optimisation Schemes

Epsilon (ǫ-) dominance is a variation on the ordinary Pareto-dominance concept with several
different interpretations. The most common definition is that an n× 1 vector u ǫ-dominates a
vector v if and only if (1 + ǫ)ui ≥ vi i = 0, . . . , n (maximisation problem). This is commonly
used in solution archiving schemes, by preserving the subset of non-dominated solutions that ǫ-
dominates the rest of the Pareto-front. What makes this technique useful is that the population
will converge to an ǫ-approximation of the Pareto-optimal set whose size is finite and depends
on the value of ǫ. This is extremely beneficial in cases where the true Pareto-optimal set
grows exponentially with the size of the problem. Horoba and Neumann [125] have, however,
demonstrated cases where the use of such an ǫ−dominance scheme can impede the optimisation
process significantly.

Epsilon dominance may also be used in the simplified context of cell/grid-based dominance,
whereby the user is able to specify the desired precision for each objective in a multi-objective
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problem. For example, consider a bi-objective problem with objectives of cost C and reliability
R. One may then specify a precision ǫC for the cost objective (e.g. ǫC = R10 000) and precision
ǫR for the reliability objective (e.g. ǫR = 1%). The notion of ǫ-dominance then applies a
hypergrid in objective function space, with cell sizes defined by user-specified ǫ-values. The
ǫ-dominance scheme uses this hypergrid to determine which solutions are dominant, based on
entire grid cells rather than on individual objective vectors. Solutions are mapped to ǫ-cells, and
associated with the most non-dominated corner (NDC) of the given cell. Solutions in other cells
whose NDC coordinates are dominated by the NDC coordinates of the given solution are said to
be ǫ-dominated. Strict-ǫ-domination would require that both NDC coordinates be dominating.
If only a single solution is retained per cell, then the one with the smallest Euclidean distance
to the NDC may be retained. In this manner it is possible to reduce the number of population
members under consideration significantly (e.g. during the selection phase), in the hope of
achieving computational cost savings. However, one must balance this saving with the reality
of having to update the supporting data-structures, and the loss of precision intrinsic to this
scheme.

Another use of such a grid scheme is to store solution quality information in the form of one
or more epsilon hypergrids, instead of associating it with the solutions directly, such that the
solutions interact with the objective-space hypergrid rather than directly with each other. Po-
tential computational savings may then be achieved, depending on the precision used, since
a very fine precision will require numerous grid cells to be updated for every solution during
each generation. This is discussed in more detail in the context of the Dynamic Multi-objective
Algorithm later in this chapter.

The notion of cellular ǫ-domination is demonstrated in Figure 5.6.

Since there is only one solution per grid cell, this method has the further advantage of prevent-
ing solution clustering, and ultimately producing a more evenly distributed approximation set.
Larger values of ǫ result in a coarser grid, with fewer solutions, and faster processing times. Fur-
thermore, an epsilon-hypergrid is a useful concept since it has the potential of replacing cryptic
algorithmic parameters with objective axis precisions, which users may able to understand and
use more easily. This also enables the use of various adaptive mechanisms. For instance, it may
be possible to conduct a coarse search initially, and gradually increase the ǫ-precision as the
search progresses.

5.4.8 Adaptive Population Sizing

Adaptive population sizing is featured in several MOEAs. In 2007 Kollat and Reed [149]
conducted a performance evaluation of two such algorithms, namely ǫ-NSGA-II and ǫ-MOEA,
which they compared to the ordinary NSGA-II. The algorithms work by storing an archive of
ǫ-non-dominated solutions and conducting a series of connected optimisation runs. The search
is periodically restarted with a larger population, and the initial population is preconditioned by
seeding it each time with archive solutions, along with randomly generated solutions. The size of
the archive dictates the size of the population. For example, ǫ-NSGA-II uses a population four
times larger than the current archive size, requiring 75% randomly generated solutions. This
is effective in introducing new chromosome building blocks with each restart, and preventing
premature convergence to local Pareto-fronts. The following scheme for automatic termination
is used by ǫ-NSGA-II:

1. The ǫ-archive is updated at the end of every generation using the current population.
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Figure 5.6: A cellular ǫ-dominance scheme applied to solution selection using a hypergrid in
objective function space.

2. At the end of each lag window of c generations, the difference in size of the archive between
the start and finish of the lag window is examined, and a new sub-run is initiated (with a
newly seeded population) if it has failed to grow more than a specified percentage ∆. A
new sub-run is also initiated if a maximum number of generations Gmax is reached (Kollat
and Reed [149] recommended values of c = 10, ∆ = 0.1, and Gmax = 50).

3. If the archive size fails to grow more than ∆% between successive sub-runs, then the
number of archive replacements during the sub-run is examined. If this fails to be larger
than a specified percentage of the archive (e.g. 2%), then the search terminates; otherwise
a new sub-run is initiated.

ǫ-NSGA-II was found to outperform the other algorithms, being able to accommodate difficult
problems that the other methods failed to solve. A useful feature of this algorithm is that its
archiving and adaptive population sizing schemes are applied after the fact, so that they may be
used in almost any MOO scenario. Detailed descriptions of ǫ-dominance are given by Laumanns
et al. [161] and Deb et al. [62]. A preliminary investigation of ǫ-NSGA-II in this dissertation
for use in WDSDO failed to demonstrate significant improvements above the ordinary NSGA-II
with replacement of duplicate solutions by random alternatives.

Other mechanisms for adapting population size have been proposed, such as that of the Dy-
namic Multi-objective Evolutionary Algorithm (DMOEA) [271] which uses explicit rank and
density goals in cells of an epsilon hypergrid, coupled with a population growth and decline
strategy. Another technique is simply making the population size a function of the number
of non-dominated solutions, such as in the FastPGA algorithm [82] (although this may cause
exponential population growth). A better method is to make the population size a function
of the current ǫ-Pareto-front size. Possibly the most rationally sound method of population
sizing is through a race of multiple populations of differing sizes (typically sized in powers of
two), determining the best population as the one with the best average fitness. This approach
is adopted in the parameter-less GA [164]. The major disadvantage of this method is its high
computational expense.
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5.5 Performance Evaluation for MOAs

In 2000, Zitzler et al. [276] noted three main aims in MOO: (i) to maximize the number of
elements of the Pareto-optimal set found, (ii) to minimize the distance of the Pareto-front
produced by an algorithm with respect to the global Pareto-front, assuming its location is
known, and (iii) to maximize the spread of solutions found (i.e. maximize how smoothly and
uniformly a Pareto approximation set is distributed). Another evident goal is that the algorithm
should be able to provide such results within a reasonable time-frame.

Numeric measures of solution quality are subject to limitations. Firstly, it is often impossible to
determine the exact location of the true Pareto-front in practical, real-world problems (as is the
case in WDS optimisation), which compels the user to conduct comparative analysis between
different approximation sets. Also, the goal of global convergence requires that the sequence
of Pareto-set approximations At produced by the algorithm converges to the true Pareto-set
D∗ as the number of generations t grows. However, it is intuitively apparent that this is not
practically feasible as it requires unlimited memory resources (the cardinality of the Pareto-set
may be arbitrarily large [278]).

Secondly, the nature of the three aspects listed above makes their simultaneous assessment by a
single performance measure tricky, especially one which provides only a unary quantification of
some quality aspect. Therefore, it is recommended that more than one quality measure is used
and, in particular, that at least one binary performance indicator be used, which allows the direct
quantitative comparison of two approximation sets [278]. Furthermore, performance measures
used should be Pareto-compliant. Pareto-compliance means that an indicator should only give
preference to one approximation set, A, over another set, B, if B does not weakly dominate
A. Most unary indicators are non-Pareto-compliant [148]. One of the popular exceptions is the
hypervolume metric [276] (discussed later). However, these performance assessment measures
may still be unsatisfactory, such as when algorithms are equally good at locating solutions
in certain regions of the search space, but vary dramatically in other regions. The simplest
assessment method remains a graphical comparison of results, which may reveal additional
information hidden by numeric measures. It is desirable to include graphics in addition to
ordinary quality measures, although this may only be possible for at most tri-objective problems.

Other issues regarding performance measurement for MOO are: convergence and optimisa-
tion termination criteria, optimisation parameter settings, equitable comparative analysis, and
solution quality measures. These shall be discussed in the following subsections.

5.5.1 Convergence

Since the true Pareto-set is not available, convergence must be defined in terms of convergence to
a static population. However, since this may take an exorbitant length of time, it is reasonable
to define convergence as the event that the percentage improvement in the approximation set
falls below a specified threshold for a required number of consecutive generations. In this
dissertation a threshold of 0.05% change in hypervolume per generation is used, and this must
occur for two hundred consecutive generations for the algorithm to have ‘converged’.

5.5.2 Parameter Tuning

Most optimisation algorithms have a number of parameters which may be tuned to adjust
algorithm performance. One focus in this dissertation is using algorithms which require minimal
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parameter setting by users. This is achieved either by employing algorithms which are robust
under a wide range of different parameter values (such GAs), or by using algorithms which
self-adapt parameter values, such as during adaptive population sizing. Where this is not
possible, the general approach in this dissertation is to consider a range of parameter values for
each algorithm, and conduct preliminary sensitivity analysis in order to determine which set of
values to implement in the final algorithms. The parameter settings for the specific algorithms
used in this dissertation are provided and motivated in Chapter 6.

5.5.3 Algorithm Comparison

It is traditional to compare the performance of evolutionary algorithms by executing different
algorithms with similar population sizes for an equal number of generations [16, 209, 218]. This
allows results from different studies to be compared independently of the computer software
and hardware used. However, this method becomes impractical when using algorithms which
require different population sizes (such as EDAs), or adaptive population sizing (ǫ-NSGA-II).
Additionally, it may be highly unfair, considering that an evolutionary generation may entail
an arbitrary amount of numerical processing, possibly including a local search subcomponent,
resulting in very different generational processing times from one algorithm to the next. Nu-
merous studies have erroneously reported results where algorithms are compared on this basis,
where one is an order of magnitude worse than another in terms of execution time.

One solution might be to impose a maximum budget of objective function evaluations (or
hydraulic simulations in the case of WDS design), particularly if the processing bottleneck is
caused by this stage of the optimisation. However, there may also be a trade-off between the
number of objective function evaluations and computation in the rest of an algorithm. It is
conceivable that an algorithm with a high degree of function evaluations is relatively efficient
in all other respects, resulting in unfair penalization.

Therefore, the only truly fair mechanism would seem to be to impose a time budget, such that
an algorithm must do its best within an allotted time-frame. Of course, one could argue that
this is only valid if all algorithms demonstrate similar behaviour with regards to their fitness
improvement profiles. An algorithm with a linear average fitness improvement profile (e.g. a
greedy heuristic) may outperform one with an exponential improvement profile (e.g. a GA) if
the time budget is too brief.

One solution to this conundrum is to execute all algorithms being compared independently until
they converge (as defined in §5.5.1), and then to use the longest average running time as the
maximum time limit. This may be excessive if certain algorithms are very slow, although it may
be argued that these algorithms are not of interest for practical implementation. This practical
philosophy is applied in this dissertation, employing a 90% percentile with respect to running
times, and discarding the top ten percent of longest average running times.

This is in line with the requirement of maximizing efficiency in what is already a very computa-
tionally demanding problem. In order to make this time to convergence comparison technique
more robust, several runs (i.e. 30) of each algorithm are executed in order to calculate their
average running times. This method may also be used to transfer experiments to a new com-
puter platform (i.e. attaining new time limits for the new system), provided similar convergence
thresholds are employed.
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5.5.4 Solution Quality Assessment

In this dissertation, three measures of solution quality are employed. The use of multiple
performance measures, including ones that are Pareto-compliant, is recommended by Knowles
et al. [148] in an extensive tutorial on performance assessment for MOEAs.

The first performance measure is a dominance rank quantifier, advocated in [148] as the first
step in comparing algorithm results. The Pareto-compliance of dominance ranking follows
directly from its definition. The second measure is the unary hypervolume metric, which is
extremely useful in that it simultaneously quantifies dominance and spread, and is also Pareto-
compliant. The third measure is a novel unary metric for diversity / spread quantification based
on an ǫ-dominance scheme. This third measure is non-Pareto-compliant, and should therefore
be considered only after the first two. The order of these performance measures conveys in
some sense the order of their importance. An algorithm producing approximation sets with
the highest average dominance ranking for a statistically significant number of trials is almost
certainly superior.

The dominance rank quantifier uses a binary weak-domination indicator which compares one
approximation set to another and determines whether or not it weakly dominates it. One
may say that set A is better than set B if it weakly dominates B, and is dissimilar from B.
Mathematically this is expressed by A ⊳ B. A given approximation set A is compared to every
other approximation set in the total pool P of approximation sets produced by the various
algorithms. The dominance rank of A is then

rank(A) = 1 + |{Bi ∈ P : Bi ⊳ A}| .

The lower the ranking, the better the approximation set is with respect to the entire set pool.
Three approximation sets along with their rankings are shown in Figure 5.7(a). The rank must
be calculated for each set A

j
i , i = 1, . . . , m produced by each algorithm j = 1, . . . , n, forming a

set of rank samples for each algorithm,

DR =
[{

rank(A1
1), rank(A1

2), . . . , rank(A1
m)

}
, . . . , {rank(An

1 ), rank(An
2 ), . . . , rank(An

m)})
]
.

A statistical rank test may be used to determine whether the ranks assigned to one algorithm
are significantly smaller than the ranks assigned to another. In this dissertation, the average
and standard deviation of dominance rank was reported for the approximation sets produced
by each algorithm.

The unary hypervolume metric by Zitzler and Thiele [279] is a fine-grained analysis which
measures the total hypervolume of the objective space dominated by a given approximation
set, relative to a reference point. Higher hypervolumes are more desirable, since more space is
dominated. This metric has the advantage of representing both closeness to the true Pareto-
front and solution diversity. Any reference point used should be dominated by the entire set of
known solutions [279]. For a maximisation problem with positive valued objectives, the natural
choice of reference might be the zero vector. Figure 5.7(b) shows a hypervolume region for a
given approximation set in cost-reliability space. It may be sensible to normalize hypervolumes
to the range [0,1] for presentation purposes, as was done in this dissertation by normalizing the
hypervolume of each approximation set by the hypervolume of the best Pareto-set found by
combining every approximation set produced by all algorithms. Average dominance rank is the
primary measure employed to rank algorithms in this dissertation (taking standard deviation of
dominance rank into account in the case of a tie), with average hypervolume attainment used
to distinguish between two algorithms with identical dominance statistics.
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The unary diversity metric used is defined simply as the size of the final ǫ-archive for each
approximation set. If the algorithm under consideration does not use an ǫ-archive, then each
output approximation set is simply inserted into one of identical precision at the end of the
optimisation run. This archive size is equivalent to the number of evenly spaced ǫ-dominance
hypergrid cells containing solutions. If two algorithms consistently converge to a common front
(e.g. they both have dominance rank 1), but one algorithm has a larger ǫ-archive, then its
solutions cover more of the Pareto-front and are therefore better distributed.

Finally, results shall also be presented graphically, in the form of so-called attainment fronts,
which includes all the non-dominated solutions from the combined approximation sets of an
algorithm. This is shown as a stepped hypervolume region, as per Figure 5.7(b).
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Figure 5.7: Multi-objective solution quality assessment mechanisms.

5.6 Multi-objective Evolutionary Algorithms

MOEAs are population based search procedures designed to produce an approximation to the
Pareto-optimal set of solutions in multiple objective space. A generic algorithmic formulation
for MOEAs may appear as follows:

1. Initialization: Generate an initial population (randomly or otherwise) and evaluate their
fitness.

2. Parent Selection: Select a mating pool from the current population, favouring solutions
of greater Pareto-dominance.

3. Solution Creation: Create a population of offspring solutions from the mating pool using
recombination and/or mutation operators.

4. Fitness Evaluation: Evaluate the Pareto-based fitness of offspring solutions.

5. Environmental Selection: Select solutions for survival to the next generation from the com-
bined parent and offspring populations, favouring solutions of greater Pareto-dominance.
Update the current population. This stage may include interaction with a non-dominated
archive or the use of diversity preservation mechanisms.
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6. Termination Check : If the termination condition is satisfied, then stop and output the
current population / archive; otherwise return to Step 2.

The working of three popular MOEAs mentioned previously, namely NSGA-II, SPEA-II, and
Differential Evolution is described in this section. Each of these algorithms is employed for
WDSDO in the following chapter of this dissertation.

5.6.1 NSGA-II

The Non-dominated Sorting Genetic Algorithm II (NSGA-II) was developed in 2002 by Deb et
al. [61] in an attempt to improve upon the performance of its predecessor the NSGA, as well
as several competing MOEAs. Its design objectives were to reduce the number of optimisation
parameters, improve its elitism scheme, and improve upon the computational complexity of the
non-dominated sorting algorithm used in most MOEAs at the time (which was O(MN3), where
M denotes the number of objectives and N denotes the population size). It is still considered a
state-of-the-art MOEA, and has outperformed many of its brethren for numerous optimisation
problems. NSGA-II is also frequently used as a benchmark in MOO studies [86, 88, 141, 185,
194].

Farmani et al. [86] conducted a study in 2003 in which they compared the performance of
four modern MOEAs — the Multi-objective Genetic Algorithm (MOGA), the Pareto Archived
Evolution Strategy (PAES), the Niched Pareto Genetic Algorithm (NPGA), and NSGA-II —
in solving the deterministic multi-objective WDS design problem. They concluded that the
NSGA-II is the best of the four.

The NSGA-II is notable for the relatively low computational complexity of its Pareto-rank sort-
ing algorithm, called the Fast Non-dominated Sorting Algorithm (FNSA), which is O(MN2)1.
The FNSA works by first calculating the dominance count dc

i for each solution i (i.e. the number
of solutions which dominate i), and Si, the set of solutions which i dominates. This stage re-
quires O(MN2) comparisons. The solutions in the first non-dominated front have a dominance
count of zero, and are assigned Pareto-rank 1. The second stage of the sorting begins by placing
all solutions having a dominance count dc

i = 0 in a separate set F1, and cycling through this
set. For each i ∈ F1, the algorithm visits each solution j ∈ Si, and decrements its dc

j value,
effectively discounting the effect of i on j’s dominance count. In this manner, all the rank 1
solutions’ effects on dominance count are discounted for the remainder of the population. All
rank 2 solutions now have a dominance count of zero. These are then placed in a separate set
F2, and the algorithm proceeds by cycling through this set. This process continues for succes-
sive fronts until all solutions have been ranked. This stage requires at most O(MN2) steps. A
pseudocode listing of the FNSA appears in Algorithm 12 [61].

Suppose there are h solutions in a population. In order to calculate the crowding distance
density measure one must sort the solutions in order of increasing value along each objective
axis. Let Y [i]|k represent the objective function value of the i-th solution in the sorted list for
the k-th objective. The crowding distance idist for the solutions at the endpoints, Y [1]|k and
Y [h]|k, are assigned a value of infinity, and the crowding distance of the intermediate solutions
i are incremented by the distance between their neighbours on either side, that is a value of
idist|k + (Y [i + 1]|k − Y [i− 1]|k)/(kmax − kmin) is assigned to idist|k, where each distance value
has been normalized by the length of objective k’s range. Crowding distance is accumulated for

1It should be noted that the latest algorithm for non-dominated sorting is able to achieve a computational
complexity of O(MN logM−1 N) [138].
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Algorithm 11 Non-dominated Sorting Genetic Algorithm II (NSGA-II) [61]

Input: A MOO problem where solutions are an assignment of values to decision variables x, a
population size N , a set of constraints and violation magnitude functions, M objective func-
tions to produce entries for the M × 1 objective vector y, a maximum number of generations
Gmax.

Output: An approximation of the Pareto-optimal solution set in multi-objective space, A∗.

1: Randomly generate an initial population of solutions P 0 of size N .
2: Rank and sort P 0 using the FNSA [Algorithm 12].
3: Calculate the crowding distance of the solutions in P 0 [Algorithm 13]
4: Create population Q0 of size N using binary tournament selection (with the crowded com-

parison operator ≻c) from P 0, crossover and mutation.
5: t← 0
6: while t < Gmax do
7: Rt ← P t ∪Qt

8: Partition Rt into fronts F1,F2, . . . by means of the FNSA.
9: P t+1 ← ∅ and i← 1

10: while |P t+1| < N do
11: if |Fi|+ |P t+1| <= N then
12: P t+1 ← P t+1 ∪ Fi

13: else if |Fi|+ |P t+1| > N then
14: Calculate crowding distance for all solutions in Fi.
15: Sort Fi members in order of decreasing crowding distance.
16: P t+1 ← P t+1 ∪ { the first (N − |P t+1|) elements of Fi}
17: end if
18: i← i + 1
19: end while
20: Calculate the crowding distance for each x ∈ P t+1.
21: Create Qt+1 of size N using crowded comparison selection, crossover and mutation.
22: t← t + 1
23: end while
24: A∗ = P Gmax

each objective. The complexity of this process is dominated by the sorting procedure which is
O(MN log N). A pseudocode listing for the crowding distance calculation appears in Algorithm
13. The crowding distances may now be used to estimate solution density, with a higher value
indicating a more isolated solution [61].

Pareto-rank and crowding distance measures give rise to the so-called crowded comparison op-
erator (≻c) for use in binary tournament selection. This operator defines the fitter of two
solutions (i ≻c j) firstly as the one with the lower rank (irank < jrank) or, provided the ranks
are equal, the one with the largest crowding distance (if irank = jrank, then idist > jdist). This
favours exploration of solutions in less crowded regions [61].

A pseudocode listing for the main NSGA-II loop appears in Algorithm 11. The initial popu-
lation P 0 is generated randomly. In order to produce the first offspring population Q0, P 0 is
sorted using the FNSA, and crowding distance values are calculated for each solution. Offspring
creation proceeds by binary tournament selection from P 0 using the crowded comparison op-
erator, solution crossover, and mutation. For binary-coded chromosomes Deb et al. [61] used
single-point crossover and bitwise mutation with a probability 1/κ (where κ is the number of
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Algorithm 12 Fast Non-dominated Sorting Algorithm [61]

Input: A population of solutions P , where each solution is a specific assignment of values to
decision variables x, a vector y of two or more computed objective function values for each
solution.

Output: The original population partitioned into successively dominating fronts, F1, . . . ,Fn.

1: F1 ← ∅
2: for all p ∈ P do
3: Sp← ∅ [Sp is set of solutions which p dominates]
4: dc

p← 0 [dc
p is count of how many solutions dominate p]

5: for all q ∈ P do
6: if p ≺ q then
7: Sp← Sp ∪ {q} [p dominates q]
8: else if q ≺ p then
9: dc

p = dc
p + 1 [increment the domination counter of p]

10: end if
11: end for
12: if dc

p = 0 then
13: prank ← 1 [p belongs to the first (non-dominated) front]
14: F1 ← F1 ∪ p

15: end if
16: end for
17: i← 1
18: while Fi 6= ∅ do
19: Q ← ∅
20: for all p ∈ Fi do
21: for all q ∈ Sp do
22: dc

q ← dc
q − 1 [discount effect of i-th front on q’s domination count]

23: if dc
q = 0 then

24: qrank ← i + 1 [q is a member of the next front]
25: Q ← Q∪ {q}
26: end if
27: end for
28: end for
29: i← i + 1
30: Fi ← Q
31: end while

decision variables), and for real-coded chromosomes, they used SBX crossover with polynomial
mutation. Once the first offspring population has been created, t is set equal to 1, and the
following steps are iterated for a number of generations until t = Gmax:

1. The parent and offspring populations are combined (Rt ← P t ∪Qt).

2. Rt is ranked using FNSA, and sorted into non-dominated fronts F1, . . . ,Fk and crowding
distances are calculated for each solution.

3. The next population P t+1 is created by including all solutions in the first front F1, the
second front, and so forth, until including the next front’s solutions will increase the
population size beyond N . This front is then sorted in order of decreasing crowding
distance and solutions are added until |P t+1| = N .
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Algorithm 13 Crowding Distance Assignment Algorithm [61]

Input: A population of solutions P , where each solution is a specific assignment of values to
decision variables x, a vector y of two or more computed objective function values for each
solution.

Output: The crowding distance of population member, P [1]dist, . . . ,P [n]dist.

1: h =| P | [h is the number of solutions in P ]
2: for all i ∈ P do
3: P [i]dist ← 0 [initialize crowding distance]
4: end for
5: for all M objectives do
6: P = sort(P , k) [sort population using value of objective k]
7: P [1]|k ←∞ [so that boundary points are always selected]
8: P [h]|k ←∞
9: for i = 2to(h− 1) do

10: P [i]dist|k ← P [i]dist|k + (P [i + 1]|k − P [i− 1]|k)/(kmax − kmin)
11: end for
12: end for

4. Offspring population Qt+1 is created using ≻c binary tournament selection, crossover, and
mutation.

5. The value of t is incremented and the process is repeated from Step 1.

In order to accommodate constrained optimisation, Deb et al. [61] developed their own notion of
constrained-domination. However, their definition is a watered down version of the one provided
in §5.4.4. A solution i is said to dominate a solution j if:

1. Both solutions are feasible, and i dominates j in terms of the standard crowded comparison
operator, or

2. Solution i is feasible and solution j is infeasible, or

3. Both solutions are infeasible, and solution i has the lowest overall constraint violation.

The notion of ‘overall lowest constraint violation’ requires that constraint violations be nor-
malized and summed (although weighting coefficients may also be used). This method was
employed in this dissertation.

5.6.2 SPEA-II

SPEA-II was developed by Zitzler et al. [277] in order to improve upon its predecessor and
take advantage of new MOEA techniques. It has proven very competitive versus the NSGA-II
algorithm, particularly in terms of solution diversity.

In a 2005 study on MOEAs for WDS design, Farmani et al. [88] concluded that NSGA-II is
outperformed by SPEA-II, especially in terms of the evenness of solution spread. However, this
comes at the cost of increased computational time.

SPEA-II employs a population P of size N and a fixed-size archive P of size N to store non-
dominated solutions. If there are not enough non-dominated solutions available to fill the archive
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to the required size, then it is filled by dominated solutions. Diversity preservation is achieved
by the fitness assignment method, along with the manner in which dominated solutions are
selected, as well as a truncation method which is invoked when there are more non-dominated
solutions than the archive size. This operator has been designed to prevent clustering and
preserve boundary solutions [277].

SPEA-II uses a finely grained fitness assignment strategy in order to improve diversity. Fitness
assignment begins by calculating the dominance strength of each solution i ∈ P ∪P as Ŝ(i) =∣∣(j ∈ P ∪ P ) ∧ (i ≺ j)

∣∣, where ≺ is the Pareto-dominance relation. Let Si be the set of solutions

which dominates i. The raw fitness of i is then calculated as R̂(i) =
∑

j∈Si
Ŝ(j). Note that raw

fitness is to be minimized, and all non-dominated solutions have a raw fitness of zero. Density
information is incorporated into the fitness quantification in order to discriminate between
solutions of identical raw fitness. The Euclidean distance to the k-th nearest neighbour (σk

i ) is
calculated by finding the distances in objective function space to every other solution and sorting
this list in increasing order. The k-th entry in the sorted list is the sought-after distance σk

i . The

value of k is commonly selected as the square root of the sample size,
√

N + N . The adapted
inverse Î(i) = 1

σk
i
+2

is added to the raw fitness to achieve a total fitness F (i) = R̂(i) + Î(i).

Note that 0 ≤ Î(i) ≤ 0.5 [277].

The archive selection process works as follows: First all the non-dominated solutions in M t =
P t ∪ P t are copied into the new archive P t+1. If

∣∣P t+1

∣∣ = N , then this step is complete;
otherwise there are two distinct cases. Firstly, if

∣∣P t+1

∣∣ < N , then the remaining solutions in
M t are sorted in order of increasing fitness value, and the first N −

∣∣P t+1

∣∣ solutions for which
F (i) ≥ 1 are inserted into the archive. Alternatively, if

∣∣P t+1

∣∣ > N , then a truncation operator
is iteratively invoked to eliminate

∣∣P t+1

∣∣−N solutions from the archive. In each iteration, an
individual i is selected for removal such that i ≤d j for all j ∈ P t+1, where

i ≤d j ⇔ ∀ 0 < k < |P t+1| : σk
i = σk

j ∨
∃ 0 < k < |P t+1| : (∀ 0 < ℓ < k : σℓ

i = σℓ
j) ∧ σk

i < σk
j .

This operator basically means that the solution with the smallest distance to another solution
is chosen for removal, and where these distances are tied, their second smallest distances are
compared, and so forth. This guarantees preservation of boundary solutions, since the solution
closest to a boundary solution will always have some k-th distance to another solution which is
less than that of the boundary solution’s k-th distance.

Only archive members participate in the mating process, and any suitable operators may be
substituted for the recombination and mutation steps. A pseudocode listing of the SPEA-II
appears in Algorithm 14.

Although SPEA-II has a similar computational complexity to NSGA-II (O(MN2) in every
generation)), it generally performs slower than NSGA-II in comparative studies [88]. This is
due to the requirement of sorting solution distance vectors for each solution. However, SPEA-II
generally achieves better solution distribution. Advanced data-structures and algorithms exist
for reducing the computational complexity of both SPEA-II and NSGA-II [138], however, this
author was only made aware of them towards the end of his research.

5.6.3 Differential Evolution

Differential evolution (DE) was first proposed by Storn and Price [221] in 1997, as a generic
metaheuristic for the optimisation of nonlinear and non-differentiable continuous space func-
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Algorithm 14 Strength Pareto Algorithm II (SPEA-II) [277]

Input: A MOO problem where solutions are an assignment of values to decision variables x, a
population size N , an archive size N , a set of constraints and violation magnitude functions,
M objective functions to produce entries for the M×1 objective vector y, a maximum number
of generations Gmax.

Output: An approximation of the Pareto-optimal solution set in multi-objective space, A∗.

1: Randomly generate an initial population of solutions P 0 of size N and create an empty
archive P 0.

2: t← 0
3: Calculate the strength value Ŝ(i) for each solution i ∈ P t as Ŝ(i) =

∣∣j ∈ P ∪ P ∧ i ≺ j
∣∣.

4: For every i ∈ P t, determine Si, the set of solutions which dominates i. The raw fitness of
i is then calculated as R̂(i) =

∑
j∈Si

Ŝ(j).

5: For every i ∈ P t, calculate the Euclidean distances σi,j in objective function space to every

other solution, j = 1 . . . N . Sort these distances in increasing order and identify σk
i as the

k-th distance value. Set Î(i) = 1
σk
i
+2

.

6: Set the fitness of every i as F (i) = R̂(i) + Î(i).
7: Copy all the non-dominated solutions (F (i) < 1) in M t = P t ∪ P t to archive P t+1.
8: if | P t+1 |> N then
9: Iteratively employ the truncation operator (≤d) to remove solutions until | P t+1 |= N .

10: else if | P t+1 |< N then
11: Sort M t in order of increasing fitness values and fill P t+1 with the first N− | P t+1 |

solutions having F (i) ≥ 1.
12: end if
13: if t ≥ Gmax then A∗ = P t+1 and Terminate.
14: Perform binary tournament selection with replacement on P t+1 in order to fill the mating

pool.
15: Apply recombination and mutation operators to the mating pool and set P t+1 to the re-

sulting population.
16: Set t← t + 1 and return to Step 3.

tions, and has proven very robust and competitive with respect to other evolutionary algorithms.
At the heart of its success lies a very simple differential operator, whereby a trial solution vec-
tor is generated by mutating a random target vector by some multiple of the difference vector
between two other random population members. For three distinct random indices i, j and k,
this has the form

yi = xi + f̂ × (xj − xk),

where xi is the target vector, yi is the trial vector and f̂ is a constant factor in the range
[0, 2] which controls the amplification of differential variation, typically taken as 0.5. If the trial
vector has a better objective function value, then it replaces its parent vector. Storn and Price
also included a crossover operator between the trial vector and the target vector in order to
improve convergence.

The original DE method was formulated for single-objective optimisation only. Several adap-
tations of DE have been proposed in order to extend it for multi-objective optimisation. These
have included the Pareto-based DE approach [28], the Pareto DE Approach (PDEA) [167],
DE for Multi-objective Optimisation (DEMO) [202], Generalized DE (GDE) in three different
versions [151, 152, 156].
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Several variants of multi-objective DE were compared. The version used in this dissertation is
a slight variation on the first GDE, where trial vectors are generated and saved to an offspring
population only if they are non-dominated with respect to their target vectors. Once the
offspring population is the same size as the parent population, the two populations are combined
and the NSGA-II environmental selection mechanism is used to produce the next generation.
A pseudocode listing of GDE appears in Algorithm 15.

Multi-objective DE has been used successfully in the context of water resources management
for the operational policy design of a large reservoir system by Reddy and Kumar [201] in 2007,
with objectives of minimizing flood risk, maximizing hydropower generation, and minimizing
irrigation deficits.

Algorithm 15 Generalized Differential Evolution Algorithm [156]

Input: A MOO problem where solutions are an assignment of values to decision variables x, a
population size N , a set of constraints and violation magnitude functions, M objective func-
tions to produce entries for the M × 1 objective vector y, a maximum number of generations
Gmax, a difference factor f̂ ∈ [0.4, 2], and a probability of crossover pc ∈ [0, 1].

Output: An approximation of the Pareto-optimal solution set in multi-objective space, A∗.

1: Randomly generate an initial population of solutions P 0 of size N .
2: t← 0
3: while t < Gmax do
4: i← 1
5: while i ≤ N do
6: Generate three distinct random indices i, j, k ∈ [1, N ] in order to select solutions

xi, xj , xk from P t.

7: Calculate yi = xi + f̂ × (xj − xk).
8: if yi � xi then
9: xi ← yi

10: end if
11: end while
12: Set t← t + 1
13: end while
14: A∗ ← P t.

5.7 Alternative Multi-objective Algorithms

In this section several metaheuristics for multi-objective WDS design optimisation are discussed
as a contrast to traditional MOEAs. These include a novel Greedy Algorithm that mimics de-
cision strategies typically employed by a human engineer, Multi-objective Particle Swarm Opti-
misation, two estimation of distribution algorithms, namely the Univariate Marginal Distribu-
tion Algorithm (UMDA) and the novel Partitioned UMDA, and finally two dynamic adaptive
MOEAs, called Another Dynamic MOEA and ANIMA.

5.7.1 A Multi-objective Greedy Algorithm

A greedy WDS design heuristic was developed by the author for specific use in this disserta-
tion, named the WDS Greedy Algorithm (GREEDY). It is adapted from four prior WDS design
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heuristics, namely those of Keedwell and Khu [142], and Afshar et al. [4], which were designed for
single objective least-cost optimisation, that of Todini [227], which employs a goal-programming
approach using Resilience Index to generate a trade-off curve, and a similar approach using the
concept of Pipe Unitary Power, which appears in the work by Saldarriga et al. [205]. In addition
to these heuristics, it also employs several practical adjustment steps to improve performance
based on engineering judgement. The new combined algorithm is greedy in the sense that it
conducts a neighborhood search in which the best improvement step is followed for each of the
different heuristic rules. Owing to its greedy nature, there is a danger that the search may
become trapped at local optima. However, the practice of incorporating different search mech-
anisms reduces this probability. The advantage of using this algorithm is that it incorporates
design strategies similar to those that might be used by an engineer during the course of a
manual design procedure. It may be considered a local search component within the framework
of a broader evolutionary search.

In 2000 Todini [227] presented a goal-programming design heuristic for rapidly approximating
the Pareto-optimal curve in cost/resilience space (see the Resilience Index defined in §4.3.2).
For a given solution, if no pressure deficit occurs, a reduction of diameters is performed with
respect to the pipe p∗i for which the largest decrease in cost per unit of power dissipation occurs
during a single step reduction in pipe diameters (jλ → jλ−1). That is,

p∗i = max
i=1,...,p

{
−Cλ−1

i − Cλ
i

P λ−1
r,i − P λ

r,i

}
,

where Cλ
i and P λ

r,i are the cost and power respectively of pipe i at the current diameter xi = jλ.
Todini applies three tests before a diameter reduction may occur (hydraulic simulation is not
performed to calculate the pressure and flow conditions at the lower diameter). Firstly, velocity
constraints may not be exceeded at the lower pipe diameter (using an upper bound of 2 m/s).
Velocity may be approximated (using the current value of flow Q) as v̄ = Q/A = Q/(πD2/4).
Secondly, the Resilience Index, which depends on flow and head loss in the pipe, may not fall
below a currently specified target. Finally, Todini makes use of a failure index which equates to
stating that pressure deficit may not occur at any of the nodes. This cost-efficient reduction of
pipe diameters continues iteratively until one of these three tests fails. Given a solution where
pressure deficit does indeed occur, the increase of pipe diameters proceeds according to the
largest decrease of internal power dissipation per unit cost,

q∗i = max
i=1,...,p

{
−

P λ
r,i − P λ−1

r,i

Cλ
i − Cλ−1

i

}
,

as a function of the increase in diameter xi from jλ−1 to jλ. These diameter increase operations
continue iteratively until the Resilience Index is above the specified target value. Once a new
configuration has been determined, hydraulic simulation is performed, and the above process
is repeated. Todini’s method must be applied for a range of target resilience values in order to
attain a Pareto-optimal approximation.

A similar procedure may be followed for the Unitary Power metric [205], which is defined as
pipe discharge qi, multiplied by the difference between the pressure head at the pipes initial
(hi,init) and final (hi,fin) nodes, such that hi,init− hi,fin > 0. The pipe unitary power is therefore
Pru,i = qi(hi,init − hi,fin). The calculation of this property is less computationally intensive
than that of Resilience Index. In this method, in each iteration the diameter of the pipe with
the highest Pru,i may be increased to the next diameter size, and similarly, the pipe with the
smallest unitary power may be decreased to the next smallest commercial diameter.
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The heuristic of Afshar et al. [4], proposed in 2005, appears as a sub-component of a larger
algorithm and is used in the context of converting a continuous diameter solution to discrete
diameters. Although they only consider the problem of converting an infeasible solution to a
feasible one, this may easily be adapted in the reverse direction when a solution is over-specified.
For a given solution, a node with the maximum head deficit is identified. All paths conveying
water from any source to this node are established. This may easily be done by considering the
flow direction supplied by the hydraulic simulator. It is obvious that increasing the diameter
of any pipe on these paths should increase the head at the node in question. The pipe whose
diameter is selected for increase is the one that results in the maximum decrease in a total
penalized system cost (for which they employed a function similar to, but less complex than
(5.2)). Once a pipe diameter has been increased, the system is hydraulically simulated, and the
process is repeated until all nodal head constraints are satisfied. Given a solution with no head
deficit, but with at least one maximum velocity constraint violation, a search is conducted to
find a pipe with the largest maximum velocity violation. Then all the pipes which take flow
away from the first node of this pipe are established. The pipe amongst these whose diameter
is selected for increase is again one that results in the largest decrease in total penalized cost.

In 2006 Keedwell and Khu [142] developed a cellular automata approach towards initializing
WDS optimisation searches with healthy designs instead of using random initial configurations.
The method is named the Cellular Automaton Network Design Algorithm (CANDA). It con-
siders each demand node as a cell in an automaton and iteratively evaluates the head deficit or
excess of that node (based on some target pressure). If a node experiences a pressure deficit, all
the pipes supplying water to that node are increased to the next largest size. Similarly, if a node
experiences a head excess, the incoming pipes are downsized. These changes are implemented
for every node in the network before the next hydraulic simulation is conducted. It was shown
that this method converges rapidly to semi-realistic configurations, but was of limited use in
further refining designs [142]. This heuristic performs macroscopic changes to a configuration
and was selected to assist in generating replacement solutions for duplicates in the population.

Finally, the additional heuristic steps implemented by the author are: incrementing the diameter
of the pipe which has the largest head loss, decrementing the diameter of the pipe which has
the smallest head loss, incrementing the diameter of the pipe which has the largest head loss
per unit length (or head loss gradient), decrementing the diameter of the pipe which has the
smallest head loss gradient, and similar steps for pipe unitary power. In order to apply these
steps in a multi-objective setting, the search is conducted in both directions (both increasing
and reducing reliability) for every solution considered. A pseudocode listing of the combined
greedy algorithm appears as Algorithm 16. The heuristic techniques are referred to as a Cost-
Power Benefit step (for which a pseudocode listing appears in Algorithm 17), an Efficient-Path
step (for which a pseudocode listing appears in Algorithm 18), and the CANDA replacement
method (for which a pseudocode listing appears in Algorithm 19), inspired respectively by the
design heuristics of Todini, Afshar et al. and Keedwell and Khu, described above. Note that
the offspring are only accepted as valid population members provided they are not dominated
by their parent solutions.

5.7.2 Multi-objective Particle Swarm Optimisation

Although highly elaborate versions of the PSO algorithm exist for multi-objective optimisation
(MOPSO — see, for example, [36]), a more basic version was selected for inclusion in this
dissertation. This version is almost identical to the version discussed in §3.7.9, except that
PSO fitness is calculated as the crowding distance of a solution divided by the square root
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Algorithm 16 Greedy WDS Design Heuristic

Input: A population of solutions P , where each solution is a specific assignment of values to
decision variables x, a vector y of and two or more computed objective function values for
each solution, computed hydraulic parameters (pressure, flow, velocity) for every solution,
and a number of offspring N [1] which must be generated.

Output: An offspring population O of size N [1].

1: O ← ∅
2: while |O| < N [1] do
3: Select a parent solution x from P by means of binary tournament selection.
4: Decrease the diameter of the pipe in x with the smallest head loss to yield x′

5: if not x ≺ x′ then O ← O ∪ x′

6: Increase the diameter of the pipe in x with the largest head loss to yield x′

7: if not x ≺ x′ then O ← O ∪ x′

8: Decrease the diameter of the pipe in x with the smallest unitary power to yield x′

9: if not x ≺ x′ then O ← O ∪ x′

10: Increase the diameter of the pipe in x with the largest unitary power to yield x′

11: if not x ≺ x′ then O ← O ∪ x′

12: Execute a Cost-Power Benefit step [Algorithm 17] on x to yield solutions {x′}
13: for all z ∈ {x′} if not x ≺ {z} then O ← O ∪ z

14: Execute an Efficient-Path step [Algorithm 18] on x to yield solutions {x′}
15: for all z ∈ {x′} if not x ≺ {z} then O ← O ∪ z

16: end while
17: Sort the solutions in O in terms of increasing cost.
18: Any consecutive solutions which are identical are replaced in O by a random initial solution

which has been modified using the CANDA algorithm [19].

of its Pareto-rank. No global best position is used, only a local best, which is identified for
each dominated individual as the Pareto-solution which yields the highest PSO fitness value
normalized by the Euclidean distance between the solutions in objective space. Particle collisions
are accommodated by randomly generating a new solution with a random initial velocity. In
this dissertation, MOPSO is implemented using an inertial weight of w = 0.75 and learning
factors c1 = c2 = 2. Finally, the algorithm was adapted to round continuous positions to
discrete component values.

5.7.3 Univariate Marginal Distribution Algorithm

The Univariate Marginal Distribution algorithm (UMD / UMDA) is possibly the simplest EDA,
assuming no interaction between variables. In each generation it builds anew separate proba-
bility distributions for each gene using allele frequencies in the population. These univariate
probability density functions are then stochastically sampled in order to generate new gene
values for offspring creation. The probability of generating a particular individual is the prod-
uct of the individual’s allele probabilities. This simple technique is surprisingly effective when
combined with a Pareto-based selection scheme and an anti-crowding mechanism, such as that
of the NSGA-II which is employed in this dissertation.

In 2009 Olsson et al. [185] compared three EDAs for MO WDSDO, including the Hierarchical
Bayesian Optimisation (HBO) algorithm, developed by Pelikan and Goldberg [191] in 2002, the
Chi-square matrix method (CSM) for building block identification, developed by Aporntewan
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Algorithm 17 Cost-Power Benefit Step

Input: A single solution x which is a specific assignment of values to decision variables x, its
computed hydraulic parameters (pressure, flow, velocity), and a target pressure head h.

Output: Offspring solutions x′
1 and x′

2.

1: Execute a decreasing diameter step as follows:
2: Calculate the head loss hL(i) for every pipe pi of x at the diameter jλ−1 which is one size

lower than its current diameter (use Hazen-Williams or Darcy-Weisbach head loss equation
with fixed flow q)

3: Calculate the power P λ
r,i and P λ−1

r,i at the exit node of each pipe for the current and lower
diameters respectively (Pr,i = γqihi)

4: Calculate wi = − Cλ−1
i −Cλ

i

P λ−1
r,i −P λ

r,i

for every pipe, where Cλ−1
i − Cλ

i is the difference in pipe cost

between the higher and lower diameters.
5: Identify the pipe pi with the maximum value of wi. Set x′ = x and decrement the diameter

of pi in x′

6: For solution x′, calculate the new pipe velocity vi = qi/π(d2
i /4) for a fixed flow qi.

7: if vi < vmax then
8: Output solution x′

1 = x′

9: end if
10: Execute an increasing diameter step as follows:
11: Calculate the head loss hL(i) for every pipe pi of x at the diameter jλ which is one size

larger than its current diameter
12: Calculate the power P λ

r,i and P λ−1
r,i at the exit node of each pipe for the larger and current

diameters respectively

13: Calculate wi = −P λ
r,i−P λ−1

r,i

Cλ
i −Cλ−1

i

for every pipe

14: Identify the pipe pi with the maximum value of wi. Set x′ = x and increment the diameter
of pi in x′

15: For solution x′, calculate the new pipe velocity vi = qi/π(d2
i /4) for a fixed flow qi.

16: if vi < vmax then
17: Output solution x′

2 = x′

18: end if

and Chongstitvatana [12] in 2004, and the UMDA proposed by Mhlenbein [177] in 1997. As
a benchmark optimizer, they also included NSGA-II in the analysis. The first two algorithms
both use some mechanism for the consideration of inter-variable dependencies. EDAs typically
use population sizes an order of magnitude larger than traditional MOEAs. However, they
require fewer generations to converge to stable probability distributions.

The findings of Olsson et al. were as follows. Whilst the HBO algorithm was highly effective
for designing small WDS systems, the algorithm’s performance deteriorated completely for
large, real-world systems, likely due to exponential growth in multiplicity of possible variable
interactions. CSM maintained good performance for the larger systems, demonstrating a better
solution spread than UMDA. However, UMDA was clearly the best algorithm overall in terms
of Pareto-dominance. Both latter algorithms also significantly outperformed NSGA-II, but
they exhibited largely reduced diversity. In view of the superiority of UMDA, it was selected
for inclusion in this dissertation. A pseudocode listing of the UMDA algorithm appears in
Algorithm 20.

A variant of the UMDA, called the Partitioned UMDA (PUMDA), was developed by the author,
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Algorithm 18 Efficient-Path Step

Input: A single solution x, its computed hydraulic parameters (pressure, flow, velocity), and
a target pressure head h.

Output: Offspring solutions x′
1 and x′

2.

1: if for any pipe in x, vi > vmax then
2: Identify pipe pv in x with largest maximum velocity constraint violation and node nv

which it accepts flow from
3: Identify set of pipes V which take flow away from node nv

4: For every system with pv ∈ V at a higher diameter, calculate the penalized cost (5.2)
5: Select the pipe amongst these for which a diameter increment results in the largest de-

crease, and let x′
1 be the resulting system

6: Output solution x′
1

7: else
8: Execute a decreasing diameter step as follows:
9: Identify node ni in x with largest pressure excess

10: Identify C, the set of pipes constituting paths from all sources to ni

11: Approximate vc, and hL(c) for every c ∈ C whose diameter has been decremented one size
12: For every system defined by c at a lower diameter, calculate the penalized cost (5.2)
13: Select the pipe for diameter decrement which yields the smallest increase in total penalized

cost, and let x′
1 be the resulting system

14: Output solution x′
1

15: end if
16: Execute an increasing diameter step as follows:
17: Identify node ni in x with largest pressure deficit
18: Identify C, set of pipes constituting the paths from all sources to ni

19: Approximate vc, and hL(c) for every c ∈ C whose diameter has been incremented one size
20: For every system defined by pipe c at a higher diameter, calculate the penalized cost (5.2)
21: Select pipe for diameter increment which yields the largest decrease in total penalized cost,

and let x′
2 be the resulting system

22: Output solution x′
2

Algorithm 19 CANDA Replacement Method

Input: N/A
Output: A CANDA improved offspring solution x.

1: Generate a random initial solution x, and simulate its hydraulics.
2: Generate a uniform random variable u ∈ [5, 10]; i← 0
3: while i < u do
4: for all nodes ni ∈ x do
5: if hi > hi,max then
6: Decrement diameters of all incident pipes with incoming flow to node ni

7: else if hi < hi,min then
8: Increment diameters of all incident pipes with incoming flow to node ni

9: end if
10: end for
11: i← i + 1
12: end while
13: return x
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whereby in each generation the objective space is partitioned along the reliability axis. The
size of each partition is generated independently using half of the absolute value of a normal
distribution sample with a mean of zero and a standard deviation equal to one third of the
reliability range (rmin,rmax), sampled iteratively until the full range is partitioned. For each
sub-range of the reliability range, all the solutions that fall into that partition are then employed
to generate a UMD probability model for that partition. In order to generate new solutions,
a partition is selected at random and its UMD model sampled to produce offspring. The
philosophy behind this method is that different levels of reliability correspond to different design
paradigms (described by critical solution schemata), which can only be exploited fully by honing
in on these regions of the objective space. By allowing variable-sized partitions and redefining
them during each generation, PUMDA allows for paradigm overlap and mixing. PUMDA was
found to outperform the UMDA for many of the test cases.

Algorithm 20 UDM Algorithm [177, 185]

Input: A MOO problem with solutions x, a population size N , a set of constraints and violation
magnitude functions, M objective functions, a maximum number of generations Gmax.

Output: An approximation of the Pareto-optimal solution set in multi-objective space, A∗.

1: Randomly generate an initial population of solutions P 0 of size N .
2: Rank and sort P 0 using the FNSA [Algorithm 12].
3: Calculate the crowding distance of the solutions in P 0 [Algorithm 13]
4: Create population Q0 of size N using binary tournament selection (with the crowded com-

parison operator ≻c) from P 0, crossover and mutation.
5: t← 0
6: while t < Gmax do
7: Rt ← P t ∪Qt

8: Partition Rt into fronts F1,F2, . . . by means of the FNSA.
9: P t+1 ← ∅ and i← 1

10: while |P t+1| < N do
11: if |Fi|+ |P t+1| ≤ N then
12: P t+1 ← P t+1 ∪ Fi

13: else if |Fi|+ |P t+1| > N then
14: Calculate crowding distance for all solutions in Fi, and sort Fi members in order of

decreasing crowding distance.
15: P t+1 ← P t+1 ∪ { the first (N − |P t+1|) elements of Fi}
16: end if
17: i← i + 1
18: end while
19: Calculate the crowding distance for each x ∈ Pt+1.
20: For each gene gk in the solution chromosome, generate a probability distribution fk(a) =

an
N , where an is a count of the number of times allele a occurs for gene gk in the population.
Use fk(a) to generate a cumulative density function Fk(a).

21: Create N solutions by sampling randomly from the inverse function F−1
k (a) for each gene

value, producing population Qt+1.
22: t← t + 1
23: end while
24: A∗ = P Gmax
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5.7.4 Dynamic Multi-objective Evolutionary Algorithm

The Dynamic Multi-objective Algorithm (DMOEA) developed by Yen and Lu [271] in 2003 is an
attempt to establish a cellular multi-objective evolutionary algorithm. Such an algorithm is cel-
lular in the sense that the objective space is divided into a grid of a user-specified (epsilon-based)
granularity with the intention of improving algorithmic efficiency (§5.4.7). This is achieved in
DMOEA by using the grid as an environmental model to store solution quality information
(Pareto-rank and density) organized per grid cell, such that the solutions need not be compared
directly to one another, but rather interact only with the grid in order to determine their com-
parative quality. Grid cells may dominate each other in the usual epsilon-dominance fashion,
and a solution takes on as rank the domination count of the cell in which it lies. Similarly,
the number of solutions in a particular grid cell provides a density estimate for these solutions.
The DMOEA has a slightly inauspicious name, since this could easily pertain to an entire class
of MOEAs that exhibit some dynamic behaviour. Certainly this is the case for this particular
algorithm, which employs population growth and decline strategies in order to obtain a so-called
‘optimal’ population size, although the optimality of this size is defined in this case in terms of
user solution density preferences rather than in terms of algorithmic performance.

The cellular solution quality storage method is illustrated in Figures 5.8 and 5.9. The grid
for storing cell density information, which is initially zero for all cells before any solutions are
generated, is shown in Figure 5.8(a). The rank of every cell, is initialized to 1, as shown in
Figure 5.8(b).

When a solution is added to or removed from the population, the solution is mapped to objective
space coordinates which lie in a particular cell. The density and rank grids must then be
updated. In the case of an addition, the density grid is updated by incrementing the value
of the relevant cell, and the rank grid is updated by incrementing the rank value of each cell
dominated by the relevant cell. Solution removal results in the same effect, except that it is a
decrement operation instead. Figures 5.9(a) and 5.9(b) show the effect of adding five solutions
to the population, two of which fall into the same cell.
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Figure 5.8: Cellular grid for solution quality storage (initial state).
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Figure 5.9: Cellular grid for solution quality storage (generation 1).

An algorithm was developed for this dissertation based on the original DMOEA [271], using
an identical grid model for the cellular rank and density information, but differing in terms of
the population growth and decline strategies, since the original ones failed to produce satisfac-
tory convergence towards reasonable population sizes. This algorithm shall be called Another
DMOEA (ADMOEA) to distinguish it from its forerunner. This algorithm incorporates a num-
ber of advanced features, including:

1. A growth strategy whereby a number of new solutions are generated as a function of the
grid-size and the current Pareto-set size.

2. This growth strategy incorporates three different search mechanisms and a probability
vector to control mechanism selection, updated during each generation, depending on
each mechanism’s success rate.

3. A solution age that is incremented during each generation. Solutions may not be removed
from the population before they reach a certain age, allowing them sufficient time to
propagate their genes. This age threshold gradually decreases as a function of convergence.

4. A population decline strategy that selects solutions for removal on the basis of their age,
cellular rank and density.

5. A regeneration strategy that recreates the entire population using PUMD once limited
improvement has occurred for fifty generations.

6. An external epsilon archive to hold Pareto-optimal solutions, updated before each regen-
eration.

7. Compression and growth mechanisms to alter the dimensions of the grid in order to zoom
in on the important region of the objective space, or to accommodate new solutions outside
of the current grid dimensions.
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In this dissertation, ADMOEA is implemented using the following parameter values: at = 5,
nc = nr = 200, difference factor f = 0.7, and SBX exponent nc = 2. The ADMOEA algorithm
appears in pseudo-code form as Algorithm 21.

Algorithm 21 Another Dynamic Multi-objective Evolutionary Algorithm (ADMOEA)
(Adapted from [271])

Input: A MOO problem where solutions are an assignment of values to decision variables x, a
set of constraints on these decision variables, and M objective functions to produce entries for
the M×1 objective vector y, a maximum number of generations Gmax, initial estimates of the
minimum and maximum reliability and cost values, rmin, rmax, cmin, cmax (∆r = rmax − rmin

and ∆c = cmax− cmin) for rank and density grid dimensions, the number of grid cells in each
dimension nr and nc (such that ǫc = ∆c/nc and ǫr = ∆r/nr), and an age threshold at.

Output: An approximation of the Pareto-optimal solution set in multi-objective space, A∗.

1: Initialize the density and rank grids, D and R, with zeros and ones respectively.
2: Initialize the probability vector as pv = [14 , 1

4 , 1
4 ].

3: Generate an initial population of solutions P 0 of size N by means of LHS.
4: Set t← 0
5: while population converged = FALSE and t < Gmax do
6: Cellular Density Update: Update the density D by incrementing the value of each

cell in which a solution lies. Grid coordinates for solution x are found as x =
Max(Min(⌊(x.reliability−rmin)/ǫr⌋, nc−1), 0) and y = Max(Min(⌊(x.cost−cmin)/ǫc⌋, nr−
1), 0)

7: Cellular Rank Update: Update the rank R by incrementing the value of every cell epsilon-
dominated by each cell in which a solution lies.

8: Compute the number of children to be generated as g =
√

(nc + nr + |P ∗|)/2, where |P ∗|
is the number of solutions having rank 1 in the current population.

9: Initialize the child population as Q← ∅.
10: Increment the age of every solution in P by one.
11: Begin Growth Strategy [Algorithm 22]
12: Begin Decline Strategy [Algorithm 23]
13: Determine the minimum and maximum reliability values in the population P t+1, rpmin

and rpmax, and the minimum and maximum cost values in the population, cpmin and
cpmax.

14: if improvement in hypervolume less than 0.01% for 50 generations then
15: Execute Compression and Regeneration Strategy [Algorithm 27]
16: end if
17: Set t← t + 1
18: end while
19: Return A∗ ← P t ∪A.

5.7.5 ANIMA: A Self-adaptive Evolutionary Algorithm

ANIMA is an auto-adaptive MOEA based on the NSGA-II framework and was developed for
this dissertation. It employs two different variation mechanisms, namely the SBX crossover with
triangular mutation and a differential evolution operator. What makes ANIMA unique is that
it encodes the variation operator parameters (along with the solution genes) effectively, making
each solution an agent carrying both the search instructions and the solution information. These
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Algorithm 22 ADMOEA Growth Strategy

Input: A population of solutions P t where each is an assignment of values to decision variables
x, and their associated objective function vectors consisting of reliability and cost values, a
search mechanism probability vector pv, and cellular density and rank grids D and R.

Output: The union P t+0.5 of the original population and the newly created offspring popula-
tion, an updated search mechanism probability vector pv, and updated cellular density and
rank grids D and R.

1: Initialise generated offspring as ni = 0 for i = 1, . . . , 3, where i indicates the search mecha-
nism.

2: Initialize successful offspring as si = 0 for i = 1, . . . , 3, where i indicates the search mecha-
nism.

3: Build a PUMD model by creating partitions (using the represented range of P t) and gen-
erating UMD sub-models for each partition.

4: while |Q| < g do
5: Generate a uniform random number r ∈ [0, 1]
6: For r and the inverse CDF of pv, select search mechanism mn ∈ [1, 2, 3].
7: if mn = 1 [Grid Search] then
8: Increment n1

9: Call Grid Search Step [Algorithm 24]
10: if any offspring are successful then increment s1

11: else if mn = 2 [Differential Evolution] then
12: Increment n2

13: Call Differential Evolution Search Step [Algorithm 25]
14: if any offspring are successful then increment s2

15: else if mn = 3 [PUMD Search] then
16: Increment n3

17: Call PUMD Search Step [Algorithm 26]
18: if any offspring are successful then increment s3

19: end if
20: Note: If any successful child is created which falls outside of the grid dimensions (rmin,

rmax)-(cmin, cmax) then an abberation counter is incremented, and the solution quality
information is mapped to the edge of the grids. Once the abberation counter reaches one
hundred, the grids D and R are resized to accommodate all solutions, re-initialized and
updated using the union of the P , Q.

21: end while
22: Compute the total of the search mechanism success rates as T =

∑
i si/ni for all ni 6= 0.

23: Update the probability vector pv for each mechanism where ni 6= 0 as pv(i)← 0.9×pv(i) +
0.1× (si/ni/T ).

24: Normalize pv.
25: P t+0.5 ← P t ∪Q.

parameter values are generated randomly within reasonable ranges for the initial population and
any duplicate replacement solutions, but are passed on to newly created offspring by their parent
solutions. At the time of initial or replacement solution creation, a solution is randomly assigned
an evolution state — indicating either the SBX operator or the DE operator.

During reproduction, a dominant parent is selected according to a uniform distribution. Two ad-
ditional parent solutions are then selected using two binary tournaments. Variation is achieved
by conducting an SBX crossover with polynomial mutation between the dominant parent and
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Algorithm 23 ADMOEA Decline Strategy

Input: A population of solutions P t+0.5 where each is an assignment of values to decision
variables x, and cellular density and rank grids D and R.

Output: The reduced population P t+1 and updated cellular density and rank grids D and R.

1: for all xi ∈ P t+0.5 do
2: if Cell rank xi > 1 and Age(xi) > Age threshold at then
3: ℓ1 ← 1− 1/Rank(xi)
4: Generate r ∈ [0, 1] according to a uniform distribution.
5: if ℓ1 > r then
6: Remove xi from P t+0.5 and update D and R.
7: end if
8: end if
9: end for

10: for all xi ∈ P t+0.5 satisfying D(xi) > 1 do

11: Set a = Age(xi)−at

Age(xi)+1

12: ℓ2 ← 1− 1/Rank(xi)×D(xi)× a
13: Generate r ∈ [0, 1] according to a uniform distribution.
14: if ℓ2 > r then
15: Remove xi from P t+0.5 and update D and R.
16: end if
17: end for
18: for all xi ∈ P t+1 with rank 1 do
19: if D(xi) > 1 then
20: Perform non-dominated sorting amongst the solutions in the cell of xi as per NSGA-II,

and remove all dominated individuals from P t+0.5.
21: Update D and R.
22: end if
23: end for
24: P t+1 ← P t+0.5

25: Determine the minimum age and maximum rank amongst all the solutions in P t+1

26: if Minimum age > at and Maximum rank = 1 then
27: Execute Compression and Regeneration Strategy [Algorithm 27]
28: end if

the second parent, using the search parameter value (SBX difference index) of the dominant
parent. This creates two new offspring, each of which may undergo triangular mutation with
a low probability (probability provided by the dominant parent). Then a differential evolution
vector displacement occurs by subtracting the difference of the solution vectors of the second
two parents from the each of the offspring, again using the search parameter value (difference
factor) from the dominant parent. The evolution state is copied directly to the offspring from
the dominant parent.

If the evolution state of the dominant parent is that of the SBX operator, then the difference
factor parameter is copied directly to the offspring and the SBX difference index is either copied
directly or varied, and may also undergo mutation. The search parameter value indicated by
the evolution state is copied directly with a high probability (80% chance) to the offspring, and
is otherwise varied by allowing the search parameter of the dominant parent and the second
parent to undergo an SBX crossover (again using the dominant parent’s SBX parameter value).
Triangular mutation on the parameter value then occurs with a low probability (probability
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supplied by the dominant parent). The reason for separation of the evolution states is that
evolving multiple variation parameters simultaneously is unstable — the parameters do not
settle on good values. Good parameter value combinations are found by rather randomizing
and fixing one parameter value, and adjusting the second by means of evolutionary variation
in order to suit the first. The standard NSGA-II environmental section process is applied and
the entire procedure is repeated until convergence occurs. The pseudo-code for the ANIMA
offspring generation process appears as Algorithm 28 (within the framework of NSGA-II (Algo-
rithm 11), with replacement solutions assigned random parameter vectors as per the population
initialization (Step 1) in Algorithm 28).

The following parameter ranges were used in this dissertation: for the difference index a mini-
mum value of psbxmin = 1 and a maximum psbxmax = d/2 were selected, where d is the size of
the design variable range (e.g. d = |X i| for discrete variable xi). For the difference factor the
range [pdfmin, pdfmax] = [0.6, 1.2] was chosen, and for the triangular mutation probabilities the
range [ptmin, ptmax] = [0, 0.02] was used.

Algorithm 24 ADMOEA Grid Search Step

Input: A population of solutions P t where each is an assignment of values to decision variables
x, offspring population Q, cellular density and rank grids D and R, and an age threshold at.

Output: At most one offspring solution, an updated cellular density and rank grid D and R.

1: Select parent solution x1 using constraint competent binary tournament selection (NSGA-
II), except that Pareto-rank is replaced with cellular rank and crowding distance is replaced
with the sum total of cellular density in a 3× 3 neighbourhood of cells.

2: Find all solutions with a cellular rank in the next two lower categories than x1; i.e. if the
rank of x1 equals 3 then find all solutions of rank 1 and 2. Randomly select solution x2

amongst these as second parent. If the cell rank of x1 equals 1, then select a random solution
of rank 1.

3: Perform an SBX crossover with polynomial mutation to produce two offspring solutions.
4: Select one of two offspring solutions with a 50% chance and either a rank or density test

with a 50% chance. If a rank test is used, compare the offspring to its parents and add it to
Q if it has a rank smaller than or equal to either of the parents’ ranks. If a density test is
used, then add it to Q if it is not strictly dominated (i.e. its grid coordinates are not both
lower than those of its parents) and it has a cell density of 1. If the first offspring solution
fails the test, then perform a similar test for the second one. Update D and R.

Algorithm 25 ADMOEA DE Search Step

Input: A population of solutions P t where each is an assignment of values to decision variables
x, offspring population Q, cellular density and rank grids D and R, a difference factor f ,
and an age threshold at.

Output: At most one offspring solution, updated cellular density and rank grids D and R.

1: Randomly select three distinct solutions x1, x2, and x3 from the population P .
2: Create an offspring solution by adding the difference vector of the second two parents to

the first, i.e. x4 = x1 + f(x2 − x3), where f is the difference factor.
3: if x4 is not dominated by x1 then add it to Q and update D and R, else
4: Create an offspring solution by subtracting the difference vector of the second two from the

first, i.e. x5 = x1 − f(x2 − x3).
5: if x5 is not dominated by x1 then add it to Q and update D and R.
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Algorithm 26 ADMOEA PUMD Search

Input: A population of solutions P t where each is an assignment of values to decision variables
x, offspring population Q, cellular density and rank grids D and R, and an age threshold at.

Output: At most one offspring solution, updated cellular density and rank grids D and R.

1: Randomly select a solution x1 from P .
2: Sample from the prebuilt PUMD model up to a maximum of three times in order to produce

a maximum of three offspring. The first offspring solution that dominates x1 is then added
to Q, D and R are updated, and the process is halted.

Algorithm 27 ADMOEA Compression and Regeneration Strategy

Input: A population of solutions P t+1 where each is an assignment of values to decision vari-
ables x, cellular density and rank grids D and R, and an age threshold at.

Output: An updated archive A, a regenerated population P and updated cellular density and
rank grids D and R, as well as a new value of the age threshold at.

1: Determine minimum and maximum reliability values represented in population
(rpmin, rpmax), and minimum and maximum cost values from population (cpmin, cpmax).

2: Decrement at to a minimum of 1.
3: if (rmax − rpmax) > 0.1× (rmax − rmin) or (rpmin − rmin) > 0.1× (rmax − rmin) then
4: compressreliability ← TRUE
5: else
6: compressreliability ← FALSE
7: end if
8: if (cmax − cpmax) > 0.1× (cmax − cmin) or (cpmin − cmin) > 0.1× (cmax − cmin) then
9: compresscost ← TRUE

10: else
11: compresscost ← FALSE
12: end if
13: if compressreliability = TRUE then
14: rmax ← (rmax + rpmax)/2
15: rmin ← (rmin + rpmin)/2
16: end if
17: if compresscost = TRUE then
18: cmax ← (cmax + cpmax)/2
19: cmin ← (cmin + cpmin)/2
20: end if
21: if compressreliability = TRUE or compresscost = TRUE then
22: Re-initialize extent and values of cellular density and rank grids D and R.
23: end if
24: Update the epsilon archive A with the current population.
25: Generate a PUMD probability model using the current population.
26: Recreate the entire population by sampling from the PUMD model.
27: Update the cellular density and rank grids D and R.
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5.8 AMALGAM: An Evolutionary Hyperheuristic

The AMALGAM algorithm by Vrugt and Robinson [244] is a generic evolutionary meta-
algorithm framework which incorporates k sub-algorithms in the solution of a MOO problem.
The algorithm employs a population of N solutions, whose offspring are created in a genet-
ically adaptive manner by dividing the creation of N offspring amongst the sub-algorithms,
proportional to the success of these sub-algorithms during previous generations. Global infor-
mation sharing means that at all times each sub-algorithm has access to the entire population
to generate its share of the offspring. Theory and numerical experiments have shown that it is
impossible to develop a single algorithm which performs efficiently over a diverse set of prob-
lems. The philosophy behind AMALGAM is that the strengths of different meta-heuristics can
be combined and exploited dynamically to produce a faster, more reliable search than is possible
with any one of the algorithms on its own.

AMALGAM borrows largely from the Non-dominated Sorting Genetic Algorithm (NSGA-II)
by Deb et al. [61] in 2002, using its concepts of Pareto-rank fitness, crowding distance, the
Fast Non-dominated Sorting Algorithm (FNSA), and an elitist selection strategy to construct a
generic multi-method framework.

Vrugt and Robinson [244] used four sub-algorithms within the AMALGAM framework, namely
NSGA-II, Adaptive Metropolis, Particle Swarm Optimisation and Differential Evolution, each
with differing strengths and search techniques. They applied this formulation of AMALGAM to
a benchmark suite of continuous optimisation problems, and for some of the most challenging
problems exhibited a tenfold performance improvement versus any of the sub-algorithms used
individually.

To the best knowledge of the author, this is the first study in which AMALGAM is applied in
a solution of a real-world problem (WDS design).

The steps of the AMALGAM algorithm are shown in pseudo-code form in Algorithm 30. The
first step is the generation of an initial population P0 of size N , for which Latin Hypercube
Sampling (LHS) is employed to provide a well-distributed initial population. In Step 2 of
AMALGAM, the population is ranked using the FNSA, which is given in pseudo-code as Al-
gorithm 12. The Pareto-rank may be used by a sub-algorithm as a measure of fitness. In Step
3, each sub-algorithm uses the initial population to generate N/k offspring in order to create
a new child population Q0. The algorithm then proceeds iteratively for Gmax generations, se-
lecting consecutive populations from the union of the parents and offspring of each generation
t, i.e. Rt = P t ∪Qt. This is achieved by partitioning Rt into its various fronts F1,F2, . . . by
means of the FNSA. The next population P t+1 is constructed by filling up N spaces, starting
with the members of F1 and proceeding in increasing order of fronts. When adding all the
members of the front Fi will take the size of P t+1 beyond N , this front is ordered in terms of
decreasing crowding distance and the first N − |P t+1| elements of Fi are selected. A procedure
for efficiently computing crowding distance is provided in pseudo-code as Algorithm 13. This
selection procedure automatically guarantees elitism since none of the non-dominated solutions
are lost, unless the first front has a size larger than N , in which case those solutions in the
most crowded regions are discarded. The next stage is to reward sub-algorithms which have
demonstrated the most reproductive success during the current generation. For this purpose it
is required to count, for each sub-algorithm, the number of solutions Sj

t+1 contributed by the
j-th sub-algorithm to the population Pt+1.
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If N j
t is the number of offspring that sub-algorithm j must generate during generation t, then

N j
t+1 = N

(
Sj

t+1/N
j
t

) /
k∑

h=1

(
Sh

t+1/N
h
t

)
, (5.4)

where the ratio of the number of sub-algorithm j’s successful offspring in the new population
to the number generated is scaled to the combined success ratios of the entire algorithm set.
The implementation by Vrugt and Robinson employed a minimum size of N j

t = 5 to avoid
inactivating any of the algorithms. New offspring are then generated by each algorithm to
create the child population Qt+1, and the process repeats from Step 5 of Algorithm 30 [244].

It is recommended that all sub-algorithms used within the AMALGAM framework should be
capable of solving the relevant optimisation problem in their own capacity, otherwise their
internal administration will waste precious computational time.

There are some unclarities regarding the implementation of AMALGAM. Firstly, environmen-
tal selection is conducted by the AMALGAM FNSA and Crowding Distance routines, and the
sub-algorithms are only required to generate offspring, using their selection and variational op-
erators, and apparently selecting solutions from the globally shared population. However, many
metaheuristics require different environmental selection schemes, or model-building techniques,
such that an entire sub-model must be built for that sub-algorithm in every generation. For
example, SPEA-II would require the maintenance of an internal archive, and would need an
additional level of environmental selection utilizing SPEA-II computed fitness. PSO presents
even more of a challenge since it requires the tight coupling of meta-data to solutions in the form
of solution velocities, such that an additional PSO population would be required, and velocities
would have to be assigned randomly or heuristically if solutions are to be included from the
shared population. On the other hand, NSGA-II and DE may use the shared population directly
without additional environmental selection or internal model building. For these algorithms,
one is only utilizing their offspring creation subroutines. An illustration of the problems with
this idea comes from the fact that NSGA-II and SPEA-II essentially use similar mechanisms to
generate offspring, and differ primarily in terms of how they conduct environmental selection.

Assume that metaheuristics may be categorized either as using regenerative models (EDAs,
MOEAs, Greedy) or persistent models (PSO), where regenerative models require only the cur-
rent populations (parent / offspring / archive) and some internal variables to generate the next
population, and where representation in persistent models requires continuous monitoring and
refinement of population meta-data (meta-parameters are tightly coupled to solutions and are
assigned values only by the relevant metaheuristic), such as the case of PSO. The original for-
mulation of AMALGAM seems only to be suitable for regenerative models, since there is a
break in the continuity of persistent model parameters. However, Vrugt and Robinson [244]
implemented a naive version of PSO as an AMALGAM sub-algorithm in their article, failing
to explain how they solved the discontinuity problem. Two possible ways to accommodate
this may include meta-parameter generalization (whereby all sub-algorithms supply values for
all tightly coupled meta-parameters), or persistent model reformulation (whereby solutions ob-
tained from other sub-algorithms must be incorporated and assigned meta-parameter values by
the host sub-algorithm). This problem was bypassed in this dissertation by only considering
regenerative models.

Alternative formulations for AMALGAM were devised for this dissertation, in order to address
some of the shortcomings exposed during testing. These included the arbitrariness of the envi-
ronmental selection scheme, and various issues pertaining to the offspring partitioning formula.
The AMALGAM scheme need not necessarily be deployed within the NSGA-II framework.
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An alternative formulation was developed, called AMALGAMS, which employs the SPEA-II
environmental selection strategy.

One issue of importance not addressed in AMALGAM is the problem of sub-algorithm efficiency.
Currently a very slow sub-algorithm which produces the best offspring will dominate the search.
However, it may be possible that a faster algorithm is capable of producing equally good solu-
tions if allocated a larger portion of the offspring, resulting in significant speed enhancements
overall. The offspring partitioning formula (5.4) may be adapted to

N j
t+1 = N

(
Sj

t+1/(N j
t T j

t )
) /

k∑

h=1

(
Sh

t+1/(Nh
t T h

t )
)

in order to include the individual running times of the sub-algorithms such that relatively longer
running times are penalized. This variant was called TAMALGAM.

A more intelligent offspring partitioning scheme might include the use of performance metrics,
such as hypervolume or dominance rank information, to better quantify offspring successes.
Two additional formulations were devised. In the first formulation, AMALGAMI, the offspring
success count per algorithm Sj

t+1 is replaced by the sum of the squared inverse dominance
rankings of the offspring that survive to the next generation, i.e.

Ŝj
t+1 =

∑

i∈Oj
t+1

(
1

rank(i)

)2

,

where Oj
t+1 is the set of successful offspring produced by algorithm j. The second formulation,

AMALGAMJ, also replaces N j
t by (N j

t )
1
2 in order to reduce the importance of the number of

offspring generated.

Finally, the two considerations of sub-algorithm efficiency and finely-grained performance eval-
uation may be combined to produce additional variants TAMALGAMI and TAMALGAMJ.
Numerous other formulations were investigated, but the four best of those included in the final
study were AMALGAMS, TAMALGAM, AMALGAMI, and TAMALGAMJ.

5.9 Chapter Summary

An overview to the topic of multi-objective optimisation in the context of WDS systems was
provided in this chapter, in fulfilment of Dissertation Objective 4 in §1.3. and partially address-
ing Objective 3(b). Furthermore, the algorithms named in Dissertation Objectives 6 and 7 were
introduced and discussed in some detail. The basic theory of MOO was presented, and a generic
mathematical model for multi-objective WDS design optimisation was developed. A history of
MOO for WDS design was included, detailing the developments over the last decade.

Important design concepts for MOEAs (and multi-objective metaheuristics in general) were
discussed, such as Pareto-based fitness assignment, diversity preservation using solution den-
sity information, constraint handling with penalty factors or constrained-dominance, selection
schemes, elitism, variational operators and solution encoding. Various population sizing strate-
gies were discussed, as well as the use of an ǫ-domination scheme of user-defined precision.
Performance evaluation in a MOO context was considered, covering topics such as optimisation
search convergence, parameter tuning, experimental design for fair algorithm comparison, and
solution quality measures. Three quality measures for comparing approximation sets were also
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identified: a dominance ranking quantifier, the hypervolume metric, and a new measure based
on the size of an output ǫ-archive.

Three popular MOEAs from the literature were discussed in detail, namely NSGA-II, SPEA-II
and DE. Several alternative population-based metaheuristics were also presented, including a
novel greedy algorithm based on engineering judgement, a multi-objective PSO algorithm, and
an EDA based on the Univariate Marginal Distribution, as well as a novel variant of this, named
the Partitioned UMD. A self-adaptive evolutionary algorithm called ANIMA was also developed,
which evolves search parameters in addition to solutions. Finally, a hyperheuristic named
AMALGAM was presented which simultaneously incorporates multiple diverse metaheuristics
within a single optimisation framework in the hope of effectively combining their strengths.
Several variants on the original AMALGAM formulation were proposed.

This chapter serves the purpose of preparing the reader for the chapters that follow, which
deal with the implementation of the algorithms mentioned above for WDS design and actual
benchmark testing in which the performances of these metaheuristics are compared.
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Algorithm 28 ANIMA Self-adaptive MOEA

Input: An initial random population of solutions P t of size N where each solution is an assign-
ment of values to decision variables x and parameter values p = (psbx, pdf , pt) representing the
SBX parameter (difference index), the Differential Evolution parameter (difference factor),
and the triangular mutation probability parameter, respectively. Also required is the differ-
ence index value range [psbxmin, psbxmax], the difference factor range [pdfmin, pdfmax], and the
triangular mutation probability parameter range [ptmin, ptmax], as well as a maximum number
of generations Gmax.

Output: An approximation of the Pareto-optimal solution set in multi-objective space, A∗.

1: Initialize the parameter values for each solution in P t by sampling uniformly from the
permissable parameter ranges. Also assign an evolution state to each solution as SBX or
DE with an equal probability.

2: Set t← 0
3: while Population converged = FALSE and t < Gmax do
4: Qt ← ∅
5: while |Qt| < N do
6: Select the dominant parent x1 uniformly from P t. Select next two parents x2 and x3

by means of two constraint competent binary tournaments.
7: Perform an SBX crossover between x1 and x2 using the psbx of the dominant parent.

This produces two offspring solutions x4 and x5.
8: Conduct variable-wise triangular mutation on these offspring with the probability pt of

the dominant parent.
9: Perform differential evolution vector operations as x4 ← x4 − f(x2 − x3), and x5 ←

x5 + f(x2 − x3), where f = pdf of the dominant parent.
10: NSGA-II Environmental Selection to generate P t+1 (replacing any duplicate solutions

in the problem domain with UMD generated solutions whose parameter vectors are
generated as per Step 1).

11: Conduct Offspring Parameter Creation [Algorithm 29]
12: end while
13: Set t← t + 1
14: end while
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Algorithm 29 ANIMA Parameter Generation

Input: Parent solutions x1 and x2 along with their parameter vectors p1 and p2, offspring so-
lutions x4 and x5, valid parameter ranges [psbxmin, psbxmax], [pdfmin, pdfmax] and [ptmin, ptmax].

Output: Offspring parameter vectors p4 and p5.

1: if evolstate(x1) = SBX then
2: for all offspring xi do
3: Generate random number u1 ∈ [0, 1]
4: if u1 < 0.8 then
5: Copy p1 directly to the offspring.
6: else
7: Offspring parameters psbx and pt are generated as SBX crossovers of those values for

x1 and x2 using the psbx of x1. Parameter pdf is copied directly from x1.
8: end if
9: Generate random number u2 ∈ [0, 1].

10: if u2 < pt of dominant then
11: Allow offspring parameters psbx and pdf to undergo triangular mutation.
12: end if
13: end for
14: else if evolstate(x1) = DE then
15: for all offspring xi do
16: Generate random number u1 ∈ [0, 1]
17: if u1 < 0.8 then
18: Copy p1 directly to the offspring.
19: else
20: Offspring parameter pdf is generated as an SBX crossover of this parameter for x1

and x2 using the psbx of x1. Parameters psbx and pt are copied directly from x1.
21: end if
22: Generate random number u2 ∈ [0, 1].
23: if u2 < pt of dominant then
24: Allow offspring parameter pdf to undergo triangular mutation.
25: end if
26: end for
27: end if
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Algorithm 30 Amalgam Hyperheuristic [244]

Input: A MOO problem consisting of an initial population of solutions P , where each solution
is an assignment of values to decision variables x, a set of constraints on these decision
variables, and M objective functions to produce entries for the M × 1 objective vector y, a
maximum number of generations Gmax.

Output: An approximation of the Pareto-optimal solution set in multi-objective space, A∗.

1: Generate an initial population of solutions P 0 of size N by means of LHS.
2: Rank and sort population using the FNSA [Algorithm 12].
3: Create population Q0 using k sub-algorithms, each contributing N/k offspring.
4: t← 0
5: while t < Gmax do
6: Rt ← P t ∪Qt

7: Partition Rt into fronts F1,F2, . . . by means of the FNSA [Algorithm 12].
8: P t+1 ← ∅ and i← 1
9: while |P t+1| < N do

10: if |Fi|+ |P t+1| <= N then
11: P t+1 ← P t+1 ∪ Fi

12: else if |Fi|+ |P t+1| > N then
13: Calculate crowding distance in Fi [Algorithm 13].
14: Sort Fi members in order of decreasing crowding distance.
15: P t+1 ← P t+1 ∪ { the first (N − |P t+1|) elements of Fi}
16: end if
17: i← i + 1
18: end while
19: Calculate the crowding distance for each x ∈ P t+1.
20: Calculate the number of offspring, S

j
t+1, contributed by sub-algorithm j to P t+1.

21: j ← 1
22: while j ≤ k do

23: Calculate N j
t+1 = N

(
Sj

t+1/N
j
t

)
/

∑k
h=1

(
Sh

t+1/N
h
t

)

24: j = j + 1
25: end while
26: Create Qt+1 by generating N j

t+1 offspring with each algorithm j = 1, . . . , k.
27: t← t + 1
28: end while
29: A∗ = P t



Chapter 6

Implementation of Multi-objective
WDSDO

This chapter contains a discussion of the implementations of the multi-objective algorithms
presented in the previous chapter, as well as the development of a testing strategy for comparing
the performance of these algorithms in terms of their ability to conduct WDSDO. In order to
provide global perspective, the overall testing strategy is presented first, followed by the WDS
benchmark descriptions and required adaptations of the generic WDSDO problem formulation
for each benchmark. Finally, technical details are presented with respect to global optimisation
requirements and specific algorithmic implementations.

6.1 Algorithm Testing Strategy for WDSDO

The following algorithms were selected for comparison in terms of their ability to conduct
WDSDO on a number of WDS benchmarks that are documented in the literature:

1. ADMOEA

2. AMALGAMndp

3. AMALGAMndu

4. AMALGAMndug

5. AMALGAMIndp

6. AMALGAMIndu

7. AMALGAMIndug

8. AMALGAMSndp

9. AMALGAMSndu

10. ANIMA

11. DE (GDE)

12. GREEDY

13. NSGA-II

14. PSO (MOPSO)

15. PUMDA

16. SPEA-II

145
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17. TAMALGAMndp

18. TAMALGAMndu

19. TAMALGAMndug

20. TAMALGAMJndp

21. TAMALGAMJndu

22. TAMALGAMJndug

23. UMDA

In each case, the AMALGAM variants are implemented with sub-algorithms indicated by the
first-letter subscript (i.e. subscript ‘n’ denotes NSGA-II, ‘d’ denotes DE, ‘u’ denotes UMDA, ‘p’
denotes PUMDA, and ‘g’ denotes GREEDY). AMALGAM has been implemented with three
different selections of sub-algorithms, the first two comprising three sub-algorithms (‘ndu’ and
‘ndp’), and the final selection comprising four sub-algorithms (‘ndug’).

In this dissertation nine standard WDS benchmarks documented in the literature were employed
to test the relevant algorithms. These benchmarks were introduced in Chapter 3, and include
TLN, HANOI, NYTUN, TRP, EXNET, BLACK, FOSS, PESCA and MOD. Summarised de-
scriptions of these benchmarks appear later in this chapter. Full benchmark specifications are
also provided as EPANET2 input files (files named ‘*.inp’) and accompanying optimisation
data files (files named ‘*.opt’) in an electronic supplement to this dissertation (see Appendix
E). These WDS benchmarks represent different aspects of real-world systems, varying in num-
bers and dimensions of components such as pipes and reservoirs. Amongst these are included
instances of real-world WDSs.

The testing strategy is divided into four phases. Phase 1 is applicable to the TRP, TLN, HANOI,
NYTUN, BLACK, FOSS, PESCA, MOD and EXNET benchmarks, while Phases 2 and 3 apply
to the same benchmarks, excluding EXNET. These testing phases address the performance
comparison of the various algorithms, constraint handling techniques and surrogate reliability
measures. The test results and accompanying analysis for each of these phases appear in
Chapters 7 and 8. Furthermore, in Phase 4, a real South African WDS case study, the R21
Corridor, is considered in Chapter 9. The testing phases are described as follows.

Phase 1: WDSDO Algorithm Comparison

The purpose of the first phase of testing is to evaluate the performance of the various algorithms
with respect to WDSDO on the named WDS benchmarks as presented in the literature. The
following optimisation setup is employed:

1. The WDS benchmarks are utilized with deterministic demands as stated in their problem
descriptions.

2. The penalty factor method is used, as per §5.4.4.

3. The Network Resilience surrogate measure is used.

4. Population sizes are calculated for each algorithm and benchmark combination in accor-
dance with Goldberg’s method, as explained in §5.4.6.

5. Fair time trials are conducted, as explained in §5.5.1, using a convergence time trial
followed by a full time trial, which employs the time limits obtained in the convergence
trial.

6. Thirty different initial populations are randomly generated and used to conduct 30 opti-
misation runs for each algorithm.
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7. The dominance rank, hypervolume, and ǫ-archive size performance measures (described
in §5.5.4) are calculated for each approximation set.

8. The WDS benchmarks considered during this phase are TRP, TLN, NYTUN, HANOI,
BLACK, FOSS, PESCA, MOD and EXNET.

The results of Phase 1 are reported in Chapter 7.

Phase 2: Constraint Handling Technique Comparison

The purpose of the second phase is to identify which of the penalty factor or constrained
domination techniques for constraint handling produce superior results in terms of the ordinary
performance metrics as well as the proportion of feasible solutions in the final populations. The
following optimisation setup is employed:

1. The WDS benchmarks are utilized with deterministic demands as stated in their problem
descriptions.

2. The NSGA-II algorithm is combined with the two different constraint handling techniques
in order to produce two algorithms.

3. Thirty fair time trials are conducted as in Phase 1.

4. The dominance rank, hypervolume, and ǫ-archive size performance measures are calculated
for each approximation set.

5. The WDS benchmarks considered during this phase are TRP, TLN, NYTUN, HANOI,
BLACK, FOSS, PESCA and MOD.

The results of Phase 2 are also reported in Chapter 7.

Phase 3: Reliability Measures Comparison

The third phase entails comparing reliability measures (the Resilience Index, the Network Re-
silience, Flow Entropy, and the Mixed Surrogate) in order to determine which one produces
the most robust designs in terms of probabilistic reliability (with uncertain demands) and the
ability to respond gracefully to pipe failures. The following optimisation setup is employed:

1. The WDS benchmarks are utilized with deterministic demands using the surrogate mea-
sures, and uncertain demands with the LHS sampling method.

2. The NSGA-II algorithm is executed with four different reliability schemes providing four
different result sets.

3. Thirty convergence trials per algorithm are conducted, and the approximation sets pro-
duced are combined to produce four attainment sets for each benchmark.

4. Probabilistic reliability is estimated for the solutions in the attainment sets of each algo-
rithm using LHS for nodal demands (distributed normally with deterministic peak demand
as the mean and 30% of the mean as the standard deviation) employing 1 000 samples.
Furthermore, these demands are correlated at a correlation coefficient of 0.5, as per the
method described in §4.2.6.

5. A failure analysis is conducted for all np single-pipe failure events.

6. Pressure-driven analysis is conducted using a demand adaptation process.
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7. Average demand satisfaction percentages (ADSU and ADSF, as defined in §4.3.1) are
calculated for uncertain demands analysis and failure analysis.

8. Linear regression analysis is performed in order to determine whether there is a significant
relationship between the reliability estimation methods and the ADS values for probabilis-
tic and failure reliability.

9. The WDS benchmarks considered during this phase are TRP, TLN, NYTUN, HANOI,
BLACK, FOSS, PESCA, and MOD.

The results of Phase 3 are presented in Chapter 8.

Phase 4: South African Case Study (R21 WDS)

Phase 4 is the subject matter of Chapter 9, in which the design of a real-world South African
WDS, the R21 Corridor WDS, is considered, using the redundant layout technique and the best
design method from Phase 1. Significant improvement on a preliminary engineering design is
demonstrated.

6.2 WDS Benchmarks documented in the literature

It is worth special mention that available studies on WDSDO typically examine a small number
of WDS benchmarks, sometimes even considering only a single network [88, 141, 182, 194].
While this might demonstrate potential for a certain optimisation methodology, it fails to allow
any general conclusions. However, employing a large number of benchmarks is troublesome
due to the high computational requirements of the WDSDO problem and the lack of readily
available WDS benchmarks in the public domain.

Four of the WDS benchmarks considered in this dissertation are taken from the free online
repository of the Exeter Centre for Water Systems (UK) [84], namely TRP, NYTUN, HANOI
and EXNET. The remaining WDS benchmarks are taken from the website of the DEIS Opera-
tions Research Group at the University of Bologna [65], namely TLN, BLACK, FOSS, PESCA
and MOD.

Only the basic problem description, including the demand loading conditions and pipe sizing
/ rehabilitation options for some of the benchmarks are presented here. Detailed WDS design
specifications of all benchmarks, including the physical dimensions and layout of each WDS, are
made available in standard EPANET input file format on a compact disc which accompanies
this dissertation (and which also contains the code and optimisation software employed in this
dissertation).

6.2.1 Benchmark 1 — The Two Reservoir Problem

The Two Reservoir Problem (TRP) was first proposed by Gessler [99] in 1985, and later studied
by Simpson et al. [218] in 1994. A schematic of the TRP pipe layout appears in Figure 6.1, with
the pipes numbered for identification. The objective is to minimize the cost of the design which
requires the addition of five new pipes (represented by the dashed lines numbered 6, 8, 11, 13
and 14) to an existing system, and rehabilitation options (duplication or cleaning or leaving
unchanged) for three of the existing pipes (represented by the bold lines numbered 1, 4 and 5).
The available diameters for new pipes and rehabilitation options for the three existing pipes
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appear in Table 6.2, together with their associated unit costs. The size of the decision space
is 103 × 85 ≈ 107.5, which makes TRP the smallest combinatorial problem considered in this
dissertation. Three demand patterns must be satisfied from the two available supply sources, as
specified in Table 6.1, for given minimum head requirements. The Hazen-Williams roughness
coefficients are equal to 120 for new and cleaned pipes, and the coefficients for existing pipes
are variable.

The TRP may be implemented using the standard multi-objective formulation (5.1) with five
discrete variables for new pipes (which may be assigned one of eight values 1–8, indexing the
different pipe options) and three discrete variables for rehabilitation options (which may be
assigned one of ten options — leave unchanged, clean or duplicate in one of eight sizes). Only
minimum head violations are included in the penalty function, normalized by a maximum head
limit of 90 m.

6.2.2 Benchmark 2 — The Two-loop Network

The Two-loop Network (TLN) is a simple WDS that was introduced by Alperovits and Shamir
[9] in 1977. A schematic of the TLN pipe layout appears in Figure 6.2, with the pipes numbered
for identification. The objective of optimisation is to design pipe sizes for the system in order
to minimize cost, although the maximisation of reliability is also considered here. A set of
14 possible pipe diameters with associated unit costs appears in Table 6.3. Since there are
eight pipes, the size of the decision space is 148 ≈ 109. A single demand loading condition
must be satisfied, which appears in Table 6.4. Furthermore, the TLN WDS is required to
satisfy a minimum pressure head of 30 m at all the nodes, and a minimum and maximum head
loss gradient of 0.0005 and 0.05 respectively in each pipe, which has the effect of making pipe
elimination impossible. It is assumed that all pipe Hazen-Williams coefficients are 130.

The TLN WDS design may be optimized using the multi-objective formulation (5.1), with
pipe diameters as discrete variables, and with the penalty function adapted by replacing the
velocity limit with lower and upper limits on head loss gradient, and excluding a maximum
head constraint, but normalizing minimum head violations by a theoretical maximum of 90 m.

6.2.3 Benchmark 3 — The New York Tunnel System

The New York Tunnel Problem (NYTUN) was proposed by Schaake and Lai [212] in 1969.
The pipe layout of the NYTUN benchmark is depicted in Figure 6.3, with pipes numbered for
identification. The objective of the NYTUN problem is to determine the most economically
effective design for rehabilitation of the existing system, which involves decisions on the dupli-
cation (parallelling of pipes) of the primary WDS for the city of New York. Each of twenty-one
pipes that comprise the system may be considered for duplication. A single demand loading
condition is available as shown in Table 6.5. Fifteen discrete diameters are available for dupli-
cate pipes, which appear in Table 6.6, as well as the zero option of not having a pipe, yielding
a decision space of size 1621 ≈ 1025.28. The minimum head requirement at all nodes is 255 ft,
apart from nodes 16, 17 and 1, for which the minimum head requirements are 260, 272.8 and
300 ft respectively. All pipes have a Hazen-Williams coefficient of 100.

NYTUN may be implemented using the standard multi-objective formulation (5.1) with twenty-
one discrete variables representing the diameters of duplicate pipes (which may be assigned one
of sixteen values 0–15, indexing the different pipe options, and including the zero option for no



150 CHAPTER 6. IMPLEMENTATION OF MULTI-OBJECTIVE WDSDO

2 3

4

65

7 8

1110

12 13 14

9

1

Figure 6.1: Pipe layout for the TRP WDS benchmark [218].

Demand Pattern 1 Demand Pattern 2 Demand Pattern 3

Demand Minimum Demand Minimum Demand Minimum
Node (l/s) head (m) (l/s) head (m) (l/s) head (m)

2 12.62 28.18 12.62 14.09 12.62 14.09
3 12.62 17.61 12.62 14.09 12.62 14.09
4 0 17.61 0 14.09 0 14.09
6 18.93 35.22 18.93 14.09 18.93 14.09
7 18.93 35.22 82.03 10.57 18.93 14.09
8 18.93 35.22 18.93 14.09 18.93 14.09
9 12.62 35.22 12.62 14.09 12.62 14.09
10 18.93 35.22 18.93 14.09 18.93 14.09
11 18.93 35.22 18.93 14.09 18.93 14.09
12 12.62 35.22 12.62 14.09 50.48 10.57

Table 6.1: Demand loading conditions for the TRP benchmark.

Diameter Cost of new Cost of cleaning
(mm) pipe ($/m) existing pipe ($/m)

152 49.54 47.57
203 63.32 51.51
254 94.82 55.12
305 132.87 58.07
356 170.93 60.70
407 194.88 63.00
458 232.94 –
509 264.10 –

Table 6.2: Pipe sizing and rehabilitation options for the TRP benchmark.
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Figure 6.2: Pipe layout for the TLN WDS benchmark [9].

Diameter Cost Diameter Cost
(mm) ($/m) (mm) ($/m)

25.4 2 304.8 50.00
50.8 5 355.6 60.00
76.2 8 406.4 90.00
101.6 11 457.2 130.00
152.4 16 508.0 170.00
203.2 23 558.8 300.00
254.0 32 609.6 550.00

Table 6.3: Pipe costs for the TLN benchmark.

pipe). Only minimum head constraints are incorporated in the penalty function, and an upper
limit of 300 ft is used to normalize the minimum head violation.

6.2.4 Benchmark 4 — The Hanoi Network

The Hanoi Network (HANOI) was first presented by Fujiwara and Khang [94] in 1990. HANOI
consists of 32 nodes and 34 pipes arranged in three loops. A schematic of the HANOI pipe
layout is shown in Figure 6.4. The objective of optimisation is to specify an assignment of pipe
diameters in order to minimize costs, although reliability will also be considered here. Only a
single fixed head source at an elevation of 100 m is available. The minimum head requirement
at all nodes is 30 m. A single demand loading condition is enforced, which appears in Table 6.7.
The set of commercially available diameters and associated costs appears in Table 6.8. All pipe
Hazen-Williams coefficients are set at 130.

HANOI may be implemented using the standard multi-objective formulation (5.1) with thirty-
four discrete variables representing pipe diameters (which may be assigned one of six values
1–6, indexing the various pipe options, or zero, representing an eliminated pipe). This yields
a decision space of size 734 ≈ 1028.73, and there are only minimum head limits in the penalty
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Node Demand
(m3/h)

1 100
2 120
3 330
4 100
5 270
6 200

Table 6.4: Demand loading condition for the TLN benchmark.

function, normalized by a theoretical maximum head of 100 m.

6.2.5 Benchmark 5 — The Blacksburg Network

The Blacksburg Network (BLACK) was presented by Bragalli et al. [21] in 2008, adapted from
the work of Sherali et al. [216]. It consists of 30 demand nodes, a single reservoir supplying a
constant head of 715.56 m and 35 pipes, twelve of which have fixed diameters, leaving a total of
23 sizable pipes. A schematic of the BLACK pipe layout is shown in Figure 6.5. The objective of
optimisation is to specify an assignment of pipe diameters in order to minimize costs, although
reliability will also be considered here.

The minimum head requirement at all nodes is 30 m. Maximum heads are also enforced along
with a single demand loading condition, which both appear in Table 6.9. The set of commercially
available diameters and the associated costs appear in Table 6.10. Since 14 pipe size options are
available, as well as the option of pipe elimination, the size of the decision space is 1523 ≈ 1027.05.
All pipe Hazen-Williams coefficients are set at 120. Maximum flow velocity constraints of 2 m/s
are also enforced for all pipes.

BLACK may be implemented using the standard multi-objective formulation (5.1) with 23
discrete variables representing pipe diameters, and there are both minimum and maximum
head limits in the penalty function, as well as maximum velocity limits.

6.2.6 Benchmark 6 — The Fossolo Network

The Fossolo Network (FOSS) was also presented by Bragalli et al. [21] in 2008, and represents
a single neighbourhood of Bologna in Northern Italy. Bragalli et al. considered three different
instances of FOSS (foss poly 0, foss iron, and foss poly 1 ) which differ in available design op-
tions. Only foss poly 1 is considered in this dissertation, since it is the largest instance with 22
polyethylene pipe size options. A schematic of the FOSS pipe layout is shown in Figure 6.6.
The objective of optimisation is to specify an assignment of pipe diameters in order to minimize
costs, although reliability will also be considered here. FOSS comprises 36 demand nodes with
one reservoir supplying a constant head of 121 m, and 58 pipes to be sized.

The set of commercially available diameters and the associated costs appear in Table 6.12. The
minimum head requirement at all nodes is 40 m. Maximum heads are also enforced along with
a single demand loading condition, which both appear in Table 6.11. The size of the decision
space is 2358 ≈ 1078.97. All pipe Hazen-Williams coefficients are set at 150. Finally, maximum
flow velocity constraints of 1 m/s are enforced for all pipes.

FOSS may be implemented using the standard multi-objective formulation (5.1) with 58 discrete
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Figure 6.3: Pipe layout for the NYTUN WDS benchmark [212].

Node Demand Node Demand
(cfs) (cfs)

2 92.4 12 117.1
3 92.4 13 117.1
4 88.2 14 92.4
5 88.2 15 92.4
6 88.2 16 170.0
7 88.2 17 57.5
8 88.2 18 117.1
9 170.0 19 117.1
10 1.0 20 170.0
11 170.0 – –

Table 6.5: Demand loading condition for the NYTUN benchmark.

Diameter Cost Diameter Cost
(in) ($) (in) ($)

36 93.5 132 469.00
48 134.0 144 522.00
60 176.0 156 577.00
72 221.0 168 632.00
84 267.0 180 689.00
96 316.0 192 746.00
108 365.0 204 804.00
120 417.0 – –

Table 6.6: New pipe costs for the NYTUN benchmark.
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Figure 6.4: Pipe layout for the HANOI WDS benchmark [94].

Node Demand Node Demand
(m3/h) (m3/h)

2 890 18 1345
3 850 19 60
4 130 20 1275
5 725 21 930
6 1005 22 485
7 1350 23 1045
8 550 24 820
9 525 25 170
10 525 26 900
11 500 27 370
12 560 28 290
13 940 29 360
14 615 30 360
15 280 31 105
16 310 32 805
17 865 – –

Table 6.7: Demand loading condition for the HANOI benchmark.
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Diameter Cost
(mm) ($/m)

304.8 45.73
406.4 70.400
508.0 98.39
609.6 129.33
762.0 180.75
1016.0 278.28

Table 6.8: New pipe costs for the HANOI benchmark.

variables representing pipe diameters, and there are both minimum and maximum head limits
and maximum velocity limits in the penalty function.

6.2.7 Benchmark 7 — The Pescara Network

The Pescara Network (PESCA) was presented by Bragalli et al. [21] in 2008, and represents the
simplified WDS of a real Italian city. It comprises 68 demand nodes, three reservoirs supplying
heads of 57.00, 53.08, and 55 m, and 99 pipes with 13 pipe size options each. A schematic
of the PESCA pipe layout is shown in Figure 6.7. The objective of optimisation is to specify
an assignment of pipe diameters in order to minimize cost, although reliability will also be
considered here.

The minimum head requirement at all nodes is 20 m. Maximum heads are also enforced along
with a single demand loading condition, which both appear in Table 6.13. The set of com-
mercially available diameters and their associated costs appear in Table 6.14. The size of the
decision space is 1499 ≈ 10110. All pipe Hazen-Williams coefficients are set at 130. Finally,
maximum flow velocity constraints of 2 m/s are enforced for all pipes.

PESCA may be implemented using the standard multi-objective formulation (5.1) with 58
discrete variables representing pipe diameters, and there are both minimum and maximum
head limits and maximum velocity limits in the penalty function.

6.2.8 Benchmark 8 — The Modena Network

The Modena Network (MOD) is another WDS benchmark presented by Bragalli et al. [21] in
2008. MOD consists of 268 demand nodes and 317 pipes. A schematic of the MOD pipe layout is
shown in Figure 6.8. The objective of optimisation is to specify an assignment of pipe diameters
in order to minimize costs, although reliability will also be considered here. Four fixed head
sources are available at elevations of 72, 73.8, 73, and 74.5 m.

The minimum head requirement at all nodes is 20 m. Maximum heads are also enforced along
with a single demand loading condition, which both appear in Table D.1 (see Appendix D).
The set of commercially available diameters and associated costs appears in Table 6.14. Since
13 pipe size options are available for each pipe, the size of the decision space is 13317 ≈ 10354,
which is much larger than the previous seven benchmarks. All pipe Hazen-Williams coefficients
are set at 130. Velocity limits of 2 m/s are enforced for all pipes.

MOD may be implemented using the standard multi-objective formulation (5.1) with 317 dis-
crete variables representing pipe diameters, and there are both minimum and maximum head
limits as well as maximum velocity limits in the penalty function.
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Figure 6.5: Pipe layout for the BLACK WDS benchmark [21].

Demand MaxPres Demand MaxPres
Node (ℓps) m Node (ℓps) m

1 0.003 287 62 62.99 16 0.003 287 62 60.55
2 0.003 191 09 65.73 17 0.000 654 87 72.74
3 0.001 625 83 69.09 18 0.006 539 28 62.08
4 0.000 873 17 59.18 19 0.003 287 62 60.40
5 0.003 384 78 62.84 20 0.000 691 47 63.29
6 0.003 263 65 66.65 21 0.003 239 67 62.84
7 0.012 654 59 67.26 22 0.000 740 05 62.08
8 0.000 716 07 67.26 23 0.003 251 66 58.27
9 0.000 679 48 72.59 24 0.006 466 73 51.71
10 0.003 287 62 69.09 25 0.003 231 66 70.00
11 0.006 357 58 63.60 26 0.003 312 23 75.64
12 0.001 710 37 72.44 27 0.003 215 07 74.88
13 0.006 357 58 64.36 28 0.001 613 84 75.94
14 0.001 625 83 62.38 29 0.002 644 73 69.39
15 0.003 251 66 61.92 30 0.003 239 67 68.48

Table 6.9: Demand loading condition for the BLACK benchmark [21].
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Diameter Cost Diameter Cost
Id (mm) ($/m) Id (mm) ($/m)

1 0.025 4001 0.52 8 0.304 8012 75.60
2 0.050 8002 2.10 9 0.355 6014 102.90
3 0.076 2003 4.72 10 0.406 4016 134.39
4 0.101 6004 8.40 11 0.457 2018 170.09
5 0.152 4006 18.90 12 0.508 0020 209.98
6 0.203 2008 33.60 13 0.558 8022 254.08
7 0.254 0010 52.50 14 0.609 6024 302.37

Table 6.10: New pipe costs for the BLACK benchmark.

6.2.9 Benchmark 9 — The Exeter System

The Exeter Network (EXNET) benchmark is based on the real WDS of Exeter in the UK,
which consists of 1 989 pipes and serves 400 000 people. EXNET has been developed by the
Centre for Water Systems of Exeter University as a difficult, realistic problem. The pipe layout
of EXNET is depicted in Figure 6.9.

The aim is to minimize design costs for the rehabilitation of the existing network such that
projected demands are satisfied within acceptable pressure limits until the year 2020. EXNET
consists of relatively small pipes and few transmission mains, such that a large head-loss range
occurs at the system extremities. This makes EXNET highly sensitive to demand increases. The
expansion plan is based on a calibrated model of the WDS with a minimum head requirement
of 20 m at demand nodes.

The available pipe diameters are provided in Table 6.15 with associated Colebrook-White fric-
tion factors. The unit costs for pipes are a function of both pipe diameter and the type of roads.
For major roads, excavations are more difficult and hence more expensive.

The full version of the EXNET problem includes tank design and extended period analysis,
but the version analyzed in this dissertation has been simplified, as per Farmani et al. [88] by
replacing two tanks with fixed head reservoirs and running simulations for a single snapshot of
maximum system demand over the 24 hour period. The specification of this demand loading
condition is very long, and is therefore only included on the CD accompanying this dissertation.

Rehabilitation includes possible duplication of a subset of the existing pipes (consisting of 567
pipes), with a range of ten possible pipe diameters, or a zero diameter. The size of the solution
space is therefore 11567, which makes EXNET a very large problem. Maximum system demand
is 3245.81 ℓ/s. The two reservoirs are indicated as 3001 and 3002 in Figure 6.9, and supply water
at fixed heads of 58.4 m and and 62.4 m, respectively. Nodes 3003, 3004, 3005, 3006 and 3007
supply water to EXNET from adjacent WDSs at fixed rates of 63, 1388, 10.78, 926, 26.1 ℓ/s,
respectively. There are five valves in the system, three non-return valves (NRV), one pressure
reducing valve (PRV) and one throttle control valve (TCV).

The EXNET benchmark may be solved via the standard multi-objective WDSDO formulation
(5.1) with variables for duplicate pipes whose values may be assigned one of 11 diameter options,
including the option of no pipe. Only minimum head violations are included in the penalty
function, and are normalized using a theoretical maximum head of 90 m.
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Figure 6.6: Pipe layout for the FOSS WDS benchmark [21].

Demand MaxPres Demand MaxPres
Node (ℓps) m Node (ℓps) m

1 0.000 49 55.85 19 0.001 88 58.1
2 0.001 04 56.6 20 0.000 93 58.17
3 0.001 02 57.65 21 0.000 96 58.2
4 0.000 81 58.5 22 0.000 97 57.1
5 0.000 63 59.76 23 0.000 86 56.8
6 0.000 79 55.6 24 0.000 67 53.5
7 0.000 26 53.1 25 0.000 77 56.6
8 0.000 58 54.5 26 0.001 69 57.6
9 0.000 54 55 27 0.001 42 57.1
10 0.001 11 56.83 28 0.000 30 55.35
11 0.001 75 57.3 29 0.000 62 56.5
12 0.000 91 58.36 30 0.000 54 56.9
13 0.001 16 59.1 31 0.000 90 56.6
14 0.000 54 58.4 32 0.001 03 56.8
15 0.001 10 57.5 33 0.000 77 56.4
16 0.001 21 56.7 34 0.000 74 56.3
17 0.001 27 55.5 35 0.001 16 55.57
18 0.002 02 56.9 36 0.000 47 55.1

Table 6.11: Demand loading condition for the FOSS benchmark.
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Diameter Cost Diameter Cost
Id (mm) (/m) Id (mm) (/m)

1 0.016 0.38 12 0.1308 19.61
2 0.0204 0.56 13 0.1472 24.78
3 0.026 0.88 14 0.1636 30.55
4 0.0326 1.35 15 0.184 38.71
5 0.0408 2.02 16 0.2046 47.63
6 0.0514 3.21 17 0.2292 59.70
7 0.0614 4.44 18 0.2578 75.61
8 0.0736 6.45 19 0.2906 99.58
9 0.09 9.59 20 0.3274 126.48
10 0.1022 11.98 21 0.3682 160.29
11 0.1146 14.93 22 0.4092 197.71

Table 6.12: New pipe costs for the FOSS benchmark.
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Figure 6.7: Pipe layout for the PESCA WDS benchmark [21].

6.3 Algorithmic Implementation

Implementation details are given with respect to the multi-objective algorithms employed for
WDSDO in this dissertation. Global optimisation considerations are presented first, followed
by individual meta-heuristic parameter settings.

6.3.1 Global Optimisation Considerations

All algorithms operate on the same set of initial populations, which are generated stochastically
by means of LHS sampling, a quarter of which are further improved by means of the heuristic
CANDA of Keedwell and Khu [142] (see Algorithm 19). This heuristic improvement was done in
order to seed the initial population with some healthy alleles, but not an excessive amount (which
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Demand MaxPres Demand MaxPres Demand MaxPres
Node (ℓps) m Node (ℓps) m Node (ℓps) m

1 0.010 01 54.1 26 0.002 78 55.4 50 0.013 21 55.2
2 0.012 43 52 27 0.005 32 53.2 51 0.003 87 55.4
3 0.008 50 53.5 28 0.003 63 52.7 52 0.006 43 55.2
4 0.008 50 53.2 29 0.033 00 53.4 53 0.002 55 55.4
5 0.012 12 54.8 30 0.006 00 53.8 54 0 53.7
6 0.001 63 50 31 0.006 40 54.2 55 0.011 30 54.5
7 0 50.5 32 0.002 96 55.2 56 0.003 99 54.2
8 0.033 60 51.8 33 0.003 09 53.2 57 0.007 75 53.8
9 0.004 38 52.7 34 0.003 09 54.1 58 0.001 91 53.4
10 0.016 40 51.8 35 0.008 79 53.3 59 0.000 88 53.2
11 0.029 77 29 36 0.001 68 54.9 60 0.005 14 53.9
12 0.000 49 53.8 37 0.012 64 50.3 61 0.005 14 54
13 0.007 49 53.8 38 0.012 64 50.3 62 0.007 44 52.8
14 0.006 06 37.8 39 0.012 64 52.8 76 0 52.8
17 0.002 77 53 40 0.005 56 54.1 82 0.000 005 54.9
18 0.005 03 53.5 41 0.002 60 54.1 83 0 54.9
19 0.004 81 54.2 42 0.004 57 28.5 84 0.000 54 53.7
20 0.021 04 54.3 44 0.007 56 29.7 85 0.000 37 54.9
21 0.016 94 55.2 45 0.006 21 55.9 86 0.006 46 55.5
22 0.010 41 54.9 46 0.003 09 54.9 87 0.025 00 37.8
23 0.002 17 55 47 0.000 59 54.2 88 0.002 15 54.9
24 0.006 55 38.3 48 0.012 63 53.7 89 0.001 75 55.5
25 0.010 41 53.8 49 0.003 41 55.2 - - -

Table 6.13: Demand loading condition for the PESCA benchmark.

Diameter Cost
Id (mm) (/m)

1 0.1 27.70
2 0.125 38.00
3 0.15 40.50
4 0.2 55.40
5 0.25 75.00
6 0.3 92.40
7 0.35 123.10
8 0.4 141.90
9 0.45 169.30
10 0.5 191.50
11 0.6 246.00
12 0.7 319.60
13 0.8 391.10

Table 6.14: New pipe costs for the PESCA and MOD benchmarks.

could otherwise lead to premature convergence). This increases the chances of finding feasible
solutions for all algorithms. Thirty such populations were used for testing purposes (yielding
thirty optimisation runs for each algorithm), selected as a reasonable value considering the trade-
off between statistical significance and execution time. All algorithms with static populations
(all algorithms excluding ADMOEA) employ a population size calculated per WDS benchmark
in accordance with Goldberg’s method, as explained in §5.4.6. ADMOEA begins with a similarly
sized initial population.

The replacement of duplicate solutions in a population with randomly generated solutions has
been found to improve algorithm performance. This convention of duplicate solution replace-



6.3. ALGORITHMIC IMPLEMENTATION 161

Diameter Colebrook-White Unit cost (£/m)
(mm) Friction Factor (mm) Minor Road Major

/ Footpath Road

110 0.03 85 100
159 0.065 95 120
200 0.1 115 140
250 0.13 150 190
300 0.17 200 240
400 0.23 250 290
500 0.3 310 340
600 0.35 370 410
750 0.43 450 500
900 0.5 580 625

Table 6.15: Pipe rehabilitation costs for the EXNET benchmark.

ment was followed for all algorithms in this dissertation.

In the computation of fair trial running times, the 90th percentile of longest average time to
convergence amongst all algorithms was used as limit in the full time trials.

In this dissertation a WDS network is encoded as follows: pipes, valves and pumps are repre-
sented by arrays of integer genes, each element of which represents a sizing option for a particular
component, and these values are used directly to index such options in separate tables; tanks
use an integer array of node indices defining tank locations, and various arrays of real-coded
genes (encoded using floating-point variables) represent tank dimensions, tank elevations and
valve settings. Although the software permits pump, tank and valve design, the benchmarks
analyzed only require pipe design.

Where multiple demand loadings were present, the minimum reliability surrogate value obtained
for all the demand scenarios is used both as the objective to be maximized and to calculate
hypervolume.

All solution quality metrics are calculated using only the feasible solutions in the final approx-
imation sets, and were calculated in cost-reliability space.

6.3.2 Constraint Handling Schemes

The penalty factors for the penalty term constraint method were calculated as pf = Cmax/0.01,
where Cmax denotes the maximum cost of a WDS design. This formula implies that a 1% or
greater total normalized constraint violation will yield a penalty which is greater than the cost
of the most expensive network. Such high penalty factors place substantial pressure on finding
feasible solutions, which was achieved successfully for all the benchmarks in this dissertation.
Since during multi-objective optimisation one is more interested in locating a trade-off set
of solutions rather than solutions at the limit of feasibility, the argument that more lenient
penalty factors should be employed is not particularly convincing. Penalty factors for the
various benchmarks are presented in Table 6.16.

Constraints were divided into four classes: pressure head constraints, maximum velocity con-
straints, head loss gradient constraints and tank operational constraints. Only the first three
constraint types were used in this dissertation, each normalized over their different feasible
ranges. These may be sorted into their ranks in multi-dimensional constraint space for the
purpose of constrained dominance testing (§5.4.4).
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WDS benchmark Penalty factor

TLN 440 000 000
TRP 286 123 962

NYTUN 29 410 320 000
HANOI 1 096 979 760
BLACK 187 010 000
FOSS 166 192 258
PESC 1 900 444 000
MOD 2808 336 962

EXNET 9 751 805 500

Table 6.16: Penalty factors for WDS benchmark systems.

6.3.3 Epsilon Archiving Scheme

The ǫ−archive size metric requires ǫ−precision values for the different benchmarks. These values
were generated by considering the represented ranges of cost and reliability in the achieved
approximation sets. These values appear in Table 6.17.

WDS benchmark ǫC ǫR ǫE
TLN 50 000 0.0005 0.01
TRP 15 000 0.002 0.01

NYTUN 1000 000 0.004 0.01
HANOI 100 000 0.002 0.005
BLACK 10 000 0.001 5 0.1
FOSS 10 000 0.001 5 0.1
PESC 75 000 0.001 5 0.1
MOD 75 000 0.002 0.1

EXNET 500 000 0.004 0.1

Table 6.17: Epsilon precision values for cost (ǫC), surrogate reliability (ǫR), and entropy (ǫE),
as used in the various WDS benchmarks.

6.3.4 Hypervolume Reference Points

Reference points are required to compute the hypervolume in cost-reliability space, which is
used for convergence analysis. Values of maximum cost and minimum reliability were generated
for each benchmark by considering the represented ranges of cost and reliability in the achieved
approximation sets. These values appear in Table 6.18.

6.3.5 Individual Algorithm Considerations

Several variations on the NSGA-II algorithm were investigated, including variants with single-
point and double-point crossover and binary mutation, a variant with an adaptive SBX operator,
and a jumping gene variant. However, the best performance was attained using the NSGA-II
variant including the standard SBX operator (with nc = 2 and a crossover probability of 0.5 for
each corresponding gene pair) and TD mutation (using a component-wise mutation probability
of 0.005).

Differential evolution was employed within the NSGA-II environmental selection framework (i.e.
DE offspring do not replace their parents (target vectors), but are rejected if they are dominated
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WDS benchmark Max Cost Min Reliability

TLN 5 000 000 0
TRP 100 000 000 0

NYTUN 300 000 000 0
HANOI 12 000 000 0
BLACK 1500 000 0.4
FOSS 2 000 000 0.4
PESC 15 000 000 0.4
MOD 15 000 000 0

EXNET 5 000 000 000 0

Table 6.18: Hypervolume reference points for convergence analysis, as used in the various WDS
benchmarks.

by the target vector). In a preliminary sensitivity analysis, it was found that a difference factor
F of 0.7 produced the best results overall for these WDSDO studies.

The UMDA algorithm was implemented within the NSGA-II environmental selection frame-
work. It requires no user-specified parameters. The PUMDA works similarly and recalculates
the standard deviation of partition size as one third of the current reliability range.

The ANIMA and ADMOEA algorithms were implemented with the parameter settings specified
in §5.7.5 and §5.7.4, respectively.

The greedy algorithm presented in Chapter 5 was implemented. The required offspring pool was
filled in turn by the various heuristic steps, on condition that, in order to be accepted, a child
solution may not be dominated by its parent. Finally, any duplicate solutions were replaced by
stochastically generated CANDA solutions.

Multi-objective PSO was implemented as described in Chapter 5, using an inertial weight of
w = 0.75 and learning factors c1 = c2 = 2.

The full version of SPEA-II was adapted to improve computational efficiency. This was achieved
by calculating at most the first ten nearest distances to every solution, and setting solution
density equal to the inverse of the distance to its 10-th nearest neighbour. In comparing solutions
for truncation, only the first five nearest distances were considered, and a solution was chosen at
random for deletion amongst any solutions still tied at σ5. It is expected that this should occur
relatively infrequently. An archive size equal to the population size was employed. Furthermore,
distances between solutions in non-normalized objective space tend to be very large, so that
their inverses are very small, which may cause rounding errors. The strategy employed in this
dissertation was to take the 3-rd root of the distance. The same variational operators as used
for NSGA-II were employed for SPEA-II.

It was decided to test AMALGAM with three different sets of sub-algorithms. In the first ver-
sion, AMALGAMndu, three sub-algorithms (NSGA-II, DE & UMDA) were included, and in the
second version, AMALGAMndp, the UMDA was replaced with the superior PUMDA algorithm.
In AMALGAMndug, the GREEDY algorithm was additionally included. The reason for this de-
cision is that the GREEDY algorithm functions as a powerful local search, which is capable of
having a dramatic effect on search direction. A minimum of five offspring per sub-algorithm was
enforced. Note that all the sub-algorithms used within the AMALGAM framework were able to
conduct successful WDSDO in their own capacity. Furthermore, these algorithm combinations
may also all be classed as regenerative methods (selected for ease of implementation). The
TAMALGAM variants were also implemented to test the effect of incorporating the efficiency
of the sub-algorithms, and the AMALGAMI and TAMALGAMJ variants were implemented to
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determine whether alternative methods for quantifying offspring success could be beneficial.

6.3.6 Programming Considerations

The optimisation software was programmed in C++, using the EPANET v2.0.12 hydraulic
engine (within the OOTEN Toolkit) and the GNU Scientific Library v1.13 for matrix operations.

When dealing with large data-structures and many iterations, as is the case with WDSDO
using evolutionary optimisation, it was found to be especially important to exercise caution with
regards to the computer memory environment. For example, when running optimisation trials it
is not advisable to accumulate algorithmic performance data, but rather to output it after every
optimisation run and compile statistics at the end. The memory environment of a computer
can have a substantial influence on algorithmic performances, and should be refreshed before
every new run. For similar reasons, when running comparative analysis, instead of executing
all optimisation runs of each algorithm in sequence and then proceeding to the next algorithm,
execute a sequence of single optimisation runs for each algorithm, which is then repeated the
required number of times (e.g. 30). This will ensure that no algorithm is unfairly biased by
natural variations in the computer memory or operating system services state.

6.4 Chapter Summary

The purpose of this chapter is to set the stage for WDSDO benchmark testing with a view to
algorithmic comparison (the test results appear in Chapter 7), in partial fulfilment of dissertation
Objectives 5, 6, 7 and 8 in §1.3, and to conduct probabilistic and failure reliability analysis (the
subject matter of Chapter 8), in partial fulfilment of Objective 9.

A discussion on the overall benchmark testing scheme was included in §6.1, incorporating the
phases of algorithmic comparison, constraint handling technique comparison, reliability surro-
gate measure comparison, and the illustration of design using redundant layouts.

Technical specifications of the nine WDS benchmarks from the literature used in this disser-
tation were presented in §6.2, and their implications with respect to the WDSDO model were
highlighted. Finally, some issues pertaining to algorithmic implementation were discussed in
general in §6.3, as well as for each algorithm in particular.
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Figure 6.8: Pipe layout for the MOD WDS benchmark [21].
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Figure 6.9: Pipe layout for the EXNET WDS benchmark [246].



Chapter 7

WDSDO Benchmark Tests and
Results

In this chapter, the results of the WDSDO benchmark tests (Phases 1 and 2) are presented for
the nine benchmarks described in Chapter 6, in order to compare algorithmic performance. All
numerical computations were performed on an Intel Core 2 Duo processor (E6850 3.00GHz)
with 3.25 GB of RAM, running in a Windows XP SP3 operating system. All hydraulic sim-
ulations were conducted using the OOTEN Toolkit for EPANET2, employing conventional
DDA. The Network Resilience surrogate measure is employed throughout this chapter, and all
optimisation is formulated as the bi-objective problem of cost minimisation and reliability max-
imisation, using the penalty factor method unless stated otherwise. It is important to consider
both the convergence trials and the full time trials in this analysis, since in practise an algo-
rithm’s performance is reviewed independently under the condition of convergence to a stable
population, but the condition of fairness in comparison additionally requires the use of equal
processing times.

7.1 Phase 1 Results: WDSDO Algorithm Comparison

The first stage in this phase of analysis is population sizing, which must be conducted for
each WDS benchmark. In this analysis, UMDA and PUMDA were treated separately from
the other algorithms, since they typically required a population size at least double that of
the other metaheuristics. Goldberg’s sizing methodology (§5.4.6) was applied to these two
algorithm groups, and the largest ‘optimal’ population size within each group was used for both
convergence and time trials.

For each benchmark in this phase of testing, results from the convergence time trial are reported
first, using the stopping criterion of less than 0.05% change in hypervolume for 200 consecutive
generations, and conducting thirty convergence trials in order to compute average times. The
90th percentile of average times to convergence amongst all algorithms is rounded to the nearest
second and used as the time limit in the full length trials consisting of thirty optimisation
runs. The results from these experiments are presented in tabular form for each benchmark,
including averages and standard deviations of hypervolume, dominance rank, and epsilon archive
size. Hypervolume is normalized by the hypervolume of the best attainment set produced
after combining all algorithms’ attainment sets from a particular analysis (e.g. a convergence
analysis on a particular benchmark). This enables one to express hypervolume performance

167
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as a percentage of best known hypervolume. Algorithms are ranked firstly on the basis of
average dominance rank, and secondly using average hypervolume (in the case of identical
dominance rank), then by the standard deviation of hypervolume, and finally by epsilon archive
size. In the tables of results that follow, the best unique values of average dominance rank
(Avg dR), standard deviation of dominance rank (SD dR), average hypervolume (Avg HV),
standard deviation of hypervolume (SD HV), and average and standard deviation of time to
convergence (T) in seconds are all highlighted in bold, while the worst unique values appear
in italics. Finally, the attainment fronts (best Pareto solutions from all an algorithm’s runs
combined) of feasible solutions uncovered by the algorithms are presented graphically, showing
the attainment fronts of the three best performing algorithms, and those of the three worst
performing algorithms, superimposed on the same graph.

7.1.1 TRP Benchmark Time Trials

The optimal population size for TRP was found to be 64 for the first group of algorithms, and
128 for UMDA and PUMDA.

The convergence times of the various algorithms for the TRP benchmark are documented in
Table 7.1. The 90th percentile of average times to convergence is 37.67 seconds. The fastest
average time to convergence of 6.07 seconds was attained by ADMOEA, and the longest av-
erage convergence time of 50.23 seconds was attained by UMDA. The group average time to
convergence was 23.10 seconds, indicating that TRP is a relatively small problem. ADMOEA
also demonstrated the smallest standard deviation for convergence time of 1.57 seconds, com-
pared to the average standard deviation of 6.21 seconds. The algorithm demonstrating the best
hypervolume attainment was PUMDA, which achieves an average hypervolume of 0.9939 in an
average time of 38.43 seconds. The algorithm with the worst performance was GREEDY with
an average dominance rank of 15.5.

In the full time trial, each algorithm was executed for thirty optimisation runs of length 38
seconds. Algorithmic performance statistics for TRP are presented in Table 7.2. The majority
of the algorithms (19 out of 23) managed to obtain an average dominance rank of 1, indicating
that TRP is a relatively easy problem. The best performing algorithm was PUMDA with an
average hypervolume of 0.9941, followed in second place by ADMOEA with a hypervolume of
0.9919, compared to the group average hypervolume of 0.9876. The most consistent algorithm
in terms of performance was SPEA-II with a hypervolume standard deviation of 0.0011. The
worst performing algorithm was GREEDY with an average dominance rank of 15.5. ADMOEA
produced an average ǫ-archive size of 74.43, while PUMDA and UMDA produced average ǫ-
archive sizes of 121.83 and 100.47 respectively. The highest average ǫ-archive size amongst the
other algorithms was 63.97, achieved by AMALGAMndp.

Plots of the attainment fronts of the three best and three worst algorithms appear in Figure
7.1, showing scarcely any difference between the attainment results of the various algorithms. It
is clearly apparent that there is an exponential growth in cost as Network Resilience increases.
GREEDY was the only algorithm unable to reach the low Network Resilience region of the
global Pareto-front. TRP is evidently the easiest of the WDS benchmark problems.

7.1.2 TLN Benchmark Time Trials

The optimal population size for TLN was found to be 64 for the first group of algorithms, and
128 for UMDA and PUMDA.
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Algorithm Avg dR SD dR Avg HV SD HV Avg T (s) SD T (s)

ADMOEA 1 0 0.9885 0.0038 6.07 1.57
AMALGAMndp 1 0 0.9896 0.0027 17.70 3.81
AMALGAMndu 1 0 0.9892 0.0020 17.00 3.34
AMALGAMndug 1 0 0.9898 0.0021 21.53 4.17
AMALGAMIndp 1 0 0.9894 0.0026 18.87 5.07
AMALGAMIndu 1 0 0.9891 0.0019 17.30 3.69
AMALGAMIndug 1 0 0.9896 0.0025 19.83 2.48
AMALGAMSndp 1 0 0.9896 0.0022 27.23 5.06
AMALGAMSndu 1 0 0.9878 0.0022 34.60 14.05
ANIMA 1 0 0.9896 0.0015 19.07 5.55
DE 1 0 0.9901 0.0017 15.47 1.98
GREEDY 19.53 52.58 0.9574 0.0102 25.00 3.04
NSGA-II 1 0 0.9895 0.0016 25.10 7.27
PSO 1.400 1.545 0.9787 0.0082 13.77 4.08
PUMDA 1 0 0.9939 0.0026 38.43 6.75
SPEA-II 1 0 0.9875 0.0013 44.10 14.97
TAMALGAMndp 1 0 0.9900 0.0024 18.57 4.27
TAMALGAMndu 1 0 0.9901 0.0021 19.40 5.08
TAMALGAMndug 1 0 0.9904 0.0020 20.53 5.28
TAMALGAMJndp 1 0 0.9900 0.0014 20.33 6.23
TAMALGAMJndu 1 0 0.9893 0.0019 18.77 3.82
TAMALGAMJndug 1 0 0.9898 0.0022 22.50 6.45
UMDA 1 0 0.9695 0.0075 50.23 24.88

Table 7.1: Time (T) to convergence (taking as stopping criterion less than 0.05% change in
HV for 200 generations) for the TRP benchmark, computed over thirty optimisation runs for
reference point (In, C) = (0, 100 000 000).

Algorithm Rank Avg dR SD dR Avg HV SD HV Avg AS SD AS

ADMOEA 3 1 0 0.9919 0.0030 74.43 3.92
AMALGAMndp 13 1 0 0.9897 0.0024 63.97 0.18
AMALGAMndu 16 1 0 0.9892 0.0019 63.73 0.52
AMALGAMndug 5 1 0 0.9902 0.0017 63.83 0.38
AMALGAMIndp 11 1 0 0.9900 0.0023 63.60 0.56
AMALGAMIndu 8 1 0 0.9901 0.0021 63.80 0.41
AMALGAMIndug 4 1 0 0.9903 0.0018 63.90 0.31
AMALGAMSndp 15 1 0 0.9896 0.0019 63.67 0.48
AMALGAMSndu 18 1 0 0.9881 0.0016 63.63 0.49
ANIMA 12 1 0 0.9898 0.0015 63.80 0.41
DE 7 1 0 0.9901 0.0017 63.87 0.43
GREEDY 23 15.5 48.76 0.9612 0.0076 63.77 0.43
NSGA-II 14 1 0 0.9896 0.0014 63.80 0.41
PSO 19 1 0 0.9833 0.0047 63.83 0.38
PUMDA 1 1 0 0.9941 0.0025 121.83 1.95
SPEA-II 17 1 0 0.9881 0.0011 63.80 0.48
TAMALGAMndp 22 1.10 0.31 0.9901 0.0017 63.83 0.46
TAMALGAMndu 9 1 0 0.9900 0.0018 63.83 0.38
TAMALGAMndug 2 1 0 0.9906 0.0015 63.77 0.43
TAMALGAMJndp 21 1.10 0.31 0.9897 0.0020 63.73 0.52
TAMALGAMJndu 10 1 0 0.9900 0.0019 63.83 0.38
TAMALGAMJndug 6 1 0 0.9901 0.0014 63.80 0.48
UMDA 20 1.07 0.37 0.9682 0.0077 100.47 5.89

Table 7.2: Mean and Standard Deviation of performance metrics for the full time trial analysis
on the TRP benchmark, computed over thirty optimisation runs for reference point (In, C) =
(0, 10 000 000).
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Figure 7.1: Attainment fronts of the three best and three worst algorithms for the TRP bench-
mark.
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The convergence times of the various algorithms for the TLN benchmark are documented in
Table 7.3. The 90th percentile of average times to convergence is 22.53 seconds. The fastest
average time to convergence of 3.8 seconds was attained by PUMDA, and the longest aver-
age convergence time of 37.1 seconds was attained by SPEA-II. The group average time to
convergence was 13.27 seconds, also indicating that TLN is a relatively small problem. DE
demonstrated the smallest standard deviation for convergence time of 1.2 seconds, compared
to the average standard deviation of 4.60 seconds. The two algorithms demonstrating the best
hypervolume attainment were AMALGAMSndp and AMALGAMSndu both with 0.9960, where
the former achieved the lower standard deviation of 0.0007.

In the full time trial, each algorithm was executed for thirty optimisation runs of length 23
seconds. Algorithmic performance statistics for TLN are presented in Table 7.4. The majority
of the algorithms (18 out of 23) managed to obtain an average dominance rank of 1, indicating
that TLN is also a relatively easy problem. The best performing algorithm in terms of hy-
pervolume was AMALGAMSndp with an average hypervolume of 0.9965. In second place was
AMALGAMSndu with an average hypervolume of 0.9961. The group average hypervolume was
0.9787. These two algorithms also shared the least hypervolume standard deviation of 0.0007.
The worst performing algorithm was PUMDA with a dominance rank of 271.80. ADMOEA
produced an average ǫ-archive size of 37.93, while PUMDA and UMDA produced average ǫ-
archive sizes of 31.83 and 31.40, respectively. The highest average ǫ-archive size amongst the
other algorithms was 63.83, achieved by all three of AMALGAMIndu, AMALGAMSndu and DE.

Plots of the attainment fronts of the three best and three worst algorithms appear in Figure
7.2, showing larger variety than for the TRP. Once again the exponential relationship between
cost and reliability is revealed. Although most algorithms were able to attain the global Pareto-
front, the worse performing algorithms are lagging in several regions of the objective space.
Although PSO produced results that are widely spread, it forms a distinctive sub-front. The
fronts produced by UMDA and PUMDA are less widely spread and break away from the Pareto-
front at several places, with the former achieving greater representation in the lower Network
Resilience region and the latter in the upper region.

7.1.3 NYTUN Benchmark Time Trials

The optimal population size for NYTUN was found to be 64 for all algorithms.

The convergence times of the various algorithms for the NYTUN benchmark are documented
in Table 7.5. The 90th percentile of average times to convergence is 60.02 seconds. The fastest
average time to convergence of 10.83 seconds was attained by ADMOEA, and the longest average
convergence time of 78.30 seconds was attained by AMALGAMSndu. The group average time
to convergence was 39.76 seconds. PUMDA demonstrated the lowest standard deviation for
convergence time of 2.29 seconds, compared to the average standard deviation of 12.32 seconds.
The algorithm demonstrating the best hypervolume attainment was TAMALGAMJndp with a
value of 0.9647. The worst performing algorithm was GREEDY with an average dominance
rank of 431.47.

In the full time trial, each algorithm was executed for thirty optimisation runs of length 60
seconds. Algorithmic performance statistics for NYTUN are presented in Table 7.6. The ma-
jority of the algorithms (18 out of 23) managed to obtain an average dominance rank of 1,
indicating that NYTUN is still a relatively easy problem for most of the algorithms. The best
performing algorithm in terms of hypervolume was ADMOEA with an average hypervolume of
0.9732. In second place was TAMALGAMJndp with an average hypervolume of 0.9698, which
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Algorithm Avg dR SD dR Avg HV SD HV Avg T (s) SD T (s)

ADMOEA 8.90 41.03 0.9808 0.0125 23.2 32.57

AMALGAMndp 1 0 0.9915 0.0047 9.5 1.2
AMALGAMndu 1 0 0.9953 0.0012 9.0 1.4
AMALGAMndug 1 0 0.9955 0.0015 11.0 2.1
AMALGAMIndp 1 0 0.9926 0.0027 10.0 2.2
AMALGAMIndu 1 0 0.9951 0.0015 9.4 1.6
AMALGAMIndug 1 0 0.9954 0.0010 11.4 2.4
AMALGAMSndp 1 0 0.9960 0.0007 18.6 3.9
AMALGAMSndu 1 0 0.9960 0.0013 20.0 3.9
ANIMA 1 0 0.9942 0.0018 10.6 2.2
DE 1 0 0.9946 0.0012 8.0 1.2
GREEDY 1 0 0.9165 0.0193 13.7 3.5
NSGA-II 1 0 0.9762 0.0151 14.1 5.4
PSO 59.03 13.97 0.9301 0.0087 26.4 7.2
PUMDA 314.90 210.59 0.9166 0.0246 3.8 1.8
SPEA-II 1 0 0.9833 0.0127 37.1 17.9
TAMALGAMndp 1 0 0.9911 0.0058 11.3 3.2
TAMALGAMndu 1 0 0.9953 0.0013 9.8 1.4
TAMALGAMndug 1 0 0.9956 0.0009 11.4 2.0
TAMALGAMJndp 1 0 0.9894 0.0060 10.8 2.4
TAMALGAMJndu 1 0 0.9951 0.0014 10.1 1.7
TAMALGAMJndug 1 0 0.9955 0.0011 11.5 3.0
UMDA 429.77 202.60 0.8642 0.0303 4.6 1.6

Table 7.3: Time to convergence (taking as stopping criterion less than 0.05% change in HV for
200 generations) for the TLN benchmark, computed over thirty optimisation runs for reference
point (In, C) = (0, 5 000 000).

Algorithm Rank Avg dR SD dR Avg HV SD HV Avg AS SD AS

ADMOEA 20 9.57 44.86 0.9823 0.0117 37.93 4.01
AMALGAMndp 13 1 0 0.9929 0.0032 63.73 0.58
AMALGAMndu 7 1 0 0.9954 0.0014 63.70 0.47
AMALGAMndug 4 1 0 0.9959 0.0010 63.50 0.68
AMALGAMIndp 15 1 0 0.9917 0.0039 63.73 0.45
AMALGAMIndu 9 1 0 0.9953 0.0012 63.83 0.38
AMALGAMIndug 5 1 0 0.9959 0.0012 63.53 0.82
AMALGAMSndp 1 1 0 0.9965 0.0007 62.50 0.78
AMALGAMSndu 2 1 0 0.9961 0.0007 63.83 0.46
ANIMA 12 1 0 0.9944 0.0018 63.77 0.50
DE 11 1 0 0.9948 0.0011 63.83 0.38
GREEDY 19 1.03 0.18 0.9190 0.0179 62.37 1.87
NSGA-II 17 1 0 0.9796 0.0128 63.47 0.63
PSO 21 44.30 8.36 0.9271 0.0057 40.07 4.85
PUMDA 23 271.8 178.86 0.9248 0.0189 31.83 0.38
SPEA-II 18 1 0 0.9772 0.0129 61.27 1.39
TAMALGAMndp 14 1 0 0.9922 0.0057 63.63 0.49
TAMALGAMndu 6 1 0 0.9955 0.0010 63.70 0.47
TAMALGAMndug 3 1 0 0.9959 0.0010 63.73 0.45
TAMALGAMJndp 16 1 0 0.9888 0.0085 63.47 0.68
TAMALGAMJndu 10 1 0 0.9952 0.0018 63.70 0.60
TAMALGAMJndug 8 1 0 0.9954 0.0015 63.70 0.53
UMDA 22 269.70 213.328 0.8884 0.0217 31.40 0.89

Table 7.4: Mean and Standard Deviation of performance metrics for the full time trial analysis
on the TLN benchmark, computed over thirty optimisation runs for reference point (In, C) =
(0, 5 000 000).
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Figure 7.2: Attainment fronts of the three best and three worst algorithms for the TLN bench-
mark.
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also demonstrated the smallest standard deviation for hypervolume of 0.0044. The group aver-
age hypervolume was 0.9435. The worst performing algorithm was GREEDY with a dominance
rank of 482.5. ADMOEA produced an average ǫ-archive size of 126.467, and the highest average
ǫ-archive size for the other algorithms was 63.43, achieved by TAMALGAMJndp. UMDA and
PUMDA produced ǫ-archive sizes of 57.43 and 62.33, respectively.

Plots of the attainment fronts of the three best and three worst algorithms for NYTUN appear
in Figure 7.3. The ADMOEA attainment set is along the global Pareto-front, but it is less
widely spread than the TAMALGAM variants which achieved additional solutions of low and
high Network Resilience. The results of GREEDY and PSO form distinctive sub-fronts which
meet with the global front in the low Network Resilience region of the objective space. UMDA
has representation in the mid region of the objective space, but failed to locate solutions of
Network Resilience greater than 0.675.

7.1.4 HANOI Benchmark Time Trials

The optimal population size for HANOI was found to be 128 for the first group of algorithms,
and 64 for UMDA and PUMDA. This was the only case where the latter group assumed a
smaller population size.

The convergence times of the various algorithms for the HANOI benchmark are documented in
Table 7.7. The 90th percentile of average times to convergence is 172.51 seconds. The fastest
average time to convergence of 14.5 seconds was attained by ADMOEA, and the longest average
convergence time of 256.13 seconds was attained by AMALGAMSndu. The group average time
to convergence was 107.65 seconds. PUMDA demonstrated the lowest standard deviation for
convergence time of 1.21 seconds, compared to the average standard deviation of 33.56 seconds.
The algorithm demonstrating the best hypervolume attainment was AMALGAMndp with a
value of 0.9817. This was also the algorithm with the most consistent performance, yielding
a standard deviation for hypervolume of 0.0058. The worst performing algorithm was UMDA
with an average dominance rank of 519.833.

In the full time trial, each algorithm was executed for thirty optimisation runs of length 173
seconds. Algorithmic performance statistics for HANOI are presented in Table 7.8. Over half
of the algorithms (15 out of 23) managed to obtain an average dominance rank of 1, indicat-
ing along with convergence time that HANOI is a more difficult problem than the preceding
benchmarks, but there is still not significant differentiation between the leading algorithms.
The best performing algorithm in terms of hypervolume was AMALGAMSndp with an average
hypervolume of 0.9828, followed by TAMALGAMndp in second place with a hypervolume of
0.9824. The group average hypervolume is 0.9297.

The algorithm achieving the smallest standard deviation for hypervolume of 0.0063 was AMAL-
GAMndp. The worst performing algorithm was UMDA with an average dominance rank of
512.93. ADMOEA produced an average ǫ-archive size of 52.23, while the highest average ǫ-
archive size was 82.80, achieved both by TAMALGAMndp and TAMALGAMJndp. A much
larger variation of archive size was apparent for HANOI than for the previous three benchmarks.

Plots of the attainment fronts of the three best and three worst algorithms appear in Figure
7.4. The best performing algorithms were consistent at locating the global Pareto-front, showing
little differentiation. The worst algorithms produced distinctive sub-fronts, revealing that they
struggled to find solutions in the regions of lower to mid cost and Network Resilience, but all
approached the global front in the higher Network Resilience region.
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Algorithm Avg dR SD dR Avg HV SD HV Avg T (s) SD T (s)

ADMOEA 1 0 0.9636 0.0075 10.83 3.30
AMALGAMndp 1 0 0.9628 0.0055 33.27 12.95
AMALGAMndu 1 0 0.9545 0.0062 32.30 9.77
AMALGAMndug 1 0 0.9429 0.0064 45.03 15.14
AMALGAMIndp 1 0 0.9622 0.0065 35.13 11.72
AMALGAMIndu 1 0 0.9528 0.0058 32.33 8.86
AMALGAMIndug 1.10 0.31 0.9456 0.0058 41.97 17.09
AMALGAMSndp 1 0 0.9597 0.0060 42.53 10.31
AMALGAMSndu 1 0 0.9530 0.0059 78.30 33.10

ANIMA 1 0 0.9541 0.0069 40.07 9.22
DE 1 0 0.9388 0.0041 32.43 10.66
GREEDY 431.47 141.70 0.7999 0.0186 63.77 20.08
NSGA-II 1 0 0.9541 0.0079 40.70 12.07
PSO 24.70 25.16 0.8843 0.0135 39.20 11.94
PUMDA 8.40 14.73 0.9133 0.0166 17.17 2.29
SPEA-II 1 0 0.9538 0.0051 74.37 20.57
TAMALGAMndp 1 0 0.9623 0.0061 34.73 8.96
TAMALGAMndu 1 0 0.9531 0.0061 34.53 8.92
TAMALGAMndug 1 0 0.9487 0.0070 41.33 10.19
TAMALGAMJndp 1 0 0.9647 0.0074 41.40 15.54
TAMALGAMJndu 1 0 0.9536 0.0089 38.67 10.30
TAMALGAMJndug 1.03 0.18 0.9510 0.0053 37.60 9.39
UMDA 31.57 40.10 0.8021 0.0238 26.90 11.10

Table 7.5: Time (T) to convergence (taking as stopping criterion less than 0.05% change in HV
for 200 generations) for the NYTUN benchmark, computed over thirty optimisation runs for
reference point (In, C) = (0, 300 000 000).

Algorithm Rank Avg dR SD dR Avg HV SD HV Avg AS SD AS

ADMOEA 1 1 0 0.9732 0.0060 126.47 6.22
AMALGAMndp 4 1 0 0.9667 0.0060 62.77 1.07
AMALGAMndu 7 1 0 0.9658 0.0065 62.80 1.06
AMALGAMndug 14 1 0 0.9607 0.0064 62.63 1.35
AMALGAMIndp 8 1 0 0.9652 0.0056 62.73 1.34
AMALGAMIndu 5 1 0 0.9661 0.0049 62.73 1.14
AMALGAMIndug 13 1 0 0.9612 0.0063 62.87 1.17
AMALGAMSndp 19 1.03 0.18 0.9595 0.0070 63.07 0.78
AMALGAMSndu 12 1 0 0.9614 0.0070 61.33 1.52
ANIMA 16 1 0 0.9557 0.0059 62.63 1.10
DE 18 1 0 0.9383 0.0059 63.37 0.76
GREEDY 23 482.5 118.19 0.7980 0.0158 58.77 2.14
NSGA-II 15 1 0 0.9569 0.0052 62.37 1.16
PSO 21 40.63 55.12 0.8881 0.0124 63.03 1.22
PUMDA 20 12.17 16.41 0.9180 0.0135 62.33 1.30
SPEA-II 17 1 0 0.9522 0.0065 60.23 1.36
TAMALGAMndp 3 1 0 0.9691 0.0054 63.33 0.84
TAMALGAMndu 6 1 0 0.9658 0.0052 62.97 0.76
TAMALGAMndug 11 1 0 0.9631 0.0057 62.93 1.23
TAMALGAMJndp 2 1 0 0.9698 0.0044 63.43 0.77
TAMALGAMJndu 9 1 0 0.9648 0.0062 62.53 0.90
TAMALGAMJndug 10 1 0 0.9641 0.0064 62.30 1.73
UMDA 22 43.63 44.09 0.8176 0.0151 57.43 2.43

Table 7.6: Mean and Standard Deviation of performance metrics for the full time trial analysis
on the NYTUN benchmark, computed over thirty optimisation runs for reference point (In, C) =
(0, 300 000 000).
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Figure 7.3: Attainment fronts of the three best and three worst algorithms for the NYTUN
benchmark.
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Algorithm Avg dR SD dR Avg HV SD HV Avg T (s) SD T (s)

ADMOEA 49.00 102.86 0.9165 0.0323 14.5 8.47
AMALGAMndp 1 0 0.9817 0.0058 86.10 21.64
AMALGAMndu 1 0 0.9670 0.0125 107.87 31.56
AMALGAMndug 1 0 0.9599 0.0162 119.67 37.05
AMALGAMIndp 1 0 0.9776 0.0099 77.67 25.62
AMALGAMIndu 1 0 0.9649 0.0126 102.13 29.06
AMALGAMIndug 1 0 0.9617 0.0112 120.73 50.26
AMALGAMSndp 1 0 0.9699 0.0117 184.07 94.53
AMALGAMSndu 1 0 0.9658 0.0149 256.13 77.50
ANIMA 1 0 0.9683 0.0143 126.27 40.48
DE 10.67 28.90 0.9409 0.0247 104.47 35.13
GREEDY 424.13 98.46 0.8728 0.0230 97.37 20.06
NSGA-II 1 0 0.9735 0.0102 109.10 27.34
PSO 381.53 59.40 0.7066 0.0328 117.53 33.41
PUMDA 387.37 131.581 0.7282 0.0531 14.83 1.21
SPEA-II 1 0 0.9668 0.0111 233.83 68.83
TAMALGAMndp 1 0 0.9800 0.0081 84.53 23.57
TAMALGAMndu 1 0 0.9688 0.0115 109.10 25.79
TAMALGAMndug 1 0 0.9664 0.0104 104.03 34.03
TAMALGAMJndp 1 0 0.9802 0.0086 89.67 26.49
TAMALGAMJndu 1 0 0.9725 0.0103 96.23 27.02
TAMALGAMJndug 1 0 0.9696 0.0107 101.37 26.75
UMDA 519.833 88.40 0.6166 0.0620 18.80 6.12

Table 7.7: Time (T) to convergence (taking as stopping criterion less than 0.05% change in HV
for 200 generations) for the HANOI benchmark, computed over thirty optimisation runs for
reference point (In, C) = (0, 12 000 000).

Algorithm Rank Avg dR SD dR Avg HV SD HV Avg AS SD AS

ADMOEA 19 3.40 7.37 0.9174 0.0289 52.23 6.17
AMALGAMndp 2 1 0 0.9820 0.0063 78.43 4.81
AMALGAMndu 10 1 0 0.9708 0.0101 74.93 3.93
AMALGAMndug 13 1 0 0.9659 0.0131 74.37 4.73
AMALGAMIndp 3 1 0 0.9818 0.0076 77.20 5.25
AMALGAMIndu 11 1 0 0.9691 0.0107 75.03 4.54
AMALGAMIndug 15 1 0 0.9641 0.0095 72.20 3.13
AMALGAMSndp 1 1 0 0.9828 0.0077 78.83 4.28
AMALGAMSndu 12 1 0 0.9681 0.0122 74.00 4.56
ANIMA 8 1 0 0.9722 0.0107 75.10 4.78
DE 20 7.23 20.98 0.9453 0.0248 74.40 4.66
GREEDY 22 436.17 100.36 0.8744 0.0232 67.07 4.27
NSGA-II 7 1 0 0.9754 0.0093 75.83 3.71
PSO 17 376 68.10 0.7186 0.0301 49.30 4.80
PUMDA 21 326.33 197.70 0.7382 0.0560 50.20 3.92
SPEA-II 14 1 0 0.9649 0.0098 75.80 4.73
TAMALGAMndp 18 1.07 0.25 0.9824 0.0080 82.80 3.25
TAMALGAMndu 6 1 0 0.9755 0.0119 77.37 5.56
TAMALGAMndug 9 1 0 0.9715 0.0118 76.07 3.64
TAMALGAMJndp 16 1.03 0.18 0.9825 0.0080 82.80 2.95
TAMALGAMJndu 4 1 0 0.9783 0.0085 77.37 3.90
TAMALGAMJndug 5 1 0 0.9756 0.0077 76.10 4.02
UMDA 23 512.93 119.62 0.6268 0.0639 34.50 4.24

Table 7.8: Mean and Standard Deviation of performance metrics for the full time trial analysis
on the HANOI benchmark, computed over thirty optimisation runs for reference point (In, C) =
(0, 12 000 000).
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Figure 7.4: Attainment fronts of the three best and three worst algorithms for the HANOI
benchmark.
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7.1.5 BLACK Benchmark Time Trials

The optimal population size for BLACK was found to be 64 for the first group of algorithms,
and 256 for UMDA and PUMDA.

The convergence times of the various algorithms for the BLACK benchmark are documented
in Table 7.9. The 90th percentile of average times to convergence is 79.55 seconds. The fastest
average time to convergence of 16.67 seconds was attained by ADMOEA, and the longest
average convergence time of 125.97 seconds was attained by UMDA. The group average time to
convergence was 46.84 seconds. ADMOEA also demonstrated the lowest standard deviation for
convergence time of 3.74 seconds, compared to the average standard deviation of 13.64 seconds.
The algorithm demonstrating the best hypervolume attainment was SPEA-II with a value of
0.9783. The worst performing algorithm was PSO with an average dominance rank of 620.4.

In the full time trial, each algorithm was executed for thirty optimisation runs of length 80 sec-
onds. Algorithmic performance statistics for BLACK are presented in Table 7.10. Over half of
the algorithms (14 out of 23) managed to obtain an average dominance rank of 1. The best per-
forming algorithm in terms of average dominance rank and hypervolume was TAMALGAMJndu

with a dominance rank of 1 and a hypervolume of 0.9798. Although AMALGAMSndp achieved
the highest average hypervolume of 0.9805, it trailed with a dominance rank of 1.03, while sec-
ond place goes to AMALGAMIndu with an average hypervolume of 0.9793. The group average
hypervolume was 0.9631. The algorithm with the smallest standard deviation in hypervolume
was AMALGAMSndu with an average value of 0.0043. The worst performing algorithm was
PSO with a dominance rank of 616.8. ADMOEA produced an average ǫ-archive size of 76.6.
PUMDA and UMDA produced ǫ-archive sizes of 213.83 and 130.63 respectively, despite having
identical population sizes. The largest ǫ-archive size amongst the other algorithms was obtained
by AMALGAMIndp and is 63.80.

Plots of the attainment fronts of the three best and three worst algorithms appear in Figure 7.5.
The best algorithms again had little trouble locating the global Pareto-front, and show little
differentiation. The results of PSO and GREEDY form distinctive sub-fronts which merge with
the global front towards the lower Network Resilience region of the objective space. UMDA
produced results that approach the front quite closely, but are localised to the central region.

7.1.6 FOSS Benchmark Time Trials

The optimal population size for FOSS was found to be 64 for the first group of algorithms, and
256 for UMDA and PUMDA.

The convergence times of the various algorithms for the FOSS benchmark are documented
in Table 7.11. The 90th percentile of average times to convergence is 119.24 seconds. The
fastest average time to convergence of 52.5 seconds was attained by NSGA-II, and the longest
average convergence time of 141.97 seconds was attained by UMDA. The group average time to
convergence was 86.50 seconds. ADMOEA also demonstrated the lowest standard deviation for
convergence time of 16.08 seconds, compared to the average standard deviation of 29.53 seconds.
The algorithm demonstrating the best average dominance rank and hypervolume attainment
was DE with values of 1.23 and 0.9457, respectively. The worst performing algorithm was
GREEDY with an average dominance rank of 628.4.

In the full time trial, each algorithm was executed for thirty optimisation runs of length 119
seconds. Algorithmic performance statistics for FOSS are presented in Table 7.12. FOSS
presents a greater challenge than the previous benchmarks, with only three of the algorithms
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Algorithm Avg dR SD dR Avg HV SD HV Avg T (s) SD T (s)

ADMOEA 9.77 26.88 0.9607 0.0105 16.67 3.74
AMALGAMndp 1.07 0.37 0.9710 0.0092 29.87 9.75
AMALGAMndu 1 0 0.9721 0.0079 34.07 11.40
AMALGAMndug 1.07 0.37 0.9697 0.0058 35.87 11.94
AMALGAMIndp 1.17 0.75 0.9708 0.0068 30.03 10.92
AMALGAMIndu 1 0 0.9726 0.0081 32.83 11.13
AMALGAMIndug 1.07 0.25 0.9685 0.0078 37.63 10.54
AMALGAMSndp 1 0 0.9780 0.0061 64.67 17.29
AMALGAMSndu 1.13 0.35 0.9780 0.0053 83.27 19.26
ANIMA 3.80 9.74 0.9646 0.0088 34.57 13.84
DE 1.03 0.18 0.9686 0.0072 41.77 10.60
GREEDY 407.27 131.61 0.8800 0.0244 45.47 9.34
NSGA-II 1.23 0.94 0.9688 0.0112 30.27 12.00
PSO 620.4 16.07 0.8342 0.0156 61.63 22.75
PUMDA 4.83 10.00 0.9733 0.0089 111.73 15.91
SPEA-II 3.07 6.52 0.9783 0.0065 63.47 13.43
TAMALGAMndp 1.10 0.40 0.9699 0.0071 25.13 7.00
TAMALGAMndu 1 0 0.9744 0.0066 38.97 11.89
TAMALGAMndug 1 0 0.9737 0.0075 36.00 12.54
TAMALGAMJndp 4.17 14.81 0.9679 0.0073 30.00 11.98
TAMALGAMJndu 1.07 0.37 0.9715 0.0078 34.00 11.08
TAMALGAMJndug 1 0 0.9706 0.0095 33.53 10.06
UMDA 155.87 109.18 0.9027 0.0091 125.97 45.32

Table 7.9: Time (T) to convergence (taking as stopping criterion less than 0.05% change in HV
for 200 generations) for the BLACK benchmark, computed over thirty optimisation runs for
reference point (In, C) = (0.4, 1 500 000).

Algorithm Rank Avg dR SD dR Avg HV SD HV Avg AS SD AS

ADMOEA 19 4.77 12.20 0.9716 0.0106 76.60 6.04
AMALGAMndp 11 1 0 0.9750 0.0105 63.60 0.67
AMALGAMndu 8 1 0 0.9776 0.0058 63.63 0.56
AMALGAMndug 14 1 0 0.9719 0.0067 63.43 0.77
AMALGAMIndp 7 1 0 0.9778 0.0057 63.80 0.41
AMALGAMIndu 2 1 0 0.9793 0.0061 63.67 0.61
AMALGAMIndug 13 1 0 0.9719 0.0063 63.63 0.72
AMALGAMSndp 15 1.03 0.18 0.9805 0.0050 63.00 1.23
AMALGAMSndu 17 1.63 1.43 0.9782 0.0043 62.77 1.10
ANIMA 16 1.33 1.65 0.9730 0.0084 63.70 0.47
DE 12 1 0 0.9743 0.0046 63.70 0.47
GREEDY 22 448.97 81.22 0.8806 0.0228 63.77 0.50
NSGA-II 5 1 0 0.9782 0.0072 63.57 0.68
PSO 23 616.8 12.21 0.8404 0.0136 26.40 6.13
PUMDA 20 7.67 13.46 0.9729 0.0090 213.83 6.94
SPEA-II 18 2.93 5.05 0.9796 0.0057 63.43 0.77
TAMALGAMndp 10 1 0 0.9754 0.0053 63.47 0.57
TAMALGAMndu 3 1 0 0.9788 0.0059 63.67 0.55
TAMALGAMndug 6 1 0 0.9781 0.0052 63.37 0.67
TAMALGAMJndp 4 1 0 0.9785 0.0048 63.47 0.82
TAMALGAMJndu 1 1 0 0.9798 0.0058 63.43 0.82
TAMALGAMJndug 9 1 0 0.9773 0.0067 63.37 0.72
UMDA 21 157.37 104.82 0.9017 0.0093 130.63 17.19

Table 7.10: Mean and Standard Deviation of performance metrics for the full time trial analysis
on the BLACK benchmark, computed over thirty optimisation runs for reference point (In, C) =
(0.4, 1 500 000).
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Figure 7.5: Attainment fronts of the three best and three worst algorithms for the BLACK
benchmark.
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achieving an average dominance rank of 1. A further ten algorithms managed to obtain a
dominance rank between 1 and 2. The best performing algorithm by a long margin was DE
with an average hypervolume of 0.9459, trailed in second place by AMALGAMIndu which,
although it has a dominance rank of 1, only managed an average hypervolume of 0.8437. The
group average hypervolume is 0.8141. The algorithm with the smallest standard deviation
in hypervolume was PUMDA with a value of 0.0137. The worst performing algorithm was
GREEDY with a dominance rank of 629.8 and an average hypervolume of 0.5415. ADMOEA
produced an average ǫ-archive size of 65.06, while PUMDA and UMDA produced ǫ-archive
sizes of 184.27 and 47.9, respectively. The largest ǫ-archive size amongst the other algorithms,
of 63.07, was obtained by DE.

Plots of the attainment fronts of the three best and three worst algorithms appear in Figure
7.6, showing the most interesting results thus far. There is clear differentiation between the
attainment results of the best algorithms, uncovering unique parts of the global Pareto-front.
The AMALGAM variants were better at finding solutions in the lower Network Resilience
region, up to approximately 0.915, whereafter DE ventured off on its own to uniquely locate
some solutions of very high cost and Network Resilience. For the first time completely disjoint
sub-fronts generated by PSO and GREEDY are clearly visible. The results of UMDA are once
again located in the central region, where the Pareto-front curvature and solution cost-benefit
is highest.

7.1.7 PESC Benchmark Time Trials

The optimal population size for PESC was found to be 64 for the first group of algorithms, and
256 for UMDA and PUMDA.

The convergence times of the various algorithms for the PESC benchmark are documented in
Table 7.13. The 90th percentile of average times to convergence was 241.97 seconds. The fastest
average time to convergence of 67.33 seconds was attained by ADMOEA, and the longest average
convergence time of 281.63 seconds was attained by AMALGAMSndu. The group average time
to convergence was 161.66 seconds. PUMDA demonstrated the lowest standard deviation for
convergence time of 4.50 seconds, compared to the average standard deviation of 47.02 seconds.
The algorithm achieving the best average dominance rank was AMALGAMSndu with a value
of 1.5. The algorithm demonstrating the best hypervolume attainment was DE with a value
of 0.9261. The worst performing algorithm was GREEDY with an average dominance rank of
632.67.

In the full time trial, each algorithm was executed for thirty optimisation runs of length 242
seconds. Algorithmic performance statistics for PESC are presented in Table 7.14. PESC seems
to be an even more difficult a problem than FOSS, with only two of the algorithms achieving
an average dominance rank of 1, and a further ten algorithms managing to obtain a dominance
rank of between 1 and 2. The best performing algorithm in terms of dominance rank was
NSGA-II, with an average hypervolume of 0.8974, followed in second place by TAMALGAMJndu

which managed an average hypervolume of 0.8847. The algorithm achieving the highest average
hypervolume was SPEA-II, with a value of 0.9194, although it only managed a dominance rank
of 1.3. The group average hypervolume was 0.8539. The algorithm with the smallest standard
deviation in hypervolume was AMALGAMSndu with a value of 0.0080. The worst performing
algorithm was GREEDY with a dominance rank of 633.07 and an average hypervolume of
0.5823. ADMOEA produced an average ǫ-archive size of 84.73. PUMDA and UMDA produced
ǫ-archive sizes of 201.33 and 38.86, respectively.
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Algorithm Avg dR SD dR Avg HV SD HV Avg T (s) SD T (s)

ADMOEA 35.33 72.00 0.8233 0.0436 55.30 16.08
AMALGAMndp 1.37 1.22 0.8512 0.0255 67.03 20.17
AMALGAMndu 2.23 6.57 0.8226 0.0373 87.37 34.97
AMALGAMndug 47.00 68.40 0.8018 0.0220 76.77 25.62
AMALGAMIndp 1.60 2.92 0.8548 0.0285 68.30 16.95
AMALGAMIndu 3.13 8.46 0.8252 0.0267 100.93 33.13
AMALGAMIndug 47.17 65.02 0.8032 0.0281 85.10 33.93
AMALGAMSndp 3.07 7.62 0.8601 0.0563 94.63 36.98
AMALGAMSndu 2.37 4.80 0.7878 0.0295 115.17 53.51

ANIMA 8.63 23.29 0.8031 0.0270 67.70 21.66
DE 1.23 0.82 0.9457 0.0392 85.50 24.35
GREEDY 628.40 11.08 0.5284 0.0387 120.43 34.09
NSGA-II 5.30 9.87 0.8087 0.0171 52.5 19.31
PSO 622.80 71.46 0.4928 0.0461 80.80 42.88
PUMDA 68.03 38.48 0.8543 0.0141 120.00 17.43
SPEA-II 1.77 1.70 0.8392 0.0189 116.20 46.25
TAMALGAMndp 1.57 2.75 0.8472 0.0244 73.17 21.24
TAMALGAMndu 1.43 2.01 0.8137 0.0276 80.73 30.65
TAMALGAMndug 33.63 52.65 0.8068 0.0226 80.43 37.25
TAMALGAMJndp 4.73 12.67 0.8406 0.0286 63.13 19.74
TAMALGAMJndu 1.97 5.29 0.8048 0.0256 78.57 29.90
TAMALGAMJndug 30.93 47.22 0.7970 0.0227 77.73 32.03
UMDA 411.40 109.36 0.7575 0.0188 141.97 48.52

Table 7.11: Time (T) to convergence (taking as stopping criterion less than 0.05% change in
HV for 200 generations) for the FOSS benchmark, computed over thirty optimisation runs for
reference point (In, C) = (0.4, 2 000 000).

Algorithm Rank Avg dR SD dR Avg HV SD HV Avg AS SD AS

ADMOEA 11 1.67 1.54 0.8722 0.0337 65.07 8.78
AMALGAMndp 5 1.03 0.18 0.8594 0.0173 62.87 0.97
AMALGAMndu 13 1.77 4.20 0.8414 0.0313 62.93 0.78
AMALGAMndug 19 13.50 22.02 0.8188 0.0190 62.60 1.10
AMALGAMIndp 9 1.43 1.38 0.8643 0.0253 62.77 1.30
AMALGAMIndu 2 1 0 0.8437 0.0197 62.90 1.09
AMALGAMIndug 18 8.77 14.98 0.8234 0.0216 62.77 0.90
AMALGAMSndp 8 1.33 0.66 0.8643 0.0503 56.00 3.03
AMALGAMSndu 14 2.30 5.90 0.7967 0.0265 55.23 2.49
ANIMA 15 2.93 7.85 0.8162 0.0245 62.17 1.53
DE 1 1 0 0.9459 0.0298 63.07 1.05
GREEDY 23 629.8 9.33 0.5415 0.0371 53.47 6.10
NSGA-II 12 1.67 3.65 0.8227 0.0163 62.57 1.14
PSO 22 624.70 44.18 0.5183 0.0397 33.57 14.52
PUMDA 20 82.63 50.93 0.8605 0.0137 184.27 10.25
SPEA-II 6 1.10 0.31 0.8469 0.0190 55.13 2.79
TAMALGAMndp 10 1.47 2.19 0.8562 0.0275 62.90 0.99
TAMALGAMndu 3 1 0 0.8380 0.0211 62.77 1.07
TAMALGAMndug 16 3.67 5.73 0.8249 0.0231 62.37 1.13
TAMALGAMJndp 4 1.03 0.18 0.8614 0.0246 62.83 0.91
TAMALGAMJndu 7 1.10 0.55 0.8269 0.0212 62.57 1.01
TAMALGAMJndug 17 5.87 15.00 0.8143 0.0187 62.70 1.18
UMDA 21 438.17 100.56 0.7655 0.0179 47.90 11.98

Table 7.12: Mean and Standard Deviation of performance metrics for the full time trial analysis
on the FOSS benchmark, computed over thirty optimisation runs for reference point (In, C) =
(0.4, 2 000 000).
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Figure 7.6: Attainment fronts of the three best and three worst algorithms for the FOSS bench-
mark.
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Algorithm Avg dR SD dR Avg HV SD HV Avg T (s) SD T (s)

ADMOEA 59.43 86.08 0.832 0.0382 67.33 28.81
AMALGAMndp 5.60 13.86 0.878 0.0226 112.60 34.51
AMALGAMndu 1.60 1.00 0.872 0.0293 122.20 33.68
AMALGAMndug 88.17 79.57 0.838 0.0211 195.00 60.71
AMALGAMIndp 5.40 15.20 0.883 0.0144 123.27 43.43
AMALGAMIndu 1.87 1.72 0.875 0.0260 128.77 35.24
AMALGAMIndug 63.47 79.73 0.845 0.0180 223.03 69.60
AMALGAMSndp 3.70 6.69 0.906 0.0230 219.37 83.81
AMALGAMSndu 1.50 1.07 0.911 0.0123 281.63 74.72
ANIMA 8.00 19.16 0.884 0.0248 141.57 29.35
DE 2.17 2.91 0.9261 0.0248 145.87 47.77
GREEDY 632.67 5.35 0.5808 0.0246 232.67 78.77
NSGA-II 3.00 8.82 0.886 0.0153 112.67 25.68
PSO 540.77 155.07 0.627 0.0308 157.73 69.72
PUMDA 77.50 55.18 0.865 0.0203 244.53 4.50
SPEA-II 2.73 4.27 0.919 0.0115 207.07 45.63
TAMALGAMndp 3.13 4.49 0.879 0.0163 104.90 29.44
TAMALGAMndu 2.60 3.77 0.870 0.0201 128.83 45.54
TAMALGAMndug 27.27 34.00 0.841 0.0172 143.47 38.27
TAMALGAMJndp 6.43 10.86 0.874 0.0192 107.07 37.67
TAMALGAMJndu 1.67 1.60 0.872 0.0160 116.77 28.01
TAMALGAMJndug 12.37 18.99 0.858 0.0162 157.47 50.24
UMDA 226.73 74.40 0.779 0.0112 244.30 86.32

Table 7.13: Time (T) to convergence (taking as stopping criterion less than 0.05% change in
HV for 200 generations) for the PESC benchmark, computed over thirty optimisation runs for
reference point (In, C) = (0.4, 15 000 000).

Algorithm Rank Avg dR SD dR Avg HV SD HV Avg AS SD AS

ADMOEA 13 2.27 2.86 0.8607 0.0352 84.73 19.37
AMALGAMndp 7 1.30 1.21 0.8872 0.0211 63.37 0.72
AMALGAMndu 5 1.17 0.46 0.8824 0.0170 63.60 0.56
AMALGAMndug 19 92.13 58.43 0.8416 0.0174 63.27 0.74
AMALGAMIndp 15 7.53 25.40 0.8871 0.0147 63.20 0.81
AMALGAMIndu 4 1.07 0.25 0.8849 0.0169 62.60 3.79
AMALGAMIndug 18 71.20 44.78 0.8364 0.0188 62.87 1.38
AMALGAMSndp 12 1.83 2.76 0.9062 0.0179 58.37 2.40
AMALGAMSndu 9 1.60 1.57 0.9054 0.0080 56.23 1.91
ANIMA 14 3.37 8.44 0.8954 0.0236 62.60 1.89
DE 10 1.77 1.83 0.9187 0.0274 62.83 2.34
GREEDY 23 633.07 5.13 0.5823 0.0217 48.27 7.46
NSGA-II 1 1 0 0.8974 0.0112 63.33 0.71
PSO 22 546.43 144.41 0.6366 0.0275 41.93 10.79
PUMDA 20 92.97 76.89 0.8634 0.0200 201.33 8.40
SPEA-II 6 1.30 0.84 0.9194 0.0089 56.93 2.02
TAMALGAMndp 8 1.53 1.55 0.8896 0.0166 63.37 0.76
TAMALGAMndu 3 1.03 0.18 0.8869 0.0168 63.27 0.74
TAMALGAMndug 17 15.47 19.38 0.8501 0.0174 63.03 1.52
TAMALGAMJndp 11 1.83 2.07 0.8852 0.0163 63.23 0.73
TAMALGAMJndu 2 1 0 0.8847 0.0134 63.37 0.67
TAMALGAMJndug 16 11.10 21.61 0.8596 0.0176 63.20 1.10
UMDA 21 246.93 69.47 0.7777 0.0110 38.87 6.45

Table 7.14: Mean and Standard Deviation of performance metrics for the full time trial analysis
on the PESC benchmark, computed over thirty optimisation runs for reference point (In, C) =
(0.4, 15 000 000).
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Figure 7.7: Attainment fronts of the three best and three worst algorithms for the PESC
benchmark.
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Plots of the attainment fronts of the three best and three worst algorithms appear in Figure 7.7.
The graphical results are quite similar to those of FOSS, except that it is now the AMALGAM
variants that find the upper reaches of the global Pareto-front, while the lower reaches are located
by the majority of the best algorithms. The results of PSO and GREEDY form distinctive sub-
fronts and those of UMDA approach a localized region of the global front near the region of
maximal curvature.

7.1.8 MOD Benchmark Time Trials

The optimal population size for MOD was found to be 64 for the first group of algorithms, and
256 for UMDA and PUMDA.

The convergence times of the various algorithms for the MOD benchmark are documented in
Table 7.15. The 90th percentile of average times to convergence is 1310.21 seconds, significantly
longer than for the previous benchmarks. The fastest average time to convergence of 288.00
seconds was attained by PSO, and the longest average convergence time of 1604.10 seconds
was attained by AMALGAMIndug. The group average time to convergence was 892.14 sec-
onds. UMDA demonstrated the lowest standard deviation for convergence time of 91.7 seconds,
compared to the average standard deviation of 208.07 seconds. The algorithm demonstrating
the best hypervolume attainment was SPEA-II with a value of 0.9453. The worst performing
algorithm was once again GREEDY with an average dominance rank of 637.3.

In the full time trial, each algorithm was executed for thirty optimisation runs of length 1310
seconds. Algorithmic performance statistics for MOD are presented in Table 7.16. MOD is
obviously the most challenging of the problems thus far, as no algorithm was able to obtain
an average dominance rank of 1, with only three managing a value between 1 and 2. The best
performing algorithm was NSGA-II with an average dominance rank of 1.20 and an average
hypervolume of 0.9368, followed in second place by AMALGAMSndp with an average dominance
rank of 1.43 and an average hypervolume of 0.9301. The algorithm with the highest hypervolume
was SPEA-II at 0.9523. The group average hypervolume was 0.8710. The algorithm with the
smallest standard deviation in hypervolume was AMALGAMIndu with a value of 0.0070. The
worst performing algorithm was GREEDY, with an average dominance rank of 638.10 and
an average hypervolume of 0.5337. ADMOEA produced an average ǫ-archive size of 69.80.
PUMDA and UMDA produced ǫ-archive sizes of 166.83 and 15.57, respectively. The largest
ǫ-archive size amongst the other algorithms was 62.27, obtained by both AMALGAMndp and
AMALGAMIndp.

Plots of the attainment fronts of the three best and three worst algorithms appear in Figure
7.8. These results demonstrate the principle that there is a trade-off between the performance
of the various algorithms, with MOD having a non-trivial Pareto-front. SPEA-II failed to reach
the Pareto-front in the low Network Resilience region of the objective space, but was the best at
finding the high Network Resilience solutions. NSGA-II was the best mid-range performer and
AMALGAMSndp located unique solutions of low cost. GREEDY and PSO performed extremely
poorly in comparison to the best algorithms, locating solutions of more than double the cost
for similar Network Resilience.

7.1.9 Summary and Analysis of First Eight Benchmarks in Phase 1

The results for the first eight benchmark tests (TRP, TLN, HANOI, NYTUN, BLACK, FOSS,
PESC, and MOD) are summarized in Tables 7.17 and 7.18, showing results for the convergence
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Algorithm Avg dR SD dR Avg HV SD HV Avg T (s) SD T (s)

ADMOEA 181.43 143.31 0.7855 0.0352 377.20 111.6
AMALGAMndp 39.40 38.39 0.9145 0.0142 592.23 113.1
AMALGAMndu 11.30 18.81 0.9061 0.0116 816.50 146.7
AMALGAMndug 304.57 88.88 0.8535 0.0113 1473.30 406.843

AMALGAMIndp 54.73 68.36 0.9128 0.0175 560.00 106.0
AMALGAMIndu 9.97 20.34 0.9069 0.0098 867.77 160.5
AMALGAMIndug 288.93 103.13 0.8501 0.0155 1604.10 387.7
AMALGAMSndp 3.50 4.39 0.9346 0.0119 1229.33 246.9
AMALGAMSndu 6.30 8.56 0.9362 0.0113 1114.00 272.8
ANIMA 15.67 33.50 0.9294 0.0165 867.60 195.7
DE 194.40 131.73 0.8690 0.0269 1124.93 379.9
GREEDY 637.3 5.68 0.5210 0.0219 1013.80 381.6
NSGA-II 6.63 11.51 0.9277 0.0094 736.20 116.3
PSO 634.57 3.95 0.5403 0.0225 288.00 137.0
PUMDA 123.63 86.11 0.8750 0.0183 1330.43 311.1
SPEA-II 8.00 8.55 0.9453 0.0092 862.27 181.6
TAMALGAMndp 25.00 31.00 0.9151 0.0094 606.27 127.1
TAMALGAMndu 5.20 8.79 0.9105 0.0102 909.37 157.9
TAMALGAMndug 135.73 55.30 0.8777 0.0125 1147.70 201.6
TAMALGAMJndp 44.57 39.68 0.9142 0.0146 609.57 144.7
TAMALGAMJndu 9.50 20.61 0.9136 0.0117 866.70 211.4
TAMALGAMJndug 115.60 65.43 0.8901 0.0145 1000.40 195.9
UMDA 234.63 60.60 0.8269 0.0066 521.43 91.7

Table 7.15: Time (T) to convergence (taking as stopping criterion less than 0.05% change in
HV for 200 generations) for the MOD benchmark, computed over thirty optimisation runs for
reference point (In, C) = (0, 15 000 000).

Algorithm Rank Avg dR SD dR Avg HV SD HV Avg AS SD AS

ADMOEA 11 6.93 18.95 0.8874 0.0492 69.80 8.89
AMALGAMndp 9 6.50 7.10 0.9259 0.0127 62.27 1.20
AMALGAMndu 8 3.03 3.15 0.9160 0.0096 61.07 1.76
AMALGAMndug 21 393.07 39.93 0.8509 0.0092 60.10 2.07
AMALGAMIndp 10 6.60 8.63 0.9287 0.0106 62.27 1.55
AMALGAMIndu 7 2.90 3.75 0.9135 0.0070 61.87 1.36
AMALGAMIndug 20 390.63 47.64 0.8491 0.0099 59.77 2.85
AMALGAMSndp 2 1.43 1.10 0.9301 0.0120 61.97 1.45
AMALGAMSndu 13 46.20 36.69 0.8944 0.0104 60.30 3.13
ANIMA 6 2.50 3.72 0.9359 0.0134 60.60 1.79
DE 19 208.50 120.06 0.8687 0.0223 60.80 2.30
GREEDY 23 638.10 6.37 0.5337 0.0182 32.40 7.57
NSGA-II 1 1.20 0.48 0.9368 0.0102 61.93 1.74
PSO 22 633.57 2.56 0.5673 0.0184 23.53 5.41
PUMDA 15 123.30 92.44 0.8746 0.0186 166.83 11.01
SPEA-II 3 1.53 0.94 0.9523 0.0074 56.30 2.26
TAMALGAMndp 14 52.87 65.73 0.9133 0.0233 61.20 3.57
TAMALGAMndu 5 2.47 1.91 0.9209 0.0100 61.63 1.79
TAMALGAMndug 17 160.80 72.83 0.8833 0.0101 60.80 2.07
TAMALGAMJndp 12 42.97 57.92 0.9141 0.0220 59.97 9.33
TAMALGAMJndu 4 2.10 2.22 0.9191 0.0093 61.77 1.72
TAMALGAMJndug 16 145.03 66.62 0.8880 0.0123 60.90 2.11
UMDA 18 208.30 68.94 0.8285 0.0075 15.57 5.53

Table 7.16: Mean and Standard Deviation of performance metrics for the full time trial analysis
on the MOD benchmark, computed over thirty optimisation runs for reference point (In, C) =
(0, 15 000 000).
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analysis and time trial analysis, respectively. These performance metrics have been averaged
across all eight benchmarks. Table 7.17 reports the averages of average and standard deviation
for dR, the averages of average and standard deviation for NHV, and the averages of average and
standard deviation for normalised time (NT) (where time has been normalised by the average
convergence times for each benchmark). This table is sorted in terms of increasing average NT.
Table 7.18 reports the average rank, the averages of average and standard deviation for dR, the
averages of average and standard deviation for NHV, and the averages of average ǫ-archive size
AS. This table is sorted in terms of increasing average dominance rank.

The results from the convergence analysis indicate that ADMOEA was the fastest algorithm,
requiring on average 0.5279 of the average time to converge in order to achieve on average 0.9063
of the best known NHV. This can be attributed to its dynamic population sizing and offspring
generation methodologies which typically process fewer solutions per evolutionary generation.
However, an average dominance rank of 43.23 and the highest standard deviation of 0.0230
for NHV indicates that the ADMOEA speed enhancement comes at the cost of missed Pareto-
optimal solutions. The closest competitor in terms of time is AMALGAMndp with 0.7327 of
the average time to convergence for an average NHV of 0.9426, and the best SD NT of 0.1945,
revealing that it is the most consistent performer in terms of convergence time. With an average
dominance rank of 6.43 AMALGAMndp still lagged behind the leading algorithms, showing that
the speed enhancement comes at the cost of reduced performance, but that it may be suitable
for use in time critical applications.

The algorithm with the best average NHV is AMALGAMndu, the original formulation which
achieves an average of NHV of 0.9502 in 0.8218 of the average convergence time. With an average
dominance rank of 2.39, this algorithm would seem suitable for general use. The algorithm with
the best average and standard deviation of dominance rank is TAMALGAMndu, with values
of 1.78 and 1.82, respectively. It also attains a good average NHV of 0.9345 with a standard
deviation of 0.0107. This is achieved at an average convergence time of 0.8754 of the mean.
TAMALGAMJndu and NSGA-II also achieve good performance in below average time, and
could be considered candidates for general use. The worst performing algorithm in terms of
time is SPEA-II, which requires 1.7043 of the mean convergence time, but yields good results
with a dominance rank of 2.45 and an average NHV of 0.9467. SPEA-II is also the best in
terms of NHV standard deviation with less than 1%. The worst performing algorithm in the
convergence trials is GREEDY with an average dominance rank of 397.72 and average NHV of
0.7571. It is also slower than the average convergence rate at 1.1876.

Figure 7.9 shows the performance trade-off between average NT and average NHV for each of the
algorithms, where the algorithms forming the Pareto-front have been labelled. The standard de-
viations of average NHV are also indicated on the secondary axis. The Pareto-ranked algorithms
in terms of average convergence time and average NHV are AMALGAMndu, AMALGAMIndp,
AMALGAMndp and ADMOEA. Not shown in the graph are the non-dominated algorithms
with respect to average convergence time and average dominance rank: TAMALGAMJndu,
TAMALGAMndu, TAMALGAMndp, AMALGAMndu and AMALGAMndp. Of these algorithms,
only AMALGAMndu and AMALGAMndp are non-dominated in terms of all three performance
criteria.

The results from the time trial analysis indicate that NSGA-II is the top performing algo-
rithm in terms of average dominance rank with a value of 1.1. This seems surprising given
its simplicity. However, its average rank is only 9, compared to TAMALGAMndu which has
an average rank value of 5.125. TAMALGAMndu furthermore achieved the lowest standard
deviation for NHV of 0.26, compared to 0.52 for NSGA-II. The best algorithm in terms of
average NHV is AMALGAMSndp with a value of 0.9512. The algorithm with the lowest
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Convergence Analysis Summary

Algorithm Avg dR SD dR Avg NHV SD NHV Avg NT SD NT

ADMOEA 43.23 59.02 0.9063 0.0230 0.5279 0.4057
AMALGAMndp 6.43 6.73 0.9426 0.0113 0.7327 0.1945
AMALGAMIndp 8.36 10.90 0.9429 0.0111 0.7451 0.2161
TAMALGAMndp 4.35 4.83 0.9418 0.0100 0.7490 0.1978
TAMALGAMJndp 7.99 9.75 0.9402 0.0116 0.7817 0.2449
AMALGAMIndu 7.98 11.31 0.9323 0.0109 0.8175 0.2119
AMALGAMndu 2.39 2.58 0.9502 0.0138 0.8218 0.2091
TAMALGAMJndu 2.28 3.48 0.9341 0.0105 0.8413 0.2224
DE 27.49 23.38 0.9289 0.0147 0.8576 0.2449
NSGA-II 2.52 3.89 0.9356 0.0110 0.8673 0.2548
TAMALGAMndu 1.78 1.82 0.9345 0.0107 0.8754 0.2299
TAMALGAMJndug 20.49 16.48 0.9277 0.0103 0.9247 0.2615
TAMALGAMndug 25.20 17.74 0.9250 0.0100 0.9484 0.2621
ANIMA 4.23 8.40 0.9340 0.0130 0.9587 0.2875
PSO 360.65 43.33 0.7492 0.0223 1.0213 0.3592
AMALGAMndug 50.00 21.92 0.9215 0.0127 1.0743 0.3171
AMALGAMIndug 45.09 23.98 0.9227 0.0111 1.1240 0.3307
GREEDY 397.72 55.81 0.7571 0.0226 1.1876 0.3220
UMDA 251.35 85.58 0.8148 0.0211 1.2166 0.4595
PUMDA 123.21 68.33 0.8899 0.0198 1.2738 0.2254
AMALGAMSndp 1.91 2.34 0.9493 0.0147 1.3158 0.4031
AMALGAMSndu 7.51 9.38 0.9414 0.0101 1.6331 0.5011
SPEA-II 2.45 2.63 0.9467 0.0096 1.7043 0.5546

Average 61.07 21.46 0.9117 0.0137 1 0.3007

Table 7.17: Summary statistics of Phase 1 convergence analysis, with average performance
metrics computed over eight benchmarks (TRP, TLN, HANOI, NYTUN, BLACK, PESC, FOSS,
MOD), listed in order of increasing normalised convergence time.

standard deviation for NHV is TAMALGAMJndu with a value of 0.0085. All four of these
algorithms are non-dominated with respect to the various performance criteria, and each of
them may be considered a candidate for general usage.

The performance results for all algorithms with an average dominance rank lower than 4 are
graphed in Figure 7.10, with the Pareto-front solutions labelled. SPEA-II has also been labelled
due to its smaller standard deviation for NHV than AMALGAMSndp. The newly developed
algorithm ANIMA performed reasonably well, but did not make it into the top five algorithms.
It is thought that its adaptive mechanisms may potentially be refined in a more rational manner
to improve performance, possibly through the use of machine learning techniques. ADMOEA
just fell short of claiming a top-ten position, with its greatest weakness being high performance
variability (it has the highest standard deviation for NHV of 0.0223). However, its fast con-
vergence time may be reason enough to consider it for general usage. The worst performing
algorithms are PUMDA, UMDA, PSO and GREEDY, where the latter is undeniably the worst
algorithm for WDS design given this sample of benchmarks. The poor performance of UMDA
is probably expected due to its lack of innovation, and that of GREEDY may be explained by
the fact that it is a local search.

Due to their superior performance in the time trials, the four algorithms NSGA-II, TAMAL-
GAMndu, TAMALGAMJndu and AMALGAMSndp were selected to compete in solving the large
EXNET WDS design problem, covered in the next section.
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Time Trial Analysis Summary

Algorithm Avg Rank Avg dR SD dR Avg HV SD HV Avg AS

NSGA-II 9.000 1.11 0.52 0.9421 0.0092 64.61
TAMALGAMJndu 5.875 1.15 0.35 0.9423 0.0085 64.82
TAMALGAMndu 5.125 1.19 0.26 0.9439 0.0092 64.90
AMALGAMSndp 9.125 1.21 0.61 0.9512 0.0128 63.43
AMALGAMIndu 6.000 1.25 0.50 0.9428 0.0086 64.55
SPEA-II 12.375 1.36 0.89 0.9476 0.0089 61.61
AMALGAMndu 9.250 1.37 0.98 0.9423 0.0105 64.55
AMALGAMndp 8.000 1.73 1.06 0.9474 0.0099 65.13
ANIMA 12.375 1.77 2.71 0.9416 0.0112 64.30
AMALGAMIndp 9.750 2.57 4.43 0.9483 0.0095 64.91
ADMOEA 12.125 3.83 10.97 0.9321 0.0223 73.41
TAMALGAMJndp 10.750 6.37 7.58 0.9463 0.0113 65.37
AMALGAMSndu 12.125 6.97 5.70 0.9360 0.0088 62.17
TAMALGAMndp 12.375 7.63 8.75 0.9460 0.0117 65.57
TAMALGAMJndug 10.875 20.87 12.90 0.9330 0.0090 64.51
TAMALGAMndug 10.125 23.12 12.24 0.9322 0.0095 64.51
DE 12.250 27.81 17.86 0.9470 0.0147 64.48
AMALGAMIndug 13.250 59.45 13.42 0.9240 0.0094 63.94
AMALGAMndug 13.625 62.96 15.05 0.9245 0.0093 64.22
PUMDA 17.500 114.73 78.33 0.8933 0.0190 129.06
UMDA 21.000 234.76 90.15 0.8218 0.0193 57.10
PSO 20.875 360.43 41.87 0.7600 0.0190 42.71
GREEDY 22.25 410.64 46.19 0.7614 0.0205 56.23

Average 12.000 58.88 16.23 0.9177 0.0123 65.92

Table 7.18: Summary statistics of Phase 1 time trials, with average performance metrics com-
puted over eight benchmarks (TRP, TLN, HANOI, NYTUN, BLACK, PESC, FOSS, MOD),
listed in order of increasing average dominance rank.

7.1.10 EXNET Benchmark Time Trials

EXNET is very large in comparison to the previous WDS benchmarks, and consequently requires
a large increase in computational processing time in order to conduct a hydraulic simulation, as
well as a correspondingly large increase in memory resources. If the full time trials were to be
performed for all the algorithms, as was done for the previous benchmarks, it would take several
months of computing time. Only the four top performing algorithms for the first eight WDS
benchmarks in Phase 1 were therefore considered for the EXNET analysis, namely NSGA-II,
TAMALGAMJndu, TAMALGAMndu, and AMALGAMSndp. The combined convergence and
time trial analysis with thirty optimisation runs required more than a month of computing
time. EXNET does not admit any feasible solutions which completely satisfy the pressure head
requirements, owing to demand node 1 107, where the minimum head is unattainable due to
the node elevation. Therefore, this node was ignored, classifying solutions as feasible if the
minimum head is satisfied at all other demand nodes. The point (0, 5 000 000 000) was used as
the reference point for hypervolume calculation.

The results of the convergence analysis are shown in Table 7.19. AMALGAMSndp demonstrated
the best performance in terms of all metrics, at the cost of the longest average convergence time
of 19 507 seconds (5.4 hours). In addition to the lowest average dominance rank of 1.4 and
the highest average hypervolume of 0.9014, it also provided the most reliable performance
with the lowest standard deviations of 0.84, 0.0444 and 2 638 seconds for dominance rank,
hypervolume and convergence time, respectively. The algorithm with the fastest convergence
time was TAMALGAMndp with a time of 10 312 seconds (2.9 hours); however this comes at
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Algorithm Avg dR SD dR Avg HV SD HV Avg T (s) SD T (s)

TAMALGAMndu 15.7 4.42 0.7086 0.0529 10312 4652
TAMALGAMJndu 14.5 8.68 0.6526 0.1381 11344 3575
NSGA-II 15.6 6.02 0.7256 0.0715 10821 2942
AMALGAMSndp 1.4 0.84 0.9014 0.0444 19507 2638

Table 7.19: Time (T) to convergence (taking as stopping criterion less than 0.05% change in
HV for 200 generations) for the EXNET benchmark, computed over thirty optimisation runs
for reference point (In, C) = (0, 5 000 000 000).

Algorithm Rank Avg dR SD dR Avg HV SD HV Avg AS SD AS

TAMALGAMndu 2 12.80 23.33 0.7143 0.0856 24.27 6.16
TAMALGAMJndu 3 14.13 26.05 0.6090 0.1302 29.37 8.70
NSGA-II 4 49.03 20.62 0.5648 0.0432 16.70 2.39
AMALGAMSndp 1 3.23 3.62 0.8632 0.0429 36.53 6.46

Table 7.20: Mean and Standard Deviation of performance metrics for the full time trial analysis
on the EXNET benchmark, computed over thirty optimisation runs for reference point (In, C) =
(0, 5 000 000 000).

the cost of greatly reduced performance, with average dominance rank and hypervolume values
of 15.7 and 0.7086, respectively. The results produced by TAMALGAMJndu and NSGA-II lie
somewhere in-between, mutually non-dominated with respect to dominance rank, hypervolume
and convergence time.

Full-length time trials were conducted using thirty optimisation runs and a time limit of 19 507
seconds for each algorithm. The results of these trials are shown in Table 7.20. AMALGAMSndp

maintained a convincing lead, with an average dominance rank of 3.23 and an average hyper-
volume of 0.8632. It once again demonstrated the lowest standard deviation values of 3.62 and
0.0429 for dominance rank and hypervolume, respectively, and obtained a significantly larger
average ǫ-archive size of 36.53, indicating in combination with dominance rank that it located a
much larger portion of the Pareto-front than did the other algorithms. The closest competitor
was TAMALGAMndu with an average dominance rank of 12.80 and an average hypervolume of
0.7143. TAMALGAMJndu takes third position with an average dominance rank of 14.13 and an
average hypervolume of 0.6090. NSGA-II was the worst of the four algorithms by a substantial
margin, with an average dominance rank of 49.03 and an average hypervolume of 0.5648.

The attainment sets achieved by the various algorithms are graphed in NR-Cost space in Figure
7.11. Here it is clear that AMALGAMSndp located a much larger portion of the Pareto-front,
exclusively providing the global front from NR-values of 0.469 to 0.539.

However, in the region of NR-values from approximately 0.54 to 0.561, TAMALGAMndu found
the majority of the non-dominated solutions, exclusively representing most of that section of
the global Pareto-front. TAMALGAMJndu and NSGA-II located dominated sub-fronts, with
NSGA-II exhibiting the most localised and dominated attainment front. The algorithms’ attain-
ment fronts converge at an NR-value of approximately 0.551 and diverge again thereafter. From
an NR of approximately 0.555 onwards, AMALGAMSndp found only dominated solutions, sug-
gesting that it may not be the best method for discovering solutions of high reliability. The least
expensive solution (also representing the lowest Network Resilience), found by AMALGAMSndp,
has a cost of 23 168 000 and a Network Resilience of 0.469 758. The most resilient solution, found
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by TAMALGAMJndu, has a cost of 38 757 400, and a Network Resilience of 0.561 725.

7.1.11 Performance Analysis of AMALGAM Sub-algorithms

The AMALGAM sub-algorithms demonstrated very similar behaviour over the different WDS
benchmarks. Therefore, only the sub-algorithm analysis of AMALGAMndu and AMALGAMndug

for the HANOI benchmark is presented here. The average number of successful offspring per
generation (averaged over thirty optimisation runs) is shown for each sub-algorithm, as well as
the sum total of successful offspring, for AMALGAMndu in Figure 7.12 and for AMALGAMndug

in Figure 7.13.

Both implementations of AMALGAM experienced a brief initial peak of UMDA successes,
attributable to the rapid recombination of existing healthy genetic building blocks in the initial
population, which is UMDA’s primary strength. Once the population becomes more diluted with
building blocks — including new ones uncovered by the other sub-algorithms, individual building
blocks have a smaller probability of being selected, and the usefulness of UMDA diminishes.

In AMALGAMndu the dominant sub-algorithm is clearly NSGA-II, which produced the most
successful offspring from generation 8 onwards. In second place is DE, which rises to an initial
peak and experiences a steady decline until approximately generation 200. In AMALGAMndug,
the relative ranking of the previous sub-algorithms is maintained; however, the GREEDY algo-
rithm is now dominant. The scales of the two graphs are identical, in order to provide the reader
with a visual comparison of the average quantity of solutions found by each algorithm. It is
obvious that AMALGAMndu found many more solutions than did AMALGAMndug, which ex-
perienced a sharp decline in solutions found from generation 50 onwards. This may be described
as a premature convergence phenomenon, caused by the GREEDY algorithm which places an
excess of pressure to locate local optima. The reason GREEDY is dominant is because it is
able to find numerous neighbouring solutions in each generation, which typically provides it
with more successful offspring than the competing sub-algorithms. However, these GREEDY
offspring typically differ only slightly in terms of fitness from their parent solutions, due to their
closeness in phenotype space. Therefore, despite the fact that the metaheuristic sub-algorithms
may be vastly superior in terms of the magnitude of fitness improvement of successful offspring,
because the number of such offspring generated is much smaller than the number of GREEDY
offspring, they do not benefit from the existing AMALGAM reward scheme. This illustrates a
fundamental problem with the original AMALGAM strategy, which is why alternative offspring
partitioning / reward strategies were considered in this dissertation.

7.1.12 Performance Analysis of GREEDY Heuristic Steps

It is interesting to consider the performance of the GREEDY algorithm substeps, in terms of
the proportion of successful offspring generated by each substep, as shown in Figures 7.14–7.17
for the TRP, TLN, HANOI and NYTUN benchmarks, respectively. It is clear that the Efficient
Path is the most successful heuristic step, followed by the CANDA replacement method and
the Cost-Power step. The Min/Max Headloss step is the next most successful; however, it
frequently identifies the same pipe as the Headloss Gradient step (reducing the offspring count
for this step, since they are executed in turn).
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Figure 7.12: Average offspring per sub-algorithm per generation in AMALGAMndu for the
HANOI benchmark.
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Figure 7.13: Average number of successful offspring per sub-algorithm per generation in
AMALGAMndug for the HANOI benchmark.
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Figure 7.15: Comparison of the proportions of accepted offspring generated by the heuristic
substeps of the GREEDY algorithm for the TLN benchmark.
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Figure 7.16: Comparison of the proportions of accepted offspring generated by the heuristic
substeps of the GREEDY algorithm for the HANOI benchmark.
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Figure 7.17: Comparison of the proportions of accepted offspring generated by the heuristic
substeps of the GREEDY algorithm for the NYTUN benchmark.
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7.2 Phase 2 Results: Constraint Handling Scheme Comparison

In order to analyze constraint handling schemes, NSGA-II was implemented and tested using the
two different constraint handling techniques discussed previously, namely the penalty method
(NSGA-II) and the constrained domination method (NSGA-II-CD). The same time limits and
hypervolume reference points were used to compute average performance metrics over thirty
optimisation runs for each algorithm. The summarized test results for the eight benchmarks
TRP, TLN, NYTUN, HANOI, BLACK, FOSS, PESC, and MOD are shown in Table 7.21, in-
cluding average and standard deviation of dominance rank, and average and standard deviation
of hypervolume. For all but three WDS benchmarks, the algorithms achieved equivalent domi-
nance ranks of 1, and NSGA-II-CD obtained slightly higher hypervolume values. However, for
the HANOI benchmark, NSGA-II outclassed NSGA-II-CD with a dominance rank of 1.0667
compared to 1.6667, a dominance rank standard deviation of 0.2582 compared to 1.2910, and a
large hypervolume difference of 0.9380 compared to 0.8619 for NSGA-II-CD. Then again, for the
FOSS benchmark, NSGA-II-CD outperformed NSGA-II with a dominance rank of 1 compared
to 1.3, and a slightly higher average hypervolume. The benchmark MOD, on the other hand,
favoured NSGA-II in terms of both dominance rank standard deviation and hypervolume.

This stated, both algorithms were able to attain very similar Pareto-optimal fronts, particularly
for the central portions of the Pareto-fronts, which may arguably be the most important region
of the front, since it usually contains solutions with the best benefit-cost ratios. A sample
attainment front comparison is provided for the HANOI benchmark in Figure 7.18, also showing
the benefit-cost ratios (Network Resilience divided by cost) of the solutions multiplied by a
scaling factor.

Although performance statistics were calculated only for feasible individuals in the final approx-
imation sets, it was noticeable that all the individuals in the sets generated by NSGA-II-CD
were feasible, whereas a large proportion (10–40%) of those generated by NSGA-II were in-
feasible. This illustrates a feature of the penalty method — improved flexibility comes at the
price of having to process the results at the end in order to remove infeasible individuals. This,
combined with the issue of having to specify a penalty factor in the first place, and the fact
that NSGA-II-CD still performs reasonably well in comparison to NSGA-II, may well serve to
recommend it as the method of choice for general use.

7.3 Chapter Summary

In this Chapter two phases of testing on WDS benchmarks from the literature were conducted
in order (i) to compare twenty-three alternative metaheuristics for multi-objective WDSDO,
in fulfilment of Dissertation Objectives 6 and 7 in §1.3, and (ii) to compare two different con-
straint handling techniques, namely the penalty term method and the constrained domination
method, in fulfilment of Dissertation Objective 8. Finally, in order to conduct this analysis,
the implementation of this optimisation model in a software library was completed in partial
fulfilment of Dissertation Objective 10.

The metaheuristics compared in Phase 1 included ADMOEA, AMALGAMndp, AMALGAMndu,
AMALGAMndug, AMALGAMIndp, AMALGAMIndu, AMALGAMIndug, AMALGAMSndp,
AMALGAMSndu, ANIMA, DE, GREEDY, NSGA-II, PSO, PUMDA, SPEA-II, TAMAL-
GAMndp, TAMALGAMndu, TAMALGAMndug, TAMALGAMJndp, TAMALGAMJndu, TAM-
ALGAMJndug, and UMDA. The WDS benchmarks analyzed were TRP, TLN, NYTUN, HANOI,
BLACK, FOSS, PESCA, MOD and EXNET. Thirty hypervolume convergence time trials were
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Benchmark Algorithm Avg dR SD dR Avg HV SD HV

TRP NSGA-II 1 0 0.9896 0.0014
NSGA-II-CD 1 0 0.9901 0.0016

TLN NSGA-II 1 0 0.9796 0.0129
NSGA-II-CD 1 0 0.9816 0.0134

NYTUN NSGA-II 1 0 0.9598 0.0054
NSGA-II-CD 1 0 0.9624 0.0061

HANOI NSGA-II 1.0667 0.2582 0.9380 0.0909
NSGA-II-CD 1.6667 1.2910 0.8619 0.0382

BLACK NSGA-II 1 0 0.9754 0.0053
NSGA-II-CD 1 0 0.9857 0.0026

FOSS NSGA-II 1.3 1.6432 0.9328 0.0134
NSGA-II-CD 1 0 0.9477 0.0129

PESC NSGA-II 1 0 0.9402 0.0117
NSGA-II-CD 1 0 0.9406 0.0116

MOD NSGA-II 1.1667 0.4611 0.9214 0.0180
NSGA-II-CD 1.1667 0.7466 0.9189 0.0159

Table 7.21: Performance metrics for NSGA-II and NSGA-II-CD computed for eight bench-
marks (TRP, TLN, HANOI, NYTUN, BLACK, FOSS, PESC and MOD), averaged over thirty
optimisation runs.

conducted for each algorithm-benchmark pair in order to compare algorithmic efficiency. Thirty
fair time trials were then used in the optimisation process (with time limits computed using the
90th percentile of average convergence times) in order to compare the solution quality produced
by the various algorithms.

The fastest algorithm in terms of convergence was ADMOEA, which was 0.5279 of the global
average convergence time, yielding an average NHV of 0.9063, but it fared relatively poorly in
terms of dominance rank and standard deviations of all metrics, indicating that it is one of
the less stable algorithms. Other non-dominated algorithms in terms of convergence time and
average hypervolume were AMALGAMndp, AMALGAMIndp, AMALGAMndu, with the latter
producing the highest average normalized hypervolume of 0.9502 in a convergence time 0.8218
of the global average. The algorithm with the best performance in terms of dominance rank
was TAMALGAMndu with a value of 1.78, and with decent averages for NHV and NT of 0.9345
and 0.8754, respectively. Given the fact that it also achieved the lowest standard deviation
for dominance rank of 1.82, it may be the preferred algorithm amongst these for time critical
WDSDO. The slowest running algorithm was SPEA-II, with a convergence time 1.7043 of the
global average. However, it exhibited one of the most stable performances with the smallest
standard deviation for NHV of 0.0096.

The top four performing algorithms in the full-length time trials were NSGA-II, TAMAL-
GAMndu, TAMALGAMJndu and AMALGAMSndp, and were mutually non-dominated with
respect to each other for the various performance metrics. NSGA-II was the best algorithm
in terms of average dominance rank with a value of 1.1. TAMALGAMndu produced the best
average position rank value of 5.125 and the lowest standard deviation for NHV of 0.26. The
best algorithm in terms of average NHV was AMALGAMSndp with a value of 0.9512. The
GREEDY algorithm exhibited the worst performance overall, with an average dominance rank of
410.64. This demonstrates that despite its functioning as a powerful local search, the GREEDY
algorithm which mimics engineering judgement cannot compete with modern metaheuristics,
which employ advanced (intelligent) strategies in order to uncover better solutions with less
computational effort.



7.3. CHAPTER SUMMARY 203

0

2

4

6

8

10

12

0.23 0.25 0.27 0.29 0.31 0.33 0.35 0.37

Network Resilience

C
o
st
 i
n
 M

il
li
o
n
s 
o
f 
$

AMALGAM Penalty Method

AMALGAM CD Method

Benefit-Cost (NR / Cost * sf)

ts

Figure 7.18: Attainment comparison of NSGA-II using the penalty method and NSGA-II-CD
using the constrained domination (CD) method for the HANOI benchmark, showing benefit-cost
ratios.

The four best algorithms from the full time trials were executed for the very large EXNET
benchmark for thirty 5.4-hour runs each. AMALGAMSndp proved the best algorithm on the
whole, finding a much broader section of the Pareto-front than the other algorithms, although
it was outperformed in the high Network Resilience region by TAMALGAMndu, and failed
to locate Pareto-optimal solutions of very high values of Network Resilience. In light of the
evidence presented, AMALGAMSndp would seem to be the best algorithm at providing a broad
range of solutions for difficult WDSDO problems, and TAMALGAMndu appears to be one of
the best choices for efficient, consistent performance and achieving solutions of high reliability.

The sub-algorithm analysis was conducted for two variants of the basic AMALGAM, namely
AMALGAMndu and AMALGAMndug, in order to demonstrate a fundamental shortcoming of
the basic formulation. The variant including the GREEDY sub-algorithm exhibited a prema-
ture convergence phenomenon, caused by an excess of pressure to locate local optima. The basic
AMALGAM formulation is unable to discriminate between mild improvements (successes), as
delivered by GREEDY, and more significant ones generated by other metaheuristics, and con-
sequently overly rewarded GREEDY.

The results from the constraint technique comparison of Phase 2 indicated that both the penalty
term method and the constrained domination technique are viable options for general usage.
Both alternatives are able to locate very similar Pareto-fronts along the region of highest benefit-
cost, and the constrained domination technique may be the method of choice due to its generality
and lack of requirement of user-specified parameters.
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Chapter 8

Reliability Analysis

In this chapter, the results of the reliability analysis (Phase 3) are presented and discussed,
examining the relationship between the reliability surrogate measures (RSMs) and two average
demand satisfaction measures, namely average demand satisfaction under uncertainty (ADSU)
and average demand satisfaction under pipe failure (ADSF). These measures correspond to two
different types of analysis, where ADSU is calculated under conditions of stochastic demand,
and ADSF is calculated across the simulation of all single-pipe failures. The RSMs analysed
include the Reliability Index (RI), Network Resilience (NR), Flow Entropy (FE), and the novel
Mixed Surrogate (MS) measure presented in §4.3.2. For the sake of convenience, the RSMs are
sometimes referred to in the text as though they were algorithms themselves. For instance,
where it is stated that Network Resilience achieved the best average ADSU, it is meant that the
method utilising Network Resilience as its RSM during the bi-objective optimisation process
achieved this honour. The optimisation algorithm employed in this Phase was NSGA-II. The
two types of reliability analysis were conducted for the eight WDS benchmarks TRP, TLN,
NYTUN, HANOI, BLACK, FOSS, PESC and MOD.

8.1 Probabilistic Reliability Simulation

Probabilistic reliability analysis under uncertain (stochastic) demand conditions was conducted
in order to compare the attainment sets produced by the different RSMs. The full version of
MCS for uncertain demands was not attempted during probabilistic reliability analysis, due to
the associated high computational expense. Instead, 1 000 LHS samplings were conducted on
final approximation set designs and used to estimate the ADSU. Gaussian PDFs were fitted
to each node, with the mean taken as the specified peak nodal demand loading condition for
a benchmark, and the standard deviation taken as 30% of this value. Furthermore, the nodal
demand samples were rearranged using the method of Iman and Conover [128] to induce a rank
correlation of 0.5 amongst the nodes for each demand loading condition (similar to the work by
Kapelan et al. [141]), producing a set of 1 000 demand loading conditions D.

Pressure-driven analysis was conducted by means of a demand adaptation method. The nodal
demands d0

0, . . . , d
0
n, were used for an initial DDA hydraulic simulation at time t = 0 in order

to compute the system pressures. Several iterations of DDA then followed, where demand is
adapted until the required minimum pressures are achieved. During each iteration for which
the nodal head was below the minimum required to satisfy demand, one of two steps were
performed. If the pressure at node i was below zero, then the demand at that node was

205
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adapted as dt+1
i = 0.99 × dt

i. Otherwise, the demand at node i was adapted by taking the
average of the previous iterations’ demand and the actual demand achieved, using the equation

dt+1
i = (dt

i + dt
i(

ht
i

h∗
i
)0.5)/2, where ht

i is the nodal pressure head at time t and h∗
i is the minimum

pressure head required at node i, and where the second term of the numerator is the actual flow
achieved in accordance with the pressure-dependant demand formula of Aoki [11]. Alternatively,
if the pressure head ht

i was in excess of the required minimum, then the demand was adapted
as dt+1

i = min(1.01×dt
i, d

t
0). This process continued until the minimum pressures were satisfied

to within 0.01% of the required minimum. One may then proceed to calculate the difference
between the required initial demand and the final adapted demand, such that the demand
satisfaction measure ADSU is AVGD(

∑n
i=1 qi/

∑n
i=1 di), and this was calculated across all 1 000

demand loading conditions.

8.2 Failure Analysis

Failure analysis was conducted, considering all single-pipe failure events in order to compare
the solutions produced by the different RSMs under failure conditions. Failure reliability was
quantified using the average percentage of demand satisfied across all failure events (ADSF).
No stochastic analysis of pipe failures was conducted (it was assumed that all pipe failures are
equally likely)1. It is reasonable to expect a performance degradation under pipe failure condi-
tions. The degree of such failure was quantified by ADSF = AVGF (

∑n
i=1 qi/

∑n
i=1 di), where

F is the set of all single pipe failure conditions, under a peak demand loading condition. Once
again, pressure-driven analysis was conducted using the same method of demand adaptation
that was used in the probabilistic reliability simulation.

8.3 Phase 3 Results: Analysis of Reliability Surrogate Measures

In Phase 3, NSGA-II was executed for thirty optimisation runs using the same time limits
and hypervolume reference points as for the full time trials in Phase 1. This was done for
the eight benchmarks TRP, TLN, HANOI, NYTUN, BLACK, FOSS, PESC and MOD using
the four RSMs described above. The output from multiple runs was combined to produce
four attainment approximation sets for each benchmark-RSM combination, ensuring that each
RSM was given a fair chance to produce a good attainment set under representative stochastic
conditions.

Average demand satisfaction (ADS) measures were used to quantify performance under stochas-
tic demand and single-pipe failure conditions. It is expected that RSMs and ADS measures
should be positively correlated, since RSMs strive to embody some features of hydraulic fitness.
Linear regression analyses were conducted to examine the correlation and statistical signifi-
cance of the relationship between the RSMs and ADS measures, and to determine whether
these relationships could be sufficiently described by a linear regression model. While the R2

and Significance F -values are reported for each regression fit of RSM vs ADSU and ADSF,
the intercept and gradients are not provided, since the different RSMs are incommensurate and
therefore cannot be compared in this manner. It may be observed that a linear model for the
RSM-ADSU relationship is not necessarily ideal, since ADSU values reach a maximum of 1,
creating a plateau in RSM-ADSU space, and this compounded by the fact that hydraulic inter-
actions are highly nonlinear. The linear model was therefore treated in a piecewise fashion, by

1Size/age-dependent pipe failure probabilities are not considered here. This is a topic for future work.
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first sorting solutions in order of increasing RSM-values, and then including only solutions up
to the first solution with an ADSU value of 1. This problem was not encountered for ADSF.

The attainment sets for each RSM are displayed graphically in RSM-Cost space, showing the
associated ADSU and ADSF percentages for those solutions, in order to demonstrate the positive
correlation between the RSM and ADS values graphically. Then, in order to compare the
different RSMs directly in terms of their ability to accommodate uncertain demands and pipe
failures, all the attainment sets of the different RSMs are displayed in ADSF-Cost and ADSU-
Cost space. The solutions of highest ADS/Cost (highest cost-benefit) are indicated by means
of a large diamond, which also accompanies the name of the RSM/s in the legend for which
that solution is identified.

Several performance metrics were calculated for each RSM attainment set, including the av-
erage and maximum ADSU, the average and maximum ADSF, and the highest ADSF/cost
and ADSU/cost benefits. Furthermore, the results of the linear regression (analysis of variance
(ANOVA) at a 95% level of significance) between the RSM and ADS measures were reported
in terms of R2 and Significance F-values, showing the goodness-of-fit and statistical significance
of the regression model respectively.

Network characteristics were also reported on for the different RSM attainment sets, including
the average cost, the average number of non-zero diameter sizable pipes, the average summed
diameter differences (SDD)2, the average sum of squared diameter differences (SQDD)3, and the
average source share deviation from the mean (SSDM)4. The SDD metric provides a quantitative
measure of the degree of adjacent diameter disparity, which is generally undesirable in excess
since it requires expensive valves and often produces unreliable loops in the network. Lower SDD
values are therefore preferable. The SQDD metric further penalizes larger diameter differences,
which are unwieldy in practice. The SSDM metric provides a measure of how balanced the
supply distribution is amongst the sources. It is less desirable to have excessive reliance on
a single source. A perfectly distributed supply will yield an SSDM of zero. In practice there
is often a primary source which supplies most of the demand, but SSDM can still provide a
relative measure of distribution equality.

8.3.1 TRP Reliability Analysis

The reliability analysis results of the four RSMs for the TRP benchmark are shown in Table 8.1.
The solutions generated using the Mixed Surrogate obtained the highest average ADSU and
ADSF values of 0.9981 and 0.9860, respectively. The solution with the maximum ADSU value
of 0.9990 was located by all the algorithms, except Flow Entropy. The solution of maximum
ADSF, with a value of 0.9914, was located exclusively by the Mixed Surrogate measure. The
solution of highest cost-benefit in terms of both ADSU (6.468×10−7) and ADSF (6.344×10−7)
was located using the Resilience Index and the Mixed Surrogate.

The regression analysis for TRP indicated that there was a statistically significant relationship
between all RSMs and their ADS counterparts, with Significance F-values less than 0.05. The
Flow Entropy measure demonstrated the highest R2-values of 0.9736 with respect to ADSU, and
0.9753 with respect to ADSF. The lowest Significance F-values were generated by the Mixed
Surrogate measure.

2If adjacent pipes have diameter differences, then this difference in size is added to the total.
3If adjacent pipes have diameter differences, then the squared difference is added to the total.
4The proportion of water supply provided by each reservoir is calculated, then the mean share is calculated,

and finally the share deviations from the mean are summed.



208 CHAPTER 8. RELIABILITY ANALYSIS

The additional performance results are shown in Table 8.2. The Mixed Surrogate located by
far the most solutions at 126, and the Flow Entropy measure found the fewest, at 7. Network
Resilience produced the solutions with the highest average cost of 2.29×106, and Flow Entropy
the lowest average cost of 1.71×106. All RSMs used an average of 11 pipes, which constitutes
all the pipes available for sizing. Flow Entropy demonstrated the lowest average SDD and
SQDD-values of 1 170 and 103 045, respectively. The Resilience Index obtained the best SSDM
value of 0.2353, compared to the worst value of 0.2973 obtained by Flow Entropy.

Graphs of the TRP attainment fronts for the various RSMs, along with their corresponding
ADSU and ADSF values indicated on the secondary vertical axis, are shown in Figures 8.1–8.4.
While the shapes of the Pareto-fronts are quite different for the various RSMs, it is clear that
there is a definite positive correlation between the RSM and ADS-values for each RSM.

The RSMs are compared directly in cost-ADSU-space for TRP in Figure 8.5. All of the RSMs
were able to produce solutions along the Pareto-front, although Flow Entropy failed to attain
representation in the high ADSU region of the front. The RSMs are compared in cost-
ADSF-space for TRP in Figure 8.6. In this case there is substantial variation in performance,
with the Mixed Surrogate producing the foremost front, particularly in the high ADSF region
of the curve, followed by Network Resilience with a secondary front. The Resilience Index
attainment is much worse than that of its competitors, failing to locate any non-dominated
solutions whatsoever, while Flow Entropy locates some such solutions in the lower ADSF region
of the Pareto-front.

RSM Avg ADSU Mx ADSU Mx ADSU/Cst R2 ADSU Signif F

Resilience Index 0.9968 0.9990 6.468×10−7 0.9134 4.27×10−19

Network Resilience 0.9967 0.9990 6.365×10−7 0.9265 1.06×10−18

Flow Entropy 0.9930 0.9961 6.346×10−7 0.9736 3.89×10−5

Mixed Surrogate 0.9981 0.9990 6.468×10−7 0.8005 3.12×10−45

RSM Avg ADSF Mx ADSF Mx ADSF/Cst R2 ADSF Signif F

Resilience Index 0.9789 0.9888 6.344×10−7 0.8800 9.42×10−17

Network Resilience 0.9788 0.9906 6.224×10−7 0.9202 2.50×10−07

Flow Entropy 0.9766 0.9818 6.232×10−7 0.9753 3.28×10−05

Mixed Surrogate 0.9860 0.9914 6.344×10−7 0.8551 7.58×10−54

Table 8.1: Reliability comparisons of RSMs using ADS measures for the TRP benchmark.

RSM Count Avg Cost Avg Pipes Avg SDD Avg SQDD Avg SSDM

Resilience Index 35 2.23×106 11 1 434 168 220 0.2353
Network Resilience 40 2.29×106 11 1 322 143 722 0.2476
Flow Entropy 7 1.71×106 11 1 170 103 045 0.2973
Mixed Surrogate 126 2.65×106 11 1 680 239 995 0.2607

Table 8.2: Result comparisons of RSMs using WDS features for the TRP benchmark.

8.3.2 TLN Reliability Analysis

The reliability analysis results of the four RSMs for the TLN benchmark appears in Table
8.3. The Reliability Index obtained the highest average ADSU of 0.9852. However, Network
Resilience claimed the highest average ADSF of 0.7626. All methods excluding Flow Entropy
located solutions of maximum ADSU 1.0. The solutions of highest cost-benefit in terms of
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Figure 8.1: Resilience Index versus ADSU (Uncertainty) and ADSF (Pipe Failure) for the TRP
benchmark, with average demand satisfaction ratio on secondary axis.
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Figure 8.2: Network Resilience versus ADSU (Uncertainty) and ADSF (Pipe Failure) for the
TRP benchmark, with average demand satisfaction ratio on secondary axis.



210 CHAPTER 8. RELIABILITY ANALYSIS

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Flow Entropy

C
o
st
 i
n
 M

il
li
o
n
s 
o
f 
$

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

A
v
er
ag

e 
D
em

an
d
 S
at
is
fa
ct
io
n

FE vs Cost

FE vs ADSU

FE vs ADSF

Figure 8.3: Flow entropy versus ADSU (Uncertainty) and ADSF (Pipe Failure) for the TRP
benchmark, with average demand satisfaction ratio on secondary axis.
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Figure 8.4: Mixed surrogate versus ADSU (Uncertainty) and ADSF (Pipe Failure) for the TRP
benchmark, with average demand satisfaction ratio on secondary axis.
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ADSU (2.26×10−6) and ADSF (1.61×10−6) were located by all methods, except the Mixed
Surrogate.

The regression analysis for TLN indicated that there is a statistically significant relationship
between all RSMs and their ADS counterparts, which had Significance F-values less than 0.05.
The Network Resilience measure demonstrated the highest R2-value of 0.9441 with respect to
ADSU. The Reliability Index measure achieved the highest ADSF R2-value of 0.6838. The
lowest Significance F-values were 5.20×10−38 for ADSU and 5.96×10−27 for ADSF, generated
by the Network Resilience and Mixed Surrogate, respectively.

The additional performance results are shown in Table 8.4. The Mixed Surrogate once again
located far more solutions than the other methods, at 130, and the Flow Entropy measure found
the fewest, at 38. The Mixed Surrogate produced the solutions with the highest average cost of
1.08×106, and Flow Entropy achieved the lowest average cost of 5.17×105. The largest average
number of pipes used was 7.92 by Network Resilience, and the smallest average number was
7.74 by Resilience Index.

Network Resilience demonstrated the lowest average SDD and SQDD-values of 602 and 83 614,
respectively, compared to the highest values attained by the Mixed Surrogate of 935 and 194 697.
SSDM was not applicable to TLN since it has only a single water source.

Graphs of the TLN attainment fronts for the various RSMs, along with their corresponding
ADSU and ADSF-values indicated on the secondary vertical axis, are shown in Figures 8.7–
8.10. The positive correlation between the RSMs and the ADS measures is still clearly visible;
however, it is not as strong as for TRP, particularly with respect to ADSF, which exhibits
greater disorganisation in the regions of lower RSM values. The ADSF values of the Flow
Entropy results rise and fall again with increasing FE.

The RSMs are compared directly in cost-ADSU-space for TLN in Figure 8.11. Only Net-
work Resilience and Resilience Index were able to produce solutions along the full length of
the Pareto-front. The Mixed Surrogate produced a secondary front which meets with the pri-
mary front for ADSU values less than 0.987 and again at ADSU values close to 1 (for cost values

RSM Avg ADSU Mx ADSU Mx ADSU/Cst R2 ADSU Signif F

Resilience Index 0.9852 1.0000 2.26×10−6 0.9139 3.34×10−27

Network Resilience 0.9831 1.0000 2.26×10−6 0.9441 5.20×10−38

Flow Entropy 0.9559 0.9750 2.26×10−6 0.4764 1.63076×10−6

Mixed Surrogate 0.9812 1.0000 2.25×10−6 0.7874 5.04×10−33

RSM Avg ADSF Mx ADSF Mx ADSF/Cst R2 ADSF Signif F

Resilience Index 0.6889 0.8750 1.61×10−6 0.6838 1.22×10−16

Network Resilience 0.7626 0.8750 1.61×10−6 0.6279 6.75×10−17

Flow Entropy 0.6730 0.7527 1.61×10−6 0.4618 1.63×10−6

Mixed Surrogate 0.7421 0.8546 1.58×10−6 0.5959 5.96×10−27

Table 8.3: Reliability comparisons of RSMs using ADS measures for the TLN benchmark.

RSM Count Avg Cost Avg Pipes Avg SDD Avg SQDD Avg SSDM

Resilience Index 62 7.51×105 7.74 880 171 299 N/A
Network Resilience 73 8.05×105 7.92 602 83 614 N/A
Flow Entropy 38 5.17×105 7.83 850 151 626 N/A
Mixed Surrogate 130 1.08×106 7.85 935 194 697 N/A

Table 8.4: Result comparisons of RSMs using WDS features for the TLN benchmark.
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Figure 8.5: Comparison of RSMs: ADSU vs Cost for the TRP benchmark.
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greater than $1 million). Flow Entropy found certain solutions in the lower region of the Pareto-
front, but was unable to locate solutions of ADSU greater than 0.975. The RSMs are compared
in cost-ADSF-space for TLN in Figure 8.12. Once again there is substantially more variation
in performance than for ADSU, with Network Resilience producing the foremost front from
ADSF 0.75 onwards, above which Flow Entropy was unable to locate solutions. Resilience
Index seemed to take second position, particularly in the upper regions of ADSF. The Mixed
Surrogate is next in line, producing a tertiary front. Flow Entropy managed to locate some
solutions in the lower ADSF region of the Pareto-front.

8.3.3 HANOI Reliability Analysis

The reliability analysis results of the four RSMs for the HANOI benchmark are shown in Table
8.5. The Mixed Surrogate method obtained the highest average ADSU and ADSF-values of
0.9701 and 0.5514, respectively. The solution with the maximum ADSU-value of 0.9781 was
only located using the Resilience Index, and the solution with the maximum ADSF-value of
0.7894 was uniquely found using Network Resilience. The solution of highest cost-benefit in
terms of ADSU (1.55×10−7) was located using Resilience Index, and the solution of highest
cost-benefit in terms of ADSF (9.92×10−8) was located using Network Resilience.

The regression analysis for HANOI indicated that there is a statistically significant relationship
between all RSMs and their ADS counterparts, with Significance F-values less than 0.05, except
for Flow Entropy with respect to ADSF, which has a Significance F-value of 0.0515. Upon
further investigation it may be seen that Flow Entropy is actually negatively correlated with
respect to the ADS measures for the HANOI benchmark. The Resilience Index achieved the
highest R2-value of 0.9577 with respect to ADSU, and Network Resilience achieved the highest
R2-value of 0.9156 with respect to ADSF. The lowest Significance F-values were generated by
the Mixed Surrogate measure.

The additional performance results are shown in Table 8.6. The Mixed Surrogate located by far
the most solutions, at 437, and Flow Entropy produced the fewest, at 6. The Mixed Surrogate
produced the solutions with the highest average cost of 7.53×106, and Resilience Index produced
the lowest average cost of 7.08×106. Flow Entropy produced solutions with the highest average
number of pipes (33.50), and Resilience Index produced the lowest number of non-zero pipes
(32.41). Network Resilience demonstrated the lowest average SDD and SQDD-values of 4 007
and 1 224 240, respectively — substantially less than the other RSMs. SSDM is not applicable
to HANOI since it has only a single source.

Graphs of the HANOI attainment fronts for the various RSMs, along with their corresponding
ADSU and ADSF-values indicated on the secondary vertical axis, may be found in Figures
8.13–8.16. Except for Flow Entropy, which actually has a negative correlation, all the other
RSMs demonstrate a strong positive correlation between the RSM and ADS values for each
RSM.

The RSMs are compared directly in cost-ADSU-space for HANOI in Figure 8.17. Flow Entropy
failed to locate any non-dominated solutions, but the other RSMs are all close to the global
Pareto-front and take turns claiming solutions along the front. In the low ADSU regions (less
than 0.9650), Network Resilience and Resilience Index dominate. From ADSU 0.9650 onwards,
the Mixed Surrogate and Reliability Index take turns locating the most non-dominated solu-
tions. The RSMs are compared in cost-ADSF-space for HANOI in Figure 8.18. In this case there
is substantial variation in performance, with the Network Resilience dominating convincingly
in the upper ADSF regions, from approximately ADSF 0.64 onwards. Resilience Index and the
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RSM Avg ADSU Mx ADSU Mx ADSU/Cst R2 ADSU Signif F

Resilience Index 0.9662 0.9781 1.55×10−7 0.9577 1.93×10−163

Network Resilience 0.9657 0.9768 1.54×10−7 0.9309 5.00×10−86

Flow Entropy 0.8989 0.9592 1.47×10−7 0.7403 2.79×10−2

Mixed Surrogate 0.9701 0.9775 1.51×10−7 0.9028 2.61×10−222

RSM Avg ADSF Mx ADSF Mx ADSF/Cst R2 ADSF Signif F

Resilience Index 0.4064 0.7831 8.63×10−8 0.9034 2.82×10−121

Network Resilience 0.5211 0.7894 9.92×10−8 0.9156 1.01×10−79

Flow Entropy 0.4729 0.5953 8.93×10−8 0.6537 5.15×10−2

Mixed Surrogate 0.5514 0.6407 8.76×10−8 0.7538 1.84×10−134

Table 8.5: Reliability comparisons of RSMs using ADS measures for the HANOI benchmark.

RSM Count Avg Cost Avg Pipes Avg SDD Avg SQDD Avg SSDM

Resilience Index 237 7.08×106 32.41 5 054 1 664 303 0
Network Resilience 147 7.12×106 33.04 4 007 1 224 240 0
Flow Entropy 6 7.43×106 33.50 4 707 1 722 148 0
Mixed Surrogate 437 7.53×106 32.93 4 881 1 668 709 0

Table 8.6: Result comparisons of RSMs using WDS features for the HANOI benchmark.

Mixed Surrogate formed secondary fronts, with Resilience Index faring the worst. Flow Entropy
managed to locate four non-dominated solutions between ADSF 0.5 and 0.6.

8.3.4 NYTUN Reliability Analysis

The reliability analysis results of the four RSMs for the NYTUN benchmark are shown in
Table 8.7. The Resilience Index method obtained the highest average ADSU value of 0.9923.
Resilience Index and Network Resilience shared the highest average ADSF of 0.9977. All
of the RMSs, except Flow Entropy, were able to locate solutions of maximum ADSU 1.0. The
solution with the maximum ADSF-value of 0.9985 was located by all the algorithms, except
Flow Entropy. The solution of highest cost-benefit in terms of both ADSU (2.48×10−8) and
ADSF (2.54×10−8) was located by Resilience Index.

The regression analysis for NYTUN indicated that there is a statistically significant relationship
between all RSMs and their ADS counterparts, with Significance F-values less than 0.05. The
Flow Entropy measure demonstrated the highest R2-value of 0.9716 with respect to ADSU, and
Network Resilience achieved the highest R2-value of 0.9415 with respect to ADSF. The lowest
Significance F-values were obtained by Network Resilience for ADSF and the Mixed Surrogate
for ADSU.

The additional performance results are shown in Table 8.8. The number of solutions found
was more evenly spread. The Mixed Surrogate located the most solutions, at 221, with a close
second by Resilience Index, of 208. The fewest number of solutions found was 129, by Flow
Entropy. Mixed Surrogate produced the solutions with the highest average cost of 1.19×108,
and Resilience Index the lowest average cost of 8.86×107. Flow Entropy used the most pipes,
with an average of 14.26. Resilience Index used the fewest pipes, with an average of 8.95.
The Mixed Surrogate demonstrated the lowest average SDD and SQDD-values of 2 702 and
285 516, respectively, compared to the maximum values attained by Resilience Index, of 3 207
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Figure 8.7: Resilience Index versus ADSU (Uncertainty) and ADSF (Pipe Failure) for the TLN
benchmark, with average demand satisfaction ratio on secondary axis.
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Figure 8.8: Network Resilience versus ADSU (Uncertainty) and ADSF (Pipe Failure) for the
TLN benchmark, with average demand satisfaction ratio on secondary axis.
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Figure 8.9: Flow entropy versus ADSU (Uncertainty) and ADSF (Pipe Failure) for the TLN
benchmark, with average demand satisfaction ratio on secondary axis.
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Figure 8.10: Mixed surrogate versus ADSU (Uncertainty) and ADSF (Pipe Failure) for the
TLN benchmark, with average demand satisfaction ratio on secondary axis.
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Figure 8.11: Comparison of RSMs: ADSU vs Cost for the TLN benchmark.
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Figure 8.12: Comparison of RSMs: ADSF vs Cost for the TLN benchmark.
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Figure 8.13: Resilience Index versus ADSU (Uncertainty) and ADSF (Pipe Failure) for the
HANOI benchmark, with average demand satisfaction ratio on secondary axis.
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Figure 8.14: Network Resilience versus ADSU (Uncertainty) and ADSF (Pipe Failure) for the
HANOI benchmark, with average demand satisfaction ratio on secondary axis.
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Figure 8.15: Flow Entropy versus ADSU (Uncertainty) and ADSF (Pipe Failure) for the HANOI
benchmark, with average demand satisfaction ratio on secondary axis.
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Figure 8.16: Mixed surrogate versus ADSU (Uncertainty) and ADSF (Pipe Failure) for the
HANOI benchmark, with average demand satisfaction ratio on secondary axis.
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and 404 987, respectively. SSDM is not applicable to NYTUN since it has only a single water
source.

Graphs of the NYTUN attainment fronts for the various RSMs, along with their corresponding
ADSU and ADSF-values indicated on the secondary vertical axis, may be found in Figures
8.19–8.22. It is clear that NYTUN is more sensitive to uncertain demands and less sensitive to
pipe failures than the previous benchmarks, since the established pattern of ADSU and ADSF
gradients has been swapped. What makes NYTUN different from the other WDSs in that it is
essentially a pipe duplication problem, which means that almost every failed pipe is ensured a
backup between the same set of nodes.

The positive correlation between RSMs and ADS-values is definitely apparent. The RSMs
are compared directly in cost-ADSU-space for NYTUN in Figure 8.23. The RSMs are neatly
divided into sub-fronts, with Resilience Index forming the vast majority of the Pareto-front.
The second-most successful RSM is Network Resilience, forming a secondary front, followed by
the Mixed Surrogate and finally Flow Entropy. It is interesting to note how most of the fronts
converge in the low ADSU and high ADSU regions. The RSMs are compared in cost-ADSF-
space for NYTUN in Figure 8.24. This situation is similar to the ADSU graph, except that
Resilience Index improves its coverage of the Pareto-front, exclusively locating non-dominated
solutions from ADSF 0.9968 onwards. Furthermore, the Mixed Surrogate squeezes past Network
Resilience in the higher ADSF region. Flow Entropy fails to locate any non-dominated solutions.

RSM Avg ADSU Mx ADSU Mx ADSU/Cst R2 ADSU Signif F

Resilience Index 0.9923 1 2.48×10−8 0.7021 9.46×10−55

Network Resilience 0.9918 1 2.37×10−8 0.9248 4.74×10−94

Flow Entropy 0.9830 0.9956 1.23×10−8 0.9716 4.78×10−100

Mixed Surrogate 0.9916 1 2.26×10−8 0.9446 1.39×10−127

RSM Avg ADSF Mx ADSF Mx ADSF/Cst R2 ADSF Signif F

Resilience Index 0.9977 0.9985 2.54×10−8 0.7461 3.10×10−63

Network Resilience 0.9977 0.9985 2.42×10−8 0.9415 2.11×10−110

Flow Entropy 0.9969 0.9977 2.32×10−8 0.9101 2.67×10−68

Mixed Surrogate 0.9976 0.9985 2.31×10−8 0.8527 4.97×10−93

Table 8.7: Reliability comparisons of RSMs using ADS measures for the NYTUN benchmark.

RSM Count Avg Cost Avg Pipes Avg SDD Avg SQDD Avg SSDM

Resilience Index 208 8.86×107 8.95 3 207 404 987 0
Network Resilience 178 1.08×108 13.59 2 795 321 686 0
Flow Entropy 129 9.86×107 14.26 2 742 289 799 0
Mixed Surrogate 221 1.19×108 14.19 2 702 285 516 0

Table 8.8: Result comparisons of RSMs using WDS features for the NYTUN benchmark.

8.3.5 BLACK Reliability Analysis

The reliability analysis results of the four RSMs for the BLACK benchmark are shown in Table
8.9. The Mixed Surrogate obtained the highest average ADSU and ADSF-values of 0.9920
and 0.8384, respectively. All RSMs, except Flow Entropy, were able to locate solutions with
the maximum ADSU-value of 1.0. The solution of highest cost-benefit in terms of ADSU
(1.64×10−5) was found by both Resilience Index and Flow Entropy. The solution of highest
cost-benefit in terms of ADSF (1.26×10−5) was located exclusively by Flow Entropy.
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Figure 8.17: Comparison of RSMs: ADSU vs Cost for the HANOI benchmark.
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Figure 8.18: Comparison of RSMs: ADSF vs Cost for the HANOI benchmark.
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RSM Avg ADSU Mx ADSU Mx ADSU/Cst R2 ADSU Signif F

Resilience Index 0.9862 1 1.64×10−5 0.8835 3.22×10−21

Network Resilience 0.9853 1 1.63×10−5 0.8732 3.09×10−27

Flow Entropy 0.9816 0.9967 1.64×10−5 0.7595 8.89×10−32

Mixed Surrogate 0.9920 1 1.46×10−5 0.8711 8.52×10−84

RSM Avg ADSF Mx ADSF Mx ADSF/Cst R2 ADSF Signif F

Resilience Index 0.6384 0.8843 1.12×10−5 0.7575 4.61×10−16

Network Resilience 0.7194 0.8840 1.25×10−5 0.8185 2.09×10−25

Flow Entropy 0.8044 0.8506 1.26×10−5 0.2903 8.74×10−9

Mixed Surrogate 0.8384 0.8840 1.20×10−5 0.1897 5.18×10−10

Table 8.9: Reliability comparisons of RSMs using ADS measures for the BLACK benchmark.

RSM Count Avg Cost Avg Pipes Avg SDD Avg SQDD Avg SSDM

Resilience Index 49 1.06×105 19.65 3 021 476 494 0
Network Resilience 66 8.46×104 21.76 2 369 323 684 0
Flow Entropy 99 8.69×104 22.37 2 658 509 024 0
Mixed Surrogate 186 1.27×105 22.97 3 286 760 716 0

Table 8.10: Result comparisons of RSMs using WDS features for the BLACK benchmark.

The regression analysis for BLACK indicated that there is a statistically significant relationship
between all RSMs and their ADS counterparts, with Significance F-values less than 0.05. The
Resilience Index measure demonstrated the highest R2-value of 0.8835 with respect to ADSU,
and Network Resilience achieved the highest R2-value of 0.8185 with respect to ADSF. The
lowest Significance F-values were generated by the Mixed Surrogate measure for ADSU and
Network Resilience for ADSF.

The additional performance results are shown in Table 8.10. The Mixed Surrogate located 186
solutions, again finding the most. Resilience Index uncovered the fewest solutions, namely 49.
The Mixed Surrogate produced the solutions with the highest average cost of 1.27×105, and
Network Resilience yielded the lowest average cost solution of 8.46×104. The Mixed Surrogate
used the highest average of 22.97 pipes, while Resilience Index used the fewest pipes at an
average of 19.65. Network Resilience demonstrated the lowest average SDD and SQDD-values
of 2 369 and 323 684, respectively. SSDM is not applicable to BLACK since it has only a single
water source.

Graphs of the BLACK attainment fronts for the various RSMs, along with their corresponding
ADSU and ADSF-values indicated on the secondary vertical axis, may be found in Figures
8.25–8.28. While the RSM-ADS curves are less well-defined than for the previous benchmarks,
there is a certain positive correlation, even in the case of Flow Entropy versus ADSF, which
has a mild positive gradient.

The RSMs are compared directly in cost-ADSU-space for BLACK in Figure 8.29. The situation
is quite similar to that for TLN, with Resilience Index and Network Resilience forming the
majority of the Pareto-front, the Mixed Surrogate forming a secondary front, followed by a
third front attributable to Flow Entropy. The latter two RSMs do not contribute to the Pareto-
front. The RSMs are compared in cost-ADSF space for BLACK in Figure 8.30. The tables
have turned for Resilience Index which no longer participates in the Pareto-front. The other
three RSMs each contribute non-dominated solutions, but Network Resilience is clearly the
most widely distributed along the Pareto-front and locates the best solutions in the high ADSF
region.
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Figure 8.19: Resilience Index versus ADSU (Uncertainty) and ADSF (Pipe Failure) for the
NYTUN benchmark, with average demand satisfaction ratio on secondary axis.
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Figure 8.20: Network Resilience versus ADSU (Uncertainty) and ADSF (Pipe Failure) for the
NYTUN benchmark, with average demand satisfaction ratio on secondary axis.



224 CHAPTER 8. RELIABILITY ANALYSIS

0

50

100

150

200

250

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Flow Entropy

C
o
st
 i
n
 M

il
li
o
n
s 
o
f 
$

0.95

0.96

0.97

0.98

0.99

1

A
v
er
ag

e 
D
em

an
d
 S
at
is
fa
ct
io
n

FE vs Cost

FE vs ADSU

FE vs ADSF

Figure 8.21: Flow Entropy versus ADSU (Uncertainty) and ADSF (Pipe Failure) for the NY-
TUN benchmark, with average demand satisfaction ratio on secondary axis.
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Figure 8.22: Mixed surrogate versus ADSU (Uncertainty) and ADSF (Pipe Failure) for the
NYTUN benchmark, with average demand satisfaction ratio on secondary axis.
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Figure 8.23: Comparison of RSMs: ADSU vs Cost for the NYTUN benchmark.
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Figure 8.24: Comparison of RSMs: ADSF vs Cost for the NYTUN benchmark.



226 CHAPTER 8. RELIABILITY ANALYSIS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Resilience Index

C
o
st
 i
n
 M

il
li
o
n
s 
o
f 
$

0.4

0.5

0.6

0.7

0.8

0.9

1

A
v
er
ag

e 
D
em

an
d
 S
at
is
fa
ct
io
n

RI vs Cost

RI vs ADSU

RI vs ADSF

Figure 8.25: Resilience Index versus ADSU (Uncertainty) and ADSF (Pipe Failure) for the
BLACK benchmark, with average demand satisfaction ratio on secondary axis.
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Figure 8.26: Network Resilience versus ADSU (Uncertainty) and ADSF (Pipe Failure) for the
BLACK benchmark, with average demand satisfaction ratio on secondary axis.
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Figure 8.27: Flow Entropy versus ADSU (Uncertainty) and ADSF (Pipe Failure) for the BLACK
benchmark, with average demand satisfaction ratio on secondary axis.
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Figure 8.28: Mixed surrogate versus ADSU (Uncertainty) and ADSF (Pipe Failure) for the
BLACK benchmark, with average demand satisfaction ratio on secondary axis.
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RSM Avg ADSU Mx ADSU Mx ADSU/Cst R2 ADSU Signif F

Resilience Index 0.9981 1 4.01×10−5 0.7596 2.53×10−13

Network Resilience 0.9982 1 3.66×10−5 0.8075 4.51×10−18)
Flow Entropy 0.9820 0.9963 2.48×10−5 0.2169 5.73×10−4

Mixed Surrogate 0.9989 1 2.71×10−5 0.5714 5.25×10−16

RSM Avg ADSF Mx ADSF Mx ADSF/Cst R2 ADSF Signif F

Resilience Index 0.9275 0.9828 3.51×10−5 0.6673 5.01×10−14

Network Resilience 0.9679 0.9828 3.42×10−5 0.8155 5.07×10−27

Flow Entropy 0.9549 0.9638 2.42×10−5 0.0641 7.31×10−2

Mixed Surrogate 0.9786 0.9828 2.65×10−5 0.1456 2.18×10−6

Table 8.11: Reliability comparisons of RSMs using ADS measures for the FOSS benchmark.

RSM Count Avg Cost Avg Pipes Avg SDD Avg SQDD Avg SSDM

Resilience Index 54 5.11×104 53.64 2 666 192 345 0
Network Resilience 71 4.35×104 57.61 1 570 64 346 0
Flow Entropy 51 5.66×104 57.45 2 705 168 749 0
Mixed Surrogate 145 8.92×104 57.39 3 184 218 337 0

Table 8.12: Result comparisons of RSMs using WDS features for the FOSS benchmark.

8.3.6 FOSS Reliability Analysis

The reliability analysis results of the four RSMs for the FOSS benchmark are shown in Table
8.11. The Mixed Surrogate achieved the highest average ADSU and ADSF-values of 0.9989 and
0.9786, respectively. Only Flow Entropy failed to locate solutions with the maximum ADSU-
value of 1.0. Resilience Index located the solution of highest cost-benefit in terms of ADSU
(4.01×10−5), as well as the solution of highest cost-benefit in terms of ADSF (3.51×10−5).

The regression analysis for FOSS indicated that there is a statistically significant relationship
between all RSMs and their ADS counterparts, except between Flow Entropy and ADSF, which
had a Significance F-value greater than than 0.05. Network Resilience demonstrated the highest
R2-values of 0.8075 with respect to ADSU, and 0.8155 with respect to ADSF. The lowest
Significance F-values were also generated by the Network Resilience.

The additional performance results appear in Table 8.12. The Mixed Surrogate located the most
solutions by far, at 145, while the Flow Entropy measure found the fewest, at 51. The Mixed
Surrogate produced the solutions with the highest average cost of 8.92×104, while Network
Resilience produced solutions with the lowest average cost of 4.35×104. Network Resilience
used the highest average of 57.61 pipes, and Resilience Index continued the trend of using the
fewest pipes, at an average of 53.64. Network Resilience also demonstrated the lowest average
SDD and SQDD-values of 1 570 and 64 346, respectively. SSDM is not applicable to FOSS since
it has only a single water source.

Graphs of the FOSS attainment fronts for the various RSMs, along with their correspond-
ing ADSU and ADSF-values indicated on the secondary vertical axis, are shown in Figures
8.31–8.34. Positive correlations are apparent between the RSM and ADS-values for Network
Resilience, Resilience Index and Mixed Surrogate. Flow Entropy produces a strange effect where
ADSU and ADSF increase initially with increasing Flow Entropy, then drop again, and then
finally rise. The Mixed Surrogate also demonstrates an initial period of rapid ADS increase
with increasing Mixed Surrogate, which is followed by long flat plateaus of ADS values.
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Figure 8.29: Comparison of RSMs: ADSU vs Cost for the BLACK benchmark.
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Figure 8.30: Comparison of RSMs: ADSF vs Cost for the BLACK benchmark.
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Figure 8.31: Resilience Index versus ADSU (Uncertainty) and ADSF (Pipe Failure) for the
FOSS benchmark, with average demand satisfaction ratio on secondary axis.
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Figure 8.32: Network Resilience versus ADSU (Uncertainty) and ADSF (Pipe Failure) for the
FOSS benchmark, with average demand satisfaction ratio on secondary axis.
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Figure 8.33: Flow Entropy versus ADSU (Uncertainty) and ADSF (Pipe Failure) for the FOSS
benchmark, with average demand satisfaction ratio on secondary axis.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.3 0.4 0.5 0.6 0.7 0.8 0.9

Mixed Surrogate

C
o
st
 i
n
 M

il
li
o
n
s 
o
f 
€

0.9

0.92

0.94

0.96

0.98

1

A
v
er
ag
e 
D
em

an
d
 S
at
is
fa
ct
io
n

MS vs Cost

MS vs ADSU

MS vs ADSF

Figure 8.34: Mixed surrogate versus ADSU (Uncertainty) and ADSF (Pipe Failure) for the
FOSS benchmark, with average demand satisfaction ratio on secondary axis.
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The RSMs are compared directly in cost-ADSU space for FOSS in Figure 8.35. Only Resilience
Index and Network Resilience were able to produce solutions along the Pareto-front. The
Mixed Surrogate forms a disjoint secondary front, and Flow Entropy provides a badly dominated
tertiary front. The RSMs are compared in cost-ADSF-space for FOSS in Figure 8.36. Resilience
Index is relegated to the lower regions of ADSF-space, being outperformed by Network Resilience
and Mixed Surrogate, which together make up most of the Pareto-front, particularly in the high
ADSF regions. Flow Entropy is again entirely dominated in this objective space.

8.3.7 PESCARA Reliability Analysis

The reliability analysis results of the four RSMs for the PESC benchmark are shown in Table
8.13. The Mixed Surrogate method obtained the highest average ADSU and ADSF-values of
0.9980 and 0.7946, respectively. Only Flow Entropy was unable to locate a solution with the
maximum ADSU of 1.0. Network Resilience found the solution with the maximum ADSF-value
of 0.9484. The solution of highest cost-benefit in terms of ADSU (7.84×10−7) was located by
Resilience Index, while the solution of highest cost-benefit in terms of ADSF (4.72×10−7) was
located by the Network Resilience.

The regression analysis for PESC showed a statistically significant relationship between all RSMs
and their ADS counterparts, with Significance F-values less than 0.05. The Mixed Surrogate
measure demonstrated the highest R2-values of 0.7244 with respect to ADSU, and 0.9283 with
respect to ADSF. The lowest Significance F-value for ADSU was generated by Resilience Index,
and the lowest value for ADSF by the Mixed Surrogate.

The additional performance results are shown in Table 8.14. As usual, the Mixed Surrogate
located the most solutions, at 132, and Network Resilience located the fewest solutions, at 63.
The Mixed Surrogate produced the solutions with the highest average cost of 3.44×106, while
Resilience Index produced the solutions with the lowest average cost of 1.64×106. The Mixed
Surrogate used the largest average number of pipes of 87.48, while Resilience Index once again
used the fewest, with an average of 69.73 pipes. Flow entropy demonstrated the lowest average

RSM Avg ADSU Mx ADSU Mx ADSU/Cst R2 ADSU Signif F

Resilience Index 0.9915 1 7.84×10−7 0.7226 6.88×10−21

Network Resilience 0.9968 1 6.83×10−7 0.2811 1.27×10−4

Flow Entropy 0.9598 0.9869 5.31×10−7 0.4883 8.04×10−13

Mixed Surrogate 0.9980 1 5.97×10−7 0.7244 1.05×10−20

RSM Avg ADSF Mx ADSF Mx ADSF/Cst R2 ADSF Signif F

Resilience Index 0.3940 0.7877 2.86×10−7 0.7263 2.37×10−25

Network Resilience 0.7048 0.9484 4.72×10−7 0.6974 1.78×10−17

Flow Entropy 0.7592 0.8604 3.94×10−7 0.7400 3.14×10−24

Mixed Surrogate 0.7946 0.9250 3.92×10−7 0.9283 3.03×10−76

Table 8.13: Reliability comparisons of RSMs using ADS measures for the PESC benchmark.

RSM Count Avg Cost Avg Pipes Avg SDD Avg SQDD Avg SRCDM

Resilience Index 86 1.64×106 69.73 13 881 2 598 462 0.3870
Network Resilience 63 2.02×106 81.46 12 246 2 354 400 0.3032
Flow Entropy 79 2.33×106 86.70 10 617 1 680 560 0.3508
Mixed Surrogate 132 3.44×106 87.48 15 235 3 312 947 0.3079

Table 8.14: Result comparisons of RSMs using WDS features for the PESC benchmark.
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Figure 8.35: Comparison of RSMs: ADSU vs Cost for the FOSS benchmark.
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Figure 8.36: Comparison of RSMs: ADSF vs Cost for the FOSS benchmark.
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Figure 8.37: Resilience Index versus ADSU (Uncertainty) and ADSF (Pipe Failure) for the
PESC benchmark, with average demand satisfaction ratio on secondary axis.
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Figure 8.38: Network Resilience versus ADSU (Uncertainty) and ADSF (Pipe Failure) for the
PESC benchmark, with average demand satisfaction ratio on secondary axis.
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Figure 8.39: Flow Entropy versus ADSU (Uncertainty) and ADSF (Pipe Failure) for the PESC
benchmark, with average demand satisfaction ratio on secondary axis.
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Figure 8.40: Mixed surrogate versus ADSU (Uncertainty) and ADSF (Pipe Failure) for the
PESC benchmark, with average demand satisfaction ratio on secondary axis.
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SDD and SQDD-values of 10 617 and 1 680 560, respectively. Network Resilience obtained the
best SSDM value of 0.3032, compared to the worst value of 0.3870 obtained by Resilience Index.

Graphs of the PESC attainment fronts for the various RSMs, along with their corresponding
ADSU and ADSF values indicated on the secondary vertical axis, are shown in Figures 8.37–
8.40. A definite positive correlation between the RSM and ADS-values is visible for each RSM.
Once of the most notable oddities is that Resilience Index produces many solutions of low ADSF
(less than 0.4) while the other RSMs rarely produce solutions with ADSF values below 0.6.

The RSMs are compared directly in cost-ADSU-space for PESC in Figure 8.41. For the first
time the RSMs are split into four almost disjoint fronts, with Reliability Index forming the full
Pareto-front, Network Resilience forming the secondary Front, Mixed Surrogate the tertiary
front, and finally Flow Entropy forming a badly dominated front. The RSMs are compared in
cost-ADSF-space for PESC in Figure 8.42. The situation is very different, with Reliability Index
showing the worst ADSF attainment. Network Resilience located most of the Pareto-front. The
Mixed Surrogate formed a secondary front, although finding some non-dominated solutions in
the region of ADSF around 0.9.

8.3.8 MODENA Reliability Analysis

The reliability analysis results of the four RSMs for the MOD benchmark are shown in Table
8.15. The Mixed Surrogate obtained the highest average ADSU and ADSF-values of 0.9992 and
0.9109, respectively. Only Flow Entropy was unable to locate solutions having the maximum
ADSU of 1.0. Network Resilience uniquely located the solution of maximum ADSF-value,
namely 0.9900. The solution of highest cost-benefit in terms of ADSU (4.155×10−7) and the
solution of highest cost-benefit in terms of ADSF (3.175×10−7) were both located by the Flow
Entropy method.

The regression analysis for MOD indicated that there is a statistically significant relationship
between all RSMs and their ADS counterparts, except for Flow Entropy versus ADSF, which
had a Significance F-value greater than 0.05. The Network Resilience measure demonstrated
the highest R2-values of 0.8075 with respect to ADSU, and 0.8155 with respect to ADSF. The
lowest Significance F-values were also generated by the Network Resilience RSM.

The additional performance results appear in Table 8.16. The Mixed Surrogate confirmed its
title of solution finder by finding the largest number of solutions, at 145, while Flow Entropy
uncovered the fewest, at 51. The Mixed Surrogate produced the solutions with the highest
average cost of 4.54×106, while Flow Entropy produced the solutions with the lowest average
cost of 2.59×106. The Mixed Surrogate used the largest average of 307.02 pipes, while Flow
Entropy used the fewest, at an average of 284.52 pipes. Flow entropy demonstrated the lowest
average SDD and SQDD-values of 17 400 and 1 995 984, respectively. The Mixed Surrogate
obtained the best SSDM-value of 0.2610, compared to the worst value of 0.6612 achieved by
Resilience Index.

Graphs of the MOD attainment fronts for the various RSMs, along with their corresponding
ADSU and ADSF-values indicated on the secondary vertical axis, may be found in Figures
8.43–8.46. The RSM-ADS curves are less well defined than for some of the other benchmarks,
but there is a definite positive correlation between all RSM and ADS values.

The RSMs are compared directly in cost-ADSU-space for MOD in Figure 8.47. A now familiar
pattern is repeated, with Resilience Index and Network Resilience forming the uppermost region
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Figure 8.41: Comparison of RSMs: ADSU vs Cost for the PESC benchmark.
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Figure 8.42: Comparison of RSMs: ADSF vs Cost for the PESC benchmark.
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Figure 8.43: Resilience Index versus ADSU (Uncertainty) and ADSF (Pipe Failure) for the
MOD benchmark, with average demand satisfaction ratio on secondary axis.
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Figure 8.44: Network Resilience versus ADSU (Uncertainty) and ADSF (Pipe Failure) for the
MOD benchmark, with average demand satisfaction ratio on secondary axis.
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Figure 8.45: Flow Entropy versus ADSU (Uncertainty) and ADSF (Pipe Failure) for the MOD
benchmark, with average demand satisfaction ratio on secondary axis.
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Figure 8.46: Mixed surrogate versus ADSU (Uncertainty) and ADSF (Pipe Failure) for the
MOD benchmark, with average demand satisfaction ratio on secondary axis.
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RSM Avg ADSU Mx ADSU Mx ADSU/Cst R2 ADSU Signif F

Resilience Index 0.9984 1 3.944×10−7 0.7596 2.53×10−13

Network Resilience 0.9977 1 3.766×10−7 0.8075 4.51×10−18

Flow Entropy 0.9718 0.9834 4.155×10−7 0.2169 5.73×10−4

Mixed Surrogate 0.9992 1 3.190×10−7 0.5636 2.00×10−16

RSM Avg ADSF Mx ADSF Mx ADSF/Cst R2 ADSF Signif F

Resilience Index 0.6847 0.9397 2.589×10−7 0.6673 5.01×10−14

Network Resilience 0.7038 0.9900 2.669×10−7 0.8155 5.07×10−27

Flow Entropy 0.6987 0.9336 3.175×10−7 0.0641 7.31×10−2

Mixed Surrogate 0.9109 0.9799 2.773×10−7 0.1456 2.18×10−6

Table 8.15: Reliability comparisons of RSMs using ADS measures for the MOD benchmark.

RSM Count Avg Cost Avg Pipes Avg SDD Avg SQDD Avg SSDM

Resilience Index 54 3.42×106 285.29 28 805 4 582 062 0.6612
Network Resilience 71 3.06×106 290.05 21 848 2 986 668 0.6126
Flow Entropy 51 2.59×106 284.52 17 400 1 995 984 0.4905
Mixed Surrogate 145 4.54×106 307.02 27 037 3 812 980 0.2610

Table 8.16: Result comparisons of RSMs using WDS features for the MOD benchmark.

of the Pareto-front. The Mixed Surrogate forms a secondary front. Although Flow Entropy
lags behind, it uniquely locates solutions along the global Pareto-front in the lower ADSU
regions, including the solution of highest ADSU/Cost. The RSMs are compared in cost-ADSF-
space for MOD in Figure 8.48. The uppermost region of ADSF (above 0.8) is dominated
by Network Resilience and the Mixed Surrogate. Below ADSF-values of 0.84, Flow Entropy
dominates completely, including finding the solution of highest ADSF/Cost. The attainment
set of Resilience Index is completely dominated.

8.3.9 Summary of Reliability Analysis Results

A summary of the results of the preceding reliability analyses is shown in Table 8.17. The
average ADSU and ADSF-values have been computed across all eight benchmarks, as well as
the standard deviations thereof. Similarly, the average and standard deviations of R2-values
for ADSU and ADSF are provided. A count of the number of statistically significant positive
correlations is also provided (Signif+ Cnt). The general solution characteristics are further
summarized in Table 8.18, where the following metrics are provided: the average normalised
solution count (AN Cnt)5; the average normalised cost (AN Cst)6; the average normalised
number of pipes (AN Pipes)7; and similarly normalized forms for SDD (AN SDD), SQDD (AN
SQDD) and average SSDM (Avg SSDM). Furthermore, the average ADSU versus the average
ADSF values for each of the RMSs is plotted in Figure 8.49, while the average ADSU R2-values
versus the average ADSF R2-values for each RSM are plotted in Figure 8.50.

From Table 8.17 it is clear that the Mixed Surrogate RSM provides the best average ADSU
and ADSF-values of 0.9912 and 0.8499, respectively, across the eight benchmarks, although
Resilience Index and Network Resilience are in close competition. The Mixed Surrogate also
provides the smallest standard deviation for ADSU-values, namely 0.0104. This comes at the
cost of lower correlation coefficients (R2-values) of 0.7707 for ADSU and 0.5583 for ADSF,

5This is normalised by the largest number of solutions generated for a benchmark.
6This is normalised by the highest average cost for each benchmark.
7Where this is again normalised by the maximum average number of pipes for each benchmark.
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Figure 8.47: Comparison of RSMs: ADSU vs Cost for the MOD benchmark.
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RSM Avg ADSU SD ADSU Avg R2 ADSU SD R2 ADSU Signif+ Cnt

Resilience Index 0.9893 0.0106 0.8265 0.1006 8
Network Resilience 0.9894 0.0112 0.8119 0.2214 8
Flow Entropy 0.9657 0.0297 0.6054 0.3579 7
Mixed Surrogate 0.9912 0.0104 0.7707 0.1433 8

RSM Avg ADSF SD ADSF Avg R2 ADSF SD R2 ADSF Signif+ Cnt

Resilience Index 0.7146 0.2392 0.7539 0.0918 8
Network Resilience 0.7945 0.1391 0.8190 0.1108 8
Flow Entropy 0.7921 0.1807 0.5199 0.3749 6
Mixed Surrogate 0.8499 0.1533 0.5583 0.3438 8

Table 8.17: RSM summary comparison using ADS measures.

RSM AN Cnt AN Cst AN Pipes AN SDD AN SQDD Avg SSDM

Resilience Index 0.4872 0.7324 0.8857 0.9327 0.8549 0.9305
Network Resilience 0.4790 0.7342 0.9704 0.7338 0.5770 0.8476
Flow Entropy 0.3494 0.6885 0.9848 0.7938 0.6636 0.8828
Mixed Surrogate 1 1 0.9958 0.9684 0.9383 0.6890

Table 8.18: RSM summary comparison using network characteristics.

respectively, indicating that the Mixed Surrogate measure might be less predictive of ADS
values than either the Resilience Index or Network Resilience measures. Although the Resilience
Index has the highest average R2-value with respect to ADSU of 0.8265, the Network Resilience
measure is not far behind with a value of 0.8119. Both of these values are greater than 0.8,
indicating a strong correlation between the RSMs and ADS-values. Resilience Index has the
lowest standard deviation for R2 ADSU of 0.1006. Network Resilience is the RSM with the
largest average R2-value with respect to ADSF of 0.8190, compared to that of 0.7539 achieved by
Resilience Index. Network Resilience also comes in second position with regards to ADSF with
an average of 0.7945, demonstrates the lowest SD ADSF of 0.1391, and has a very low standard
deviation for R2 ADSF of 0.1108 (close to the best value of 0.0918 achieved by Resilience
Index). This places it in the strongest position with regards to being a predictor for pipe failure
reliability. This may be confirmed visually in Figures 8.49 and 8.50. If one considers that
performance coordinates with the smallest Euclidean distance to the ideal point (1, 1) on each
graph are superior, then the Mixed Surrogate and Network Resilience are the best for the two
different criteria, ADS and R2-values. Flow Entropy can easily be disqualified from consideration
as a practical RSM due to its relatively worse performance characteristics and failure to show
a statistically significant positive correlation with ADS-values in several instances.

Considering the additional performance metrics in Table 8.18, the Mixed Surrogate measure
locates more than double the number of solutions than the other RSMs, but these solutions
are, on average, substantially more expensive (the solutions produced by Network Resilience
achieve a cost of 73.42% the cost of those generated by the Mixed Surrogate, on average), and
it produces the worst average normalised SDD and SQDD-values of all the RSMs. Network Re-
silience employs fewer pipes on average (97.04% of the maximum number, compared to 99.58%
for the Mixed Surrogate), and outperforms all other RSMs convincingly in terms of average
normalised SDD and SQDD-metrics. In particular, the relatively low SQDD-value of 0.5770
indicates that Network Resilience is much better than the other methods at avoiding large di-
ameter differences. This makes it the most practical RSM in terms of real-world engineering.
The Resilience Index generally produced solutions comprising far fewer pipes (88.57% of the
maximum), which translates to reduced pathway redundancy and lower pipe failure reliabil-
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ity. Network Resilience comes in second place after the Mixed Surrogate in terms of average
SSDM, beating Flow Entropy which is expected to perform the best here since it intrinsically
rewards balanced distribution. Resilience Index produces the worst SSDM-values. However,
it is suggested that the number of multi-reservoir WDS cases is too few to make any general
conclusions on this matter. One vital piece of information not provided in this summary is
the dominance information in ADS-Cost space, where the general trend was that the Network
Resilience results dominated the Mixed Surrogate results for both ADSU and ADSF. For these
reasons, the author recommends Network Resilience as the RSM of choice for WDSDO, where
the maximisation of a RSM is incorporated during optimization.

8.4 Chapter Summary

In this chapter, a comparison was conducted on the WDS RSMs of Resilience Index, Network
Resilience, Flow Entropy, and the novel Mixed Surrogate measure, with respect to the eight
WDS benchmarks TRP, TLN, HANOI, NYTUN, BLACK, FOSS, PESC and MOD. Thirty
optimization runs were used to produce attainment approximation sets for each surrogate mea-
sure and each benchmark, and stochastic demand and failure reliability were calculated via
simulation for these designs, using the demand satisfaction measures ADSU and ADSF. This
analysis was performed in fulfilment of Dissertation Objective 9 in §1.3. In order to conduct this
analysis, the implementation of this optimisation model in a software library was completed in
final fulfilment of Dissertation Objective 10.

Regression analysis was used to investigate the relationship between the RSMs and their ADS
reliability equivalents. While they were often strongly correlated (R2 > 0.8) this only occurred
consistently enough for the Network Resilience RSM such that its average R2-values for ADSU
and ADSF were both larger than 0.8, suggesting the general hypothesis of a linear relationship
between the Network Resilience and the ADS measures.

It is desirable to search for WDS solutions with fewer and less severe discontinuities of size
between adjacent pipes. This was quantified by summing the pipe diameter differences at all
the nodes of a design (SDD), as well as by means of the sum of the squared diameter differences
(SQDD). On average across the eight benchmarks, Resilience Index, Network Resilience, Flow
Entropy and the Mixed Reliability measures yielded average SDD-values which were 93.27%,
73.38%, 79.38% and 96.84% of the maximum obtained for that benchmark, respectively. Having
lower SDD-values provides significantly smoother pipe gradients, which are desirable in practise,
in accordance with the objectives of reliable loops and flow uniformity set out in the derivations
of these RSMs.

Although it is difficult to make general conclusions given a sample of only eight benchmarks,
the following observations could be made:

• The Resilience Index appears to dominate the other RSMs in terms of yielding solutions
reliable under pure stochastic demand variation, which agrees intuitively with its primary
goal of maximizing excess system power, and its lack of limiting criteria.

• However, the Resilience Index performed relatively poorly in comparison to both Network
Resilience and the Mixed Surrogate when it came to pipe failure analysis, which accords
with their goal of obtaining redundancy through reliable loops.

• The Flow Entropy measure performed the worst overall, although it did yield some sur-
prises. It is advised that Flow Entropy be used for WDS design only in combination with
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Figure 8.49: ADS values for each RSM averaged across eight benchmarks.
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other RSMs.

• Network Resilience demonstrated very good performance with respect to both ADS mea-
sures, performing well under stochastic demands and pipe failure conditions, and in most
cases dominated the other RSMs in ADSF-cost-space.

• The solutions generated using Network Resilience have the desirable properties of being
less costly, on average, having greater pipe redundancy, and having superior pipe adja-
cency characteristics (lower SDD and SQDD-values), whereby large size discontinuities
are avoided. This suggests that Network Resilience may be the most practical RSM for
use in general WDS design.

Although the use of RSMs may be able to save an order of magnitude in terms of processing
speed compared to traditional stochastic probabilistic reliability quantification, it is not yet
clear whether they will provide sufficient quality of results compared to actually incorporating
stochastic demands and failure analysis into the design optimization process. Future studies
should compare the performance of RSMs to the best stochastic algorithms (such as the RNSGA-
II (Kapelan et al. 2005) which uses LHS).



246 CHAPTER 8. RELIABILITY ANALYSIS



Chapter 9

The R21 Corridor WDS – A South
African Case Study

The South African case study for this dissertation is a new WDS development project in Ekurhu-
leni (East Rand, Gauteng Province) called the R21 Corridor development area, where currently
no bulk water distribution infrastructure exists. An aerial photograph of the R21 Corridor de-
velopment area prior to the development appears in Figure 9.1. The objective of this problem is
to design the bulk infrastructure (the mains pipes) for a gravity WDS (i.e. one without pumps),
which will supply water to new residential and industrial areas, in order to minimize costs and
maximize reliability.

9.1 Introduction

The basic network layout and technical information for the R21 WDS has been supplied by
GLS Software (Pty) Ltd [103]1. There is a single reservoir whose capacity has been designed
separately and is taken as given [220]. The design guidelines for hydraulic limits and demand
scenarios are taken from the Johannesburg Water and Tshwane Municipality guidelines (includ-
ing the SANS 100090 standard for fire fighting).

The proposed system comprises 82 pipes, which makes it larger than the majority of the WDS
benchmarks in the literature [157]. It has been augmented by an additional 7 pipes to create a
practical, redundant layout, yielding a total of 89 pipes. The WDS layout is shown in Figure
9.2, with the 7 additional pipes represented as dotted lines. The pipes have been numbered from
1 to 89. Four nodes have also been identified by means of circled numbers 1 to 4. Two regions of
interest have been magnified to show detail. Region A represents a pipe connecting two nodes
which crosses a road, incurring an additional R100 000 expense. Region B represents the two
unconnected pipe sections leaving the reservoir, supplying water to two major sub-networks,
which may be isolated by the removal of the pipe in region A. If this pipe were to be removed,
no node would have more than a single independent path to the source.

1A full problem specification for the R21 Corridor benchmark is available online [199].

247
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Figure 9.1: Aerial map of the R21 Corridor development area [103].
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Figure 9.2: Pipe layout for the R21 Corridor WDS case study [103].
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9.2 Pipe Sizing Options

Since each pipe can be assigned one of 26 diameter options (see Table 9.1) or the option of
elimination, the size of the search space is 2789 ≈ 10127. The pipe option costs in Table 9.1 cite
both unit cost in South African Rands per meter pipe length, and the connection cost, which
must be applied once-off at each junction where pipes intersect, using the value of the pipe with
the largest diameter.

Diameter Cost Connection Diameter Cost Connection Diameter Cost Connection
(mm) (R/m) Cost (R) (mm) (R/m) Cost (R) (mm) (R/m) Cost (R)

127 263 31 000 530 1 684 166 000 976 3 539 387 000

145 293 36 000 574 1 832 185 000 1 074 4 564 446 000

182 374 46 000 626 2 228 207 000 1 176 5 078 511 000

227 500 59 000 675 2 346 230 000 1 366 7 599 643 000

286 714 77 000 726 2 557 254 000 1 568 9 551 798 000

322 869 89 000 777 2 687 279 000 1 773 10 634 971 000

363 1 058 103 000 828 3 060 306 000 1 970 13 426 1 153 000

428 1 353 126 000 878 3 062 332 000 2 174 14 688 1 356 000

479 1 472 146 000 929 3 335 361 000 — — —

Table 9.1: Pipe internal diameter options together with unit costs and connection costs for the
R21 Corridor WDS.

9.3 Water Demand Loading Conditions

Three types of demand nodes are considered, classified as industrial, mixed and residential, each
with different average demands and minimum head specifications. Different demand loading
conditions were considered, each employing typical expected values of the average annual daily
demand (AADD) of the different node classes (multiplied by the area of the region being serviced
by the node), and factors by which the hourly demand is multiplied. Two typical 24-hour
demand patterns with hourly factors were utilised simultaneously; one for residential zones
and another for the other zones. The peak hourly factor is the maximum of these multipliers,
typically taken as 4 for residential zones. The following demand loading scenarios are applicable:

1. A 24-step hourly time series using typical demand daily patterns for residential and in-
dustrial zones at a residential peak factor of 4 × AADD/24. The residential zone demand
multipliers are

M1 = {0.6, 0.6, 0.6, 1, 1.4, 1.8, 3, 4, 3, 2.4, 1.8, 1.6, 2, 2, 2.6, 3, 3.2, 3.2, 3.4, 2.2, 1.6, 1.4, 1, 0.6} .

The industrial and mixed zone demand multipliers are

M2 = {1, 1.2, 1.2, 1.2, 1.4, 2, 2.6, 2.8, 3, 2.8, 2.6, 2.6, 2.6, 2.6, 2.8, 3, 3, 2.4, 2, 1.2, 1, 1, 1, 1} .

2. A static flow condition (zero-flow at all demand zones) to derive the maximum nodal
pressures.

3. An industrial fire scenario using 25 ℓ/s additional water from each of 4 hydrants simulta-
neously at a peak demand factor of 2 × AADD/24. This is applied at the nodes labeled
1–4 in Figure 9.2.
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However, since no tank design is required for this system in the current problem formulation, a
designer need only employ the most extreme demand loadings during optimisation. This would
include the two mutually non-dominated periods of peak hourly demand, namely the first period
having demand multipliers of 3.2 and 3 for residential and industrial demand, respectively, and
the second period having demand multipliers of 4 and 2.8 for residential and industrial demand,
respectively. In combination with the static flow condition (maximum pressure scenario), and
the fire flow scenario under peak average day (asymmetric emergency demand scenario), this
yields a total of four demand loading conditions used in designing the R21 Corridor WDS.

9.4 Hydraulic Parameters

The various applicable hydraulic parameters appear in Table 9.2. A maximum velocity limit
of 2.7 m/s (8.8 ft/s)is used as per the recommendation in [136]. Minimum head limits of 25, 30
and 35 m are used for the residential, mixed and industrial nodes, and a maximum head limit of
90 m is applicable to all nodes. All pipes have a Darcy-Weisbach absolute roughness coefficients
of 0.025 mm.

Parameter Value Description

vmax 2.7 m/s Max pipe velocity

hmax 90 m Max head for all nodes

h1
min 25 m Min head for all residential nodes

h2
min 30 m Min head for all mixed nodes

h3
min 35 m Min head for all industrial nodes

AADD1
±12 (kℓ/ha/day) AADD residential demand

AADD2
±18 (kℓ/ha/day) AADD mixed demand

AADD3
±20 (kℓ/ha/day) AADD industrial demand

D-W 0.025 Pipe Darcy-Weisbach coefficient values

Table 9.2: Hydraulic parameter values for the R21 Corridor WDS.

9.5 Setup and Optimisation Parameters

As mentioned, an initial configuration for the R21 Corridor case study was supplied by an
engineer at GLS Software (Pty) Ltd [103] as an input to the optimisation routine, and was
included as an individual in the original population P0. This input configuration is a prelimi-
nary design (excluding the additional pipes) developed by means of the human-assisted partial
enumeration method (PEM) [99, 103]. This design has a cost of R72 100 093 and a minimum
Network Resilience of 0.507 495. However, because it was designed for less stringent pressure
limits, this solution is actually not feasible in the context of this implementation, since it expe-
riences minimum head constraint violations at seven nodes, with a maximum nodal head deficit
of 5.878 m.

The optimisation parameter values used were a population size of 128, an empirically derived
penalty factor αp = 30 156 608 915, epsilon precisions of ǫC = 500 000, and ǫR = 0.001 250, and
a hypervolume reference point of (0,2 000 000 000).
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9.6 Optimisation Trial Runs

An initial hypervolume convergence test was conducted with five optimisation runs, using a
convergence criterion of less than 0.05% improvement in hypervolume for 200 consecutive gen-
erations, considering objectives of maximising minimum Network Resilience and minimising
cost. This yielded an average time to convergence of 12.593 minutes, and produced the attain-
ment front in cost-Network Resilience space for the combined five optimisation runs (labeled
“Short Run”) that appears in Figure 9.3. An average normalised hypervolume of 0.821 along
with a standard deviation of 0.040 was achieved, showing reasonably consistent performance.

A longer set of five optimisation runs was then conducted, using a convergence criterion of less
than 0.05% improvement in hypervolume for 1 000 consecutive generations. This yielded good
improvements over the short run, in an average time to convergence of 57.733 minutes, and pro-
duced the superior attainment front (labeled “Long Run”) in Figure 9.3. An average normalised
hypervolume of 0.879 along with a standard deviation of 0.017 was achieved, demonstrating very
consistent performance.

The objective function vector of the preliminary design appears in Figure 9.3 as a cross, clearly
showing that AMALGAMSndp produces superior results in a relatively short time. It should
be emphasized again that this original design is actually infeasible for this constraint set, while
the solutions produced by AMALGAMSndp are all feasible.

Two AMALGAMSndp solutions are highlighted and marked with their minimum Network Re-
silience values. The solution with a reliability of 0.516 646 (Alternative Design 1) incurs a cost of
R60 222 900, resulting in a significant saving of R11 877 193 for a feasible design with a slightly
higher reliability than the preliminary design. The solution with a reliability of 0.745 693 (Al-
ternative Design 2) incurs a cost of R71 856 500 and is the most reliable solution found with a
cost less than that of the preliminary design, for a significant increase in Network Resilience.

These three configurations are presented for comparison in Tables 9.3–9.5, which show the pipe
internal diameter assignments. Note that pipes 83–89 are the 7 additional pipes which all have
a zero diameter in the preliminary solution (Table 9.3). In Alternative Design 1, non-zero
diameters have been assigned to additional pipes 84, 85, 86, 87 and 89, and pipes 17 and 66
have been eliminated. In Alternative Design 2, non-zero diameters have been assigned to the
same additional pipes (similar or larger diameters than in Alternative 1) and no pipes have been
eliminated. It is interesting to note that pipe 53 in region A has not been eliminated in any of
the solutions produced, despite the additional cost incurred, thus ensuring that the bulk of the
nodes have at least two independent paths to the source. Both alternative designs have larger
diameters for this pipe. Furthermore, the pipes 83 and 88 are not cost-effective enough to be
included in the solutions found in the lower Network Resilience region of the Pareto Front, but
have nonzero diameters for some of the expensive solutions of high Network Resilience.

9.7 Summary of Results

In summary, it was demonstrated that AMALGAMSndp is able to improve rapidly and sub-
stantially upon a preliminary engineered design for the R21 Corridor WDS, both in terms of
cost and reliability (a significant saving of 16.47% of the project cost (i.e. R11 877 193) was
achieved by Alternative Design 1). Furthermore, AMALGAMSndp was quickly able to find
feasible solutions. The technique of design with redundant layouts proved fruitful in providing
alternative layouts for the system. The duration of optimisation is sufficiently short for such a
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medium-sized WDS that AMALGAMSndp may easily be employed in practice.

40

60

80

100

120

140

160

180

0.4 0.5 0.6 0.7 0.8 0.9 1.0

Network Resilience

C
o
st
 i
n
 M

il
li
o
n
s 
o
f 
R
an
d
s

Preliminary Design

Short Run

Long Run

Alternative Design 1

Alternative Design 2

Preliminary Design

(0.507 495, 72 100 093)

Infeasible, max head deficit of 5.878 m

Alternative Design 1

(0.516 646, 60 222 900)

Alternative Design 2

(0.745 693, 71 856 500)

Figure 9.3: Results obtained by AMALGAMSndp for the R21 Corridor WDS case study. Ag-
gregated results from five short runs and aggregated results from five long runs [103].
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ID Diam ID Diam ID Diam ID Diam ID Diam ID Diam

1 726 16 227 31 726 46 227 61 286 76 675

2 976 17 182 32 726 47 227 62 322 77 675

3 322 18 227 33 726 48 227 63 322 78 675

4 726 19 182 34 726 49 322 64 227 79 675

5 976 20 182 35 726 50 227 65 227 80 675

6 322 21 675 36 726 51 322 66 227 81 675

7 976 22 675 37 227 52 322 67 322 82 675

8 322 23 227 38 227 53 428 68 322 83 0

9 976 24 675 39 227 54 286 69 322 84 0

10 322 25 227 40 726 55 286 70 322 85 0

11 777 26 675 41 726 56 286 71 675 86 0

12 322 27 675 42 322 57 286 72 675 87 0

13 286 28 227 43 322 58 286 73 675 88 0

14 322 29 726 44 322 59 286 74 675 89 0

15 182 30 726 45 322 60 286 75 675 - -

Table 9.3: R21 Corridor pipe diameter assignment for the preliminary design with In = 0.507 495
and C = R72 100 093.

ID Diam ID Diam ID Diam ID Diam ID Diam ID Diam

1 929 16 227 31 777 46 145 61 227 76 574

2 976 17 0 32 777 47 182 62 363 77 574

3 363 18 227 33 777 48 145 63 322 78 530

4 777 19 227 34 726 49 145 64 227 79 479

5 976 20 227 35 777 50 145 65 227 80 286

6 286 21 479 36 777 51 145 66 0 81 227

7 976 22 479 37 286 52 227 67 182 82 227

8 286 23 322 38 227 53 574 68 145 83 0

9 976 24 574 39 182 54 428 69 182 84 227

10 286 25 227 40 626 55 363 70 182 85 145

11 479 26 574 41 675 56 322 71 227 86 127

12 286 27 574 42 675 57 322 72 363 87 145

13 286 28 227 43 574 58 227 73 363 88 0

14 227 29 777 44 227 59 182 74 363 89 182

15 286 30 777 45 182 60 182 75 530 - -

Table 9.4: R21 Corridor pipe diameter assignment for Alternative Design 1, with In = 0.516 646
and C = R60 222 900.
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ID Diam ID Diam ID Diam ID Diam ID Diam ID Diam

1 878 16 363 31 878 46 182 61 227 76 574

2 976 17 286 32 878 47 145 62 363 77 574

3 363 18 363 33 878 48 145 63 363 78 574

4 878 19 286 34 777 49 145 64 227 79 530

5 976 20 227 35 777 50 145 65 227 80 286

6 286 21 479 36 878 51 145 66 227 81 286

7 976 22 479 37 286 52 227 67 227 82 227

8 286 23 322 38 227 53 626 68 227 83 0

9 976 24 574 39 227 54 428 69 227 84 363

10 286 25 286 40 878 55 479 70 286 85 145

11 878 26 574 41 777 56 363 71 322 86 127

12 286 27 574 42 675 57 286 72 363 87 182

13 530 28 227 43 777 58 322 73 428 88 0

14 286 29 777 44 286 59 227 74 428 89 227

15 286 30 878 45 182 60 227 75 530 - -

Table 9.5: R21 Corridor pipe diameter assignment for Alternative Design 2, with In = 0.745 693
and C = R71 856 500.
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Chapter 10

Conclusion

This dissertation was concerned with the topic of multi-objective water distribution systems
design optimisation using metaheuristics towards the objectives of minimizing cost and max-
imizing surrogate reliability. The primary problem examined was that of cost-effective pipe
diameter specification for WDSs, allowing some scope for layout modification, in order to sat-
isfy the expected consumer demands within the required pressure limits. An overview of the
dissertation contents and the conclusions of the study are presented in this chapter. A presen-
tation of the main dissertation contributions is also provided, followed by an appraisal of these
contributions.

10.1 Dissertation Summary

A brief introduction to the topic of WDS design was provided in Chapter 1, establishing the
context for multi-objective WDS design optimization by means of metaheuristics and providing
a motivation for the study. The objectives of the dissertation were outlined in §1.3. These
objectives were fulfilled in the ensuing chapters. The first chapter concluded with an outline of
the organisation of material contained in the dissertation.

The second chapter contained a review of the required fluid mechanics theory for WDS analysis,
including preliminary hydraulics concepts in §2.1 (such as pressure, flow, the control volume
approach, hydraulic continuity and energy equations, pipe hydraulics, head loss, flow in simple
networks, and transient analysis), and the topic of hydraulic systems theory in §2.2, discussing
the various methodologies for conducting hydraulic simulation by solving the nonlinear system of
hydraulic equations (e.g. the Hardy Cross method, the Gradient Algorithm, the Linear Theory
Method, and pressure driven analysis). These hydraulic systems simulation methods were then
compared, and WDS model calibration and implementation were discussed. The public domain
hydraulic simulator EPANET2 was selected as the software used for this study. This chapter
was included in fulfilment of Dissertation Objective 1.

Chapter 3 constituted a broad discussion of the WDS design optimization problem. It began in
§3.1 by considering the WDSDO model application — whereby a model is developed, calibrated,
and alternative designs are tested as part of an optimisation exercise — and introducing various
techniques that are applicable in this context. The WDS benchmarks to be analyzed in this
dissertation were also introduced here. An overview of the applicable optimisation methods was
presented next in §3.2, including exact methods, heuristics, metaheuristics and hyperheuristics;
and the optimization-simulation framework for WDSDO was illustrated. A generic mathemat-
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ical formulation of the WDS design problem in terms of least-cost optimisation was given in
§3.3, catering for the design of all standard WDS components and allowing for constraints on
hydraulic performance. Thereafter a discussion of practical design considerations for WDSs fol-
lowed in §3.5, including the existence of uncertainty in water demands and infrastructure costs,
the necessity of over-designing a WDS, the inclusion of running costs and staged development
in the problem formulation, the requirement of extended period analysis for pump schedule
and tank design, designing for fire-flows, leakage, pipe failures, and the enforcement of reliable
loops for redundancy in the network. These initial sections were provided in partial fulfilment
of Dissertation Objective 2.

A concise history of the WDSDO problem was provided in §3.6, detailing the development
of the problem from early simple computer models using dynamic and linear programming,
to advanced multi-objective design paradigms and metaheuristics such as MOEAs. An in-
depth survey of single-objective optimisation methods used previously for solving the least-cost
WDSDO problem was included in §3.7. The methods used for least-cost optimisation were
discussed in some detail, and included Partial Enumeration, Linear and Nonlinear Programming,
Simulated Annealing, Tabu Search, Genetic Algorithms, Ant Colony Optimisation, Shuffled
Complex Evolution, Particle Swarm Optimisation, and the Shuffled Frog Leaping Algorithm.
However, it was noted that the least-cost design paradigm has been invalidated by experts in
the field, due to the lack of robustness of the resulting designs, and that there has been a
paradigm shift to the requirement of achieving some acceptable trade-off between system costs
and benefits. These final two sections of the chapter fulfil Dissertation Objective 3(a).

In Chapter 4, some essential topics regarding WDSDO were discussed and the stage was set
with respect to the consideration of WDS design objectives other than cost minimisation. The
main goal in this chapter was to review a number of topics required in the development of
a realistic multi-objective WDSDO model, which may be used to design systems which have
benefits in excess of the minimum required. The chapter opened with a discussion of the
numerous sources of uncertainty in WDSs (§4.1), including water demands, pipe roughnesses,
boundary conditions such as reservoir levels, and revealing the necessity for designing with
these factors in mind. The difficult problem of demand estimation was the topic of §4.2, which
opened with a discussion of the standard water balance, as documented by the International
Water Association [131], whereby all the inputs and outputs for a WDS must be accounted
for. In §4.2.1 the assignment of baseline demands was presented, whereby mean demands
are assigned to WDS nodes for different land-use types (either based on water usage records
for an existing system, or using government water-use guidelines, such as the South African
CSIR Red Book [44], and municipal guidelines (e.g. the Johannesburg Water and Tshwane
Metropolitan Municipality guidelines [103]). The essential topic of temporal demand variation
was considered in §4.2.2, which deals with the application of typical daily or weekly patterns,
or seasonal demand variation, for different land-use types. This allows one to estimate peak
demands and design time-dependent WDS components or operational policies (such as tank
location and sizing, and pump scheduling). Fire-flow analysis was discussed next in §4.2.3.
Here various international and South African standards for incorporating fire-flows into WDS
design were presented, and an automated procedure for fire-flow analysis was proposed. The
consideration of emergency demands was described briefly in §4.2.4. This was followed by
a description of how to accommodate handling of demand uncertainty (§4.2.5) and correlated
demands (§4.2.6). This section details the techniques that have been used in the literature, such
as the independent stochastic sampling of nodal demands from a normal distribution (Kapelan
et al. [141]), or using an integration method with safety factors (Babayan et al. [16]). These
methods are flawed in that they ignore the temporal correlation of demands, which may be
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remedied by inducing a rank correlation on the demand samples, using for example the method
of Iman and Conover [128]. Finally, the demand estimation section was concluded in §4.2.7
with a discussion of the difficulty of projecting future demands. It was suggested that several
population growth scenarios be considered, or that models incorporating estimated future land
use and population growth be used.

The topic of WDS reliability estimation was examined in some detail in §4.3, focusing primarily
on probabilistic reliability (which is the probability that hydraulic requirements are met under
a range of demand conditions and failure events) and reliability surrogate measures (which are
designed to have a positive correlation with probabilistic reliability). Probabilistic models were
presented in §4.3.1. The analytical probabilistic models investigated included the MVFOSM
and FORM models used by Xu and Goulter [267, 268] and the integration-based method of
Babayan et al. [16]. The Monte-Carlo based model developed by Kapelan et al. [141] was
also discussed, which uses sampling reduction techniques such as LHS. The conclusion was
made that a reduced sampling methodology combined with an evolutionary algorithm (with
distributed sampling across generations) may the be best way of approaching the incorporation
of probabilistic reliability. The issue of demand satisfaction was highlighted as a critical issue,
since we may still be interested in the degree of failure of an infeasible system. ADS measures
were introduced, namely ADSU for uncertain demands and ADSF for pipe failure analysis. The
calculation of these values requires pressure driven analysis, or the unique use of a DDA model.
Reliability surrogate measures were dealt with in §4.3.2. The RSMs included the Resilience
Index of Todini [227], Network Resilience by Prasad and Park [194] (both of which focus on
excess hydraulic power, the latter including a uniformity factor to promote reliable loops),
Flow Entropy by Tanyimboh and Templeman [225] (which maximizes pipe flow uniformity),
and a novel mixed surrogate measure that combines the Resilience Index and Flow Entropy.
Graph theoretic methods of reliability quantification were also mentioned briefly in §4.3.3, but
were dismissed for general use on the grounds that they involve solving NP-hard combinatorial
optimisation problems.

Pipe layout design was discussed in §4.4, whereby redundant layouts are provided along with the
capability to eliminate pipes during the course of optimization. Several additional topics were
considered in §4.5, including the inclusion of running and maintenance costs in the objective
function, tank and pump design, designing for maximal water quality and leakage abatement,
uncertainty in pipe characteristics, valve design and transient analysis. Section 4.5 constitutes
material for possible future work. The material in Chapter 4 was included in final fulfilment of
Dissertation Objective 2, and in partial fulfilment of Dissertation Objectives 3(b) and 5.

Chapter 5 is a self-contained introduction to the topic of multi-objective optimisation, with a
focus on MOEAs. The chapter opened with a discussion of key MOO topics in §5.1, defin-
ing Pareto-optimality and Pareto-approximation sets, and highlighting classical techniques to-
wards MOO, and current generation techniques which employ Pareto-based fitness assignment
schemes. A concise history of the multi-objective WDSDO was provided in §5.2, detailing
notable developments in the field over the last decade. Highlights of this included: the devel-
opment of the structured messy genetic algorithm for WDS design by Halhal et al. [116], the
investigation of various MOEAs (such as NSGA-II [61] and SPEA-II [277]) towards WDSDO
by numerous researchers [86, 87, 88, 182, 194, 266], the adaptation of existing MOEAs to cater
for the specific needs of WDSDO such as the RNSGA-II algorithm by Kapelan et al. [141],
and the very successful application of other modern algorithms such as EDAs [185] and hybrid
algorithms which combine evolutionary optimization techniques with machine learning [68] (i.e.
ParEGO and LEMMO).

A generic multi-objective formulation of the WDSDO problem was presented in §5.3, with the
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primary goals of cost minimisation, reliability maximisation, and penalty function minimisation
(where this is a function of constraint violations, including nodal pressure head limits and veloc-
ity limits); although it incorporates the same constraints as the least-cost formulation in (3.1),
scope was provided for additional design variables, objectives and constraints. A number of for-
mative concepts in population-based metaheuristics were reviewed in §5.4, illustrated using the
algorithms NSGA-II and SPEA-II. These concepts included: Pareto-based fitness assignment
strategies such as Pareto-rank and raw fitness (§5.4.1), diversity preservation mechanisms such
as crowding distance and k-th nearest neighbour (§5.4.2), parental and environmental selection
schemes, employing elitism and other forms of population management (§5.4.3), constraint han-
dling by means of the penalty term method and the constrained domination method (§5.4.4), a
wide range of variational operators and solution encoding techniques (§5.4.5); population sizing
methodologies (§5.4.6), epsilon-domination and grid-based optimisation schemes (§5.4.7), and
adaptive population sizing techniques (§5.4.8). Performance evaluation for MOAs was discussed
next in §5.5, advising on how one might compare Pareto-approximation sets produced by differ-
ent algorithms in multi-objective space. The topic of convergence to a stable population using
change in hypervolume was suggested in §5.5.1. Algorithmic parameter tuning was discussed
in §5.5.2. A general strategy for algorithmic comparison in the multi-objective metaheuristic
domain was developed in §5.5.3, using the idea of convergence trials, followed by full time trials
to assess the two performance criteria of speed and solution quality. Finally, solution quality as-
sessment was detailed in §5.5.4, where the Pareto-compliant performance metrics of dominance
rank and hypervolume were introduced, as well as the novel spread metric of ǫ-archive size.

Suitable classes of population-based metaheuristics for WDSDO were reviewed in §5.6–§5.8,
and all of the algorithms analysed in this dissertation were described in detail. In particular,
three MOEAs were described and their algorithms were presented in pseudocode form, namely
NSGA-II (§5.6.1), SPEA-II (§5.6.2), and DE (§5.6.3). Alternative population-based metaheuris-
tics were also discussed and presented in pseudocode form, including a novel greedy algorithm
(GREEDY) in §5.7.1 (GREEDY was developed by combining several heuristic design techniques
from the literature in order to mimic the design strategy of a human engineer, which enables the
algorithm to function as an effective local search), a Multi-objective Particle Swarm Optimisa-
tion algorithm in §5.7.2, an EDA called the Univariate Marginal Distribution (UMD) algorithm
and a novel variant called the Partitioned UMD in §5.7.3, the Dynamic Multi-objective Evo-
lutionary algorithm and a new version adapted for WDSDO called ADMOEA in §5.7.4, and a
novel self-adaptive evolutionary algorithm called ANIMA in §5.7.5.

Finally, the evolutionary hyperheuristic AMALGAM, developed in 2007 by Vrugt and Robin-
son [244], was presented in §5.8. AMALGAM allows for the simultaneous incorporation of
multiple metaheuristics within a generic evolutionary framework, in the hope of improving
performance and efficiency by adopting the philosophy of strength in diversity. Remarkably,
the effectiveness of this strategy was shown by Vrugt and Robinson on a benchmark suite of
continuous multi-objective optimisation problems. Owing to shortcomings in the original for-
mulation, several variants of AMALGAM were developed for this dissertation, namely AMAL-
GAMS, which uses the SPEA-II framework, TAMALGAM, which incorporates sub-algorithm
running times into the offspring partitioning formula, AMALGAMI and AMALGAMJ, which
both use different metrics to quantify algorithm success in the offspring partitioning formula.
Chapter 5 was presented to address Dissertation Objective 4 and partially fulfil Dissertation
Objectives 3(b), 5 and 7.

At the heart of this dissertation are Chapters 6–9. In these chapters twenty-three metaheuristics
are compared with respect to WDSDO, reliability analysis is conducted in order to compare the
suitability of four reliability surrogate measures, and the most successful algorithm is applied



10.1. DISSERTATION SUMMARY 261

in a real South African case study.

Chapter 6 concerned the implementation of multi-objective WDSDO for this dissertation, pre-
senting the overall testing strategy, followed by the WDS benchmark descriptions and WDSDO
problem formulations for each, and finally providing technical details with respect to global
MOO concerns and specific algorithmic implementation details. A four-phase testing strategy
was detailed in §6.1. The first phase of testing entailed the comparative testing of algorithmic
performance towards WDSDO for the twenty-three metaheuristics on nine WDS benchmarks
from the literature. This involves thirty convergence time trials for each algorithm-benchmark
combination, followed by full trials with thirty optimisation runs using the 90th percentile of
the average convergence time limits.

The second phase is a comparison of two constraint handling methods for the first eight bench-
marks, excluding EXNET. The metaheuristics compared in Phases 1 and 2 included AD-
MOEA, AMALGAMndp, AMALGAMndu, AMALGAMndug, AMALGAMIndp, AMALGAMIndu,
AMALGAMIndug, AMALGAMSndp, AMALGAMSndu, ANIMA, DE, GREEDY, NSGA-II, PSO,
PUMDA, SPEA-II, TAMALGAMndp, TAMALGAMndu, TAMALGAMndug, TAMALGAMJndp,
TAMALGAMJndu, TAMALGAMJndug, and UMDA.

Phase 3 of testing involved the comparison of four RSMs with each other and with respect
to probabilistic and failure reliability in terms of their ability to yield designs that are robust
against water demand variation and pipe failure. As far as the author is aware, this was also the
first systematic study involving a number of WDS benchmarks in which regression analysis is
used to compare surrogate reliability measures with estimates of probabilistic reliability derived
via simulation. Phase 4 of testing is the South African developmental case study, namely the R21
Corridor WDS, where a PEM engineered design requiring human intervention was compared
to design using the AMALGAM hyperheuristic. The technical specifications of the nine WDS
benchmarks from the literature followed in §6.2, also including a discussion of the WDSDO
model adaptations required to implement each successfully. The WDS benchmarks described
were the Two Reservoir Problem (TRP) in §6.2.1, the Two Loop Network (TLN) in §6.2.2,
the New York Tunnel System (NYTUN) in §6.2.3, the Hanoi Network (HANOI) in §6.2.4, the
Blacksburg Network (BLACK) in §6.2.5, the Fossolo Network (FOSS) in §6.2.6, the Pescara
Network (PESC) in §6.2.7, the Modena Network (MOD) in §6.2.8, and the Exeter System
(EXNET) in §6.2.9. The global optimisation parameter values used were discussed in §6.3.1, as
well as the individual parameter values used for the individual metaheuristics and benchmarks
in §6.3.2–§6.3.5. Finally, some important programming considerations were mentioned in §6.3.6.
The contents of this chapter completed fulfilment of Dissertation Objective 5, and set the ground
work for satisfying Dissertation Objectives 6–10 by detailing the experimental setup and forms
of analysis, the WDS benchmarks, and the various optimisation parameters used.

In Chapter 7 the results from the first two phases of testing were presented. The algorithmic
performance analysis of Phase 1 was divided into different sections for the eight WDS bench-
marks TRP, TLN, NYTUN, HANOI, BLACK, FOSS, PESCA, and MOD (7.1.1–7.1.8). Thirty
hypervolume convergence time trials (using convergence criteria of less than 0.05% change in hy-
pervolume for 200 consecutive generations) were conducted for each algorithm-benchmark pair
in order to compare algorithmic efficiency. Thirty fair time trials were then used to conduct
the optimisation (with time limits computed using the 90th percentile of average convergence
times) in order to compare the solution quality produced by the various algorithms. The results
for the first eight benchmarks were summarised in §7.1.9. The following general observations
were made regarding the convergence trials:

• The fastest algorithm in terms of convergence was ADMOEA, also achieving acceptable
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hypervolume performance. However, it fared relatively poorly in terms of dominance
rank and standard deviations of all metrics, indicating that it is one of the less stable
algorithms.

• Other non-dominated algorithms in terms of convergence time and average hypervolume
were AMALGAMndp, AMALGAMIndp, and AMALGAMndu, with the latter producing
the highest average normalized hypervolume in a convergence time 0.8218 of the global
average.

• The algorithm with the best dominance performance was TAMALGAMndu with lowest
dominance rank and standard deviation for dominance rank, along with fairly decent
hypervolume performance in an average normalised time 0.8754 of the global average.

• Given its excellent dominance and stable performance, TAMALGAMndu was suggested as
the preferred algorithm for time-critical WDSDO amongst those tested.

• The slowest running algorithm was SPEA-II, with a normalised convergence time 1.7043
of the global average. However, it exhibited one of the most stable performances.

The following general observations were made regarding the full-length time trials, excluding
EXNET:

• The top four performing algorithms in the full-length time trials were NSGA-II, TAMAL-
GAMndu, TAMALGAMJndu and AMALGAMSndp, and were mutually non-dominated
with respect to each other for the various performance metrics.

• NSGA-II was the top performing algorithm in terms of average dominance rank with a
value of 1.1.

• TAMALGAMndu achieved the best average position rank value of 5.125 and the lowest
standard deviation for NHV of 0.26.

• The best algorithm in terms of average NHV was AMALGAMSndp with a value of 0.9512.

• The GREEDY algorithm exhibited the worst performance overall, with an average domi-
nance rank of 410.64. This demonstrates that despite its functioning as a powerful local
search, a GREEDY algorithm which mimics engineering judgement cannot compete with
modern metaheuristics, which employ advanced (intelligent) strategies in order to uncover
better solutions with less computational effort.

• The PUMDA outperformed the UMDA on average, although neither fared well compared
to the MOEAs. This is probably due to the fact that they lack innovation, only exploiting
the solution building blocks in the original population. However, when hybridized with
MOEAs, overall performance was improved.

The four best algorithms from the full time trials were executed for the very large EXNET
benchmark for thirty 5.4-hour runs. AMALGAMSndp proved the best algorithm overall, finding
a much broader section of the Pareto-front than the other algorithms, although it was outper-
formed in the high Network Resilience region by TAMALGAMndu, and failed to locate Pareto-
optimal solutions of very high Network Resilience. In conclusion, AMALGAMSndp would seem
to be the best algorithm at providing a broad range of solutions for difficult WDSDO problems,
and TAMALGAMndu appears to be one of the best choices for efficient, consistent performance,
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and achieving solutions of high reliability. Sub-algorithm analysis was conducted in §7.1.11
for two variants of the basic AMALGAM, namely AMALGAMndu and AMALGAMndug, in or-
der to demonstrate a fundamental shortcoming of the basic formulation. The variant including
GREEDY as a sub-algorithm exhibited a premature convergence phenomenon, caused by excess
rewarding of GREEDY performance, which over-emphasizes finding local optima. The basic
AMALGAM formulation is unable to discriminate between mild improvements, as delivered by
GREEDY, and more significant ones generated by other metaheuristics. The results from the
Phase 2 constraint technique comparison in §7.2 indicated that both the penalty term method
and the constrained domination technique are viable options for general usage. Both alterna-
tives are able to locate very similar Pareto-fronts along the region of highest benefit-cost, and
the constrained domination technique may be the method of choice due to its generality and
lack of requirement of user-parameters. The results of Chapter 7 were presented in fulfilment
of Dissertation Objectives 6, 7 and 8. Finally, in order to conduct this analysis, the implemen-
tation of this optimisation model in a software library was completed, in partial fulfilment of
Dissertation Objective 10.

In Phase 3 of the analysis, which appears as Chapter 8, the four WDS reliability surrogate
measures Resilience Index, Network Resilience, Flow Entropy, and the novel Mixed Surrogate
measure, were compared in terms of their ability to yield designs which are robust with respect
to probabilistic reliability (obtained via simulation using uncertain nodal demands, as described
in §8.1) and failure reliability (measured by simulating all single-pipe failures, as described in
§8.2). An analysis was conducted for the eight WDS benchmarks TRP, TLN, HANOI, NY-
TUN, BLACK, FOSS, PESC and MOD. An iterative demand adaptation method was used in
conjunction with DDA (employing EPANET) to calculate demand deficits (method outlined in
§8.3). Thirty optimisation runs were used to produce attainment approximation sets for each
RSM, and stochastic demand and failure reliability were quantified via simulation for these de-
signs, using the demand satisfaction measures, ADS under uncertainty (ADSU) and ADS under
pipe failure (ADSF). Regression analysis was also used to investigate the relationship between
the RSMs and their ADS reliability equivalents. While they were often strongly correlated
(R2 > 0.8) this only occurred consistently enough for the Network Resilience RSM, since its
average R2 values for ADSU and ADSF were both larger than 0.8, at the very least indicating
a very strong positive correlation, and potentially warranting the general hypothesis of a linear
relationship between the NR and the ADS measures. Part of the investigation was to deter-
mine whether there was any physical effect of the different RSMs on the resulting designs. For
example, it is desirable to search for WDS solutions with fewer and less severe discontinuities
of size between adjacent pipes, so this was tested. Pipe size discontinuity was quantified by
summing the pipe diameter differences at all the nodes of a design (sum of diameter differences
— SDD), as well as the sum of the squared diameter differences (SQDD). On average across
the eight benchmarks, Resilience Index, Network Resilience, Flow Entropy and the Mixed Re-
liability measures yielded average SDD values which were 93.27%, 73.38%, 79.38% and 96.84%
of the maximum obtained for that benchmark, respectively. Therefore, Network Resilience pro-
duced the designs with the least extreme discontinuities, providing significantly smoother pipe
gradients on average, which is desirable in practise. This accords with the objectives of reliable
loops and flow uniformity set out in the derivations of these RSMs. Although it is difficult to
make general conclusions from this analysis involving such a small number of benchmarks, the
following general observations could be made:

• The Resilience Index seems to dominate the other RSMs in terms of yielding solutions
reliable under pure stochastic demand variation, which agrees intuitively with its primary
goal of maximizing excess system power, and its freedom from other constraining criteria.
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• However, the Resilience Index performed relatively poorly in comparison to both Network
Resilience and the Mixed Surrogate when it came to pipe failure analysis, which accords
with their goal of obtaining redundancy through reliable loops.

• The Flow Entropy measure performed the worst overall. It is advised that Flow Entropy
be used for WDS design only in combination with other RSMs.

• Although no clear ‘best measure’ was identified, Network Resilience demonstrated excel-
lent performance with respect to both ADSU and ADSF, and in most cases dominated
the other RSMs in ADSF-Cost space.

• The solutions generated using Network Resilience have the desirable property of being
less costly on average and have superior pipe adjacency characteristics, whereby large
size discontinuities are avoided. This suggests that Network Resilience may be the most
practical RSM of the four tested for use in general WDS design.

Although the use of RSMs may be able to save an order of magnitude in terms of processing
speed compared to traditional stochastic probabilistic reliability quantification, which requires
Monte Carlo simulation or analytical gymnastics, it is not yet clear whether they will provide
sufficient quality of results compared to actually incorporating stochastic demands and failure
analysis into the design optimisation process. The contents of Chapter 8 was in fulfilment of
Dissertation Objective 9. In order to conduct this analysis, the implementation of this optimi-
sation model in a software library was completed in final fulfilment of Dissertation Objective
10.

In Chapter 9, a the design of real South African case study (the R21 Corridor WDS) was
optimised using AMALGAMSndp and Network Resilience, and it was found that it is able to
improve rapidly and significantly upon a preliminary engineered design (a significant saving of
R11 877 193 (16.47% of the project cost) was achieved by Alternative Design 1). AMALGAMSndp

was rapidly able to locate feasible solutions, and the technique of design with redundant layouts
proved fruitful in providing alternative layouts for the system. The duration of optimisation is
sufficiently short for such a medium-sized WDS, showing that AMALGAMSndp may easily be
employed in practice. In conclusion, AMALGAMSndp has been demonstrated to be a powerful
optimisation paradigm in the solution of a real-world engineering design problem within the
domain of discrete optimisation problems.

10.2 Contributions of this Dissertation

An attempt is made in this section to clarify the contributions made in this dissertation towards
the field of WDSDO.

10.2.1 Major Contributions

Major contributions are listed in this section, judged in terms of their potential positive impact
on the WDSDO community.

Contribution 1 The fair MOO algorithm comparison methodology of §5.5.3.

The fair MOO algorithm comparison methodology of §5.5.3 was developed for this dissertation
as a suggested improvement on the traditional algorithmic comparative strategies for MOO.
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One is interested in comparing algorithmic performances in a fair manner, but there are two
major components of performance, namely speed and solution quality. The philosophy of fair
time trials was adopted, whereby algorithms should be given an equivalent time period in which
to find the best results possible. However, this time period should not be assigned arbitrarily
(as is often done in the literature), and this method also fails to address the relative efficiencies
of the algorithms being compared. One solution to both of these problems is the hypervolume
convergence trial technique of §5.5.1, which defines convergence as the event that the percentage
improvement in the approximation set falls below a specified threshold for a required number
of consecutive generations (0.05% change in hypervolume for 200 consecutive generations was
used in this dissertation). Numerous convergence trials were conducted for each algorithm-
benchmark pair in order to derive average convergence times for each (which could then be
used to compare relative algorithmic efficiencies). The 90th percentile of average convergence
times was then used as the time limit in full time-trials with equivalent time allotments, such
that the Pareto-approximation solution quality could be compared.

Contribution 2 The GREEDY algorithm in §5.7.1.

A greedy WDS design algorithm was developed by the author for specific use in this dissertation,
and it was called the WDS Greedy algorithm (abbreviated as GREEDY). It was adapted from
four prior WDS design heuristics, namely those of Keedwell and Khu [142], Afshar et al. [4],
Todini [227], and Saldarriga et al. [205]. It employs these heuristics as well as several practical
adjustment steps to improve solution performance based on engineering judgement, similar
to those strategies that might be used by an engineer during the course of a manual design
procedure. It is greedy in the sense that it conducts a neighborhood search in which the best
improvement step is followed for each of the different heuristic rules. Owing to its greedy nature,
there is a danger that the search may become trapped at local optima, which was demonstrated
to be the case in the comparative analysis, with GREEDY coming in last position of the
twenty-three algorithms analyzed across eight WDS benchmarks. Thus, it was demonstrated
that an algorithm which mimics engineering judgement cannot compete with state-of-the-art
metaheuristics.

Contribution 3 The first application of the AMALGAM hyperheuristic towards WDS design,
and the development and testing of improved variants of AMALGAM.

The AMALGAM evolutionary hyperheuristic was described in §5.8. This generic evolutionary
meta-algorithmic framework, which incorporates a number of sub-algorithms in the solution
of a MOO problem, was developed by Vrugt and Robinson [244]. AMALGAM attempts to
produce a faster, more reliable search by dividing the creation of offspring amongst the sub-
algorithms in proportion to the success of these sub-algorithms during previous generations.
The philosophy behind this approach is that the strengths of different metaheuristics may be
exploited dynamically. This dissertation constitutes the first successful application of AMAL-
GAM to the multi-objective WDSDO problem. AMALGAM and its variants fared very well in
the comparative algorithmic analysis of Chapter 7.

Various shortcomings were identified in the original AMALGAM formulation, particularly in
situations where a sub-algorithm locates many successful offspring of only marginally improved
fitness (as was demonstrated for AMALGAMndug in §7.1.11). Alternative formulations for
AMALGAM were devised for this dissertation. The first variant was AMALGAMS, which uses
the SPEA-II environmental selection strategy instead of that of NSGA-II. This variant demon-
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strated excellent performance, particularly in the implementation AMALGAMSndp, which was
identified as the best algorithm for obtaining a broad selection of solutions for very large /
difficult WDSDO problems. The TAMALGAM variant was developed in order to reward sub-
algorithm efficiency, by including the sub-algorithm running time in the offspring partitioning
formula. This variant proved extremely successful, particularly in the TAMALGAMndu imple-
mentation, which achieved excellent efficiency and dominance. The AMALGAMI and AMAL-
GAMJ variants were developed in an attempt to find more intelligent offspring partitioning
scheme using solution dominance rankings, and discounting the importance of the number of
solutions generated, respectively. The TAMALGAMJndu variant appeared as one of the top
four performing algorithms in the comparative analysis. The intended effect of preventing
sub-algorithms from generating many low-quality successes was demonstrated clearly, since all
variants outperformed the original AMALGAMndug implementation during the full-length time
trials as reported on in Chapter 7.

Contribution 4 The largest comparative study of metaheuristics for multi-objective WDSDO
in Chapter 7.

As far as the author is aware, the content of Chapter 7 in this dissertation constitutes the largest
single study of its kind, comparing the largest number of multi-objective metaheuristics towards
the bi-objective design optimization of the largest number of WDS benchmarks. The twenty-
three alternative algorithms — including fourteen different implementations of AMALGAM,
four novel algorithms developed for this study (ADMOEA, ANIMA, GREEDY and PUMDA),
and five metaheuristics from the literature (NSGA-II, SPEA-II, PSO, DE and UMDA) — were
compared with respect to the design of nine WDS benchmarks (TRP, TLN, NYTUN, HANOI,
BLACK, FOSS, PESC and MOD). The best four algorithms in the full-length fair time-trials
were identified as NSGA-II, TAMALGAMJndu, TAMALGAMndu and AMALGAMSndp, which
were mutually non-dominated in terms of average dominance rank, standard deviation of hy-
pervolume, average rank and standard deviation of dominance rank, and average hypervolume,
respectively.

These four algorithms were then compared with respect to the very large EXNET benchmark,
requiring over a month of computing time. It was found that AMALGAMSndp convincingly
outperformed all other algorithms in terms of averages and standard deviations of dominance
rank and hypervolume. In terms of attainment, TAMALGAMndu was able to locate better so-
lutions in the high reliability region of the Pareto-front. It was suggested that AMALGAMSndp

is the algorithm of choice amongst those tested for large / difficult WDSDO problems.

Contribution 5 The first systematic comparison of four RSMs using reliability and failure
analysis in Chapter 8.

As far as the author is aware, this dissertation contains the first study comparing more than
two RSMs in terms of their ability to generate designs that are robust under uncertain demands
and pipe failure reliability, using regression analysis to determine the correlation between the
RSMs and ADS measures of reliability. The four RSMs compared were the Resilience Index,
the Network Resilience, Flow Entropy, and the Mixed Surrogate, with respect to eight WDS
benchmarks. It was found that the Resilience Index exhibited the highest correlation with
respect to ADSU on average, and that Network Resilience achieved the highest correlation
with respect to ADSF on average. Flow Entropy was deemed to be an unreliable indicator
of reliability, except in conjunction with other RSMs, such as in the Mixed Surrogate, which
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produced expensive solutions of the highest ADS, but having the worst pipe size discontinuities.
The Resilience Index RSM produced solutions with fewer pipes (less redundancy) and larger
pipe size discontinuities. The Network Resilience RSM produced cost-effective solutions with the
smallest pipe discontinuities, sufficient pipes for redundancy, and the best overall correlation
with ADS measures; and was therefore recommended as the most practical RSM of those
considered here for WDSDO.

Contribution 6 A real-world South African developmental case study comparing a computer-
assisted human-engineered design to AMALGAMS generated solutions.

A real-world developmental case study, called the R21 Corridor WDS, was conducted using
AMALGAMSndp for bi-objective design with objectives of cost minimisation and Network Re-
silience maximisation. AMALGAMSndp was shown to improve substantially upon a preliminary
engineered design for the R21 Corridor WDS, both in terms of cost and reliability (a signifi-
cant saving of 16.47% of the project cost was achieved by Alternative Design 1). Furthermore,
AMALGAMSndp was rapidly able to find feasible solutions, and exhibited an acceptable run-
ning time, which warrants its use in practice. The technique of design with redundant layouts
was also demonstrated to be effective.

10.2.2 Secondary Contributions

Miscellaneous secondary contributions are listed in this section.

1) An in-depth literature survey of WDSDO.

Given the immense body of literature regarding WDSDO, a comprehensive survey of the field
would fill an entire book on its own. However, an in-depth survey was made of single- and
multi-objective WDS design optimisation, summarising what the author believes are the most
critical contributions by the research community towards this complex and rapidly developing
field. This survey spans Chapters 3, 4 and 5, providing a history of WDSDO, covering numerous
attempts at single- and multi-objective problem formulation, the relevant associated optimisa-
tion algorithms, and numerous advanced topics in WDS design. This literature survey provides
a much needed update to such resources as Mays [169] and Walski et al. [251].

2) The suggestion of an automated fireflow analysis procedure combining deterministic and
stochastic analysis in §4.2.3.

A procedure was suggested for incorporating fireflow analysis at some of the most critical sections
of a WDS, also including a stochastic component to uncover unexpected weaknesses in the
system. Such a fireflow analysis scheme stands in contrast to industry practice, where typically
only a few critical scenarios are considered, or the system is massively over-designed at great
expense to account for all possible fire scenarios (an especially notable phenomenon in the USA).
This procedure has yet to be tested.

3) The Mixed RSM described in §4.3.2.

A Mixed RSM combining the Resilience Index of Todini [227] with the Flow Entropy measure
of Tanyimboh and Templeman [225] was suggested as potentially being a more practical repre-
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sentation of real-world reliability requirements. This measure has the advantage of addressing
uniformity of flow and pathway redundancy by means of Flow Entropy, and excess nodal power
by means of the Resilience Index. While the Mixed Surrogate yielded solutions of higher ADS,
these solutions were substantially more expensive than those produced using the other RSMs,
and the correlation between the Mixed Surrogate and ADS metrics was also lower.

4) A new tank design optimization model in §4.5.2.

A detailed model for incorporating tank design into WDSDO using the penalty term method
for constraint handling was suggested, based on similar models by Vamvakeridou-Lyroudia et
al. [238] and Prasad and Tanyimboh [195]. This model incorporates the goals of cyclic recharge,
sufficient emergency storage, and stagnation / overflow avoidance. The model also allows for
easy integration into the existing MOO WDSDO framework described in §5.3.

5) A generic mathematical formulation of the multi-objective WDSDO problem in §5.3.

A very general formulation of the multi-objective WDSDO problem was provided in (5.1),
catering for both discrete and continuous design variables corresponding to the heterogenous
components of a WDS, the objective functions for cost minimisation, reliability maximisation
and penalty function minimisation (which caters for soft constraints on hydraulic performance),
as well as numerous alternative objectives and constraints. This formulation is perfectly geared
towards MOEAs, and combines similar formulations from several different sources [16, 87, 141].

6) The formulation of a normalised penalty function for the accommodation of hydraulic per-
formance goals in §5.4.4.

A normalised penalty function (5.2) was developed to penalise hydraulic performance constraint
violations (maximum pipe velocity violations, as well as maximum and minimum head violations
at the nodes), normalised by the size of the feasible range of each constraint. This formulation
makes specifications of weighting coefficients easier by removing order disparities between dif-
ferent constraints and it also enables more meaningful aggregation of minimum and maximum
constraint violations. Such a penalty term may be used directly as an indication of feasibility,
since it is zero when all velocity and head values are in their feasible ranges.

7) A novel mutation operator for evolutionary optimisation algorithms based on the triangular
distribution in §5.4.5.

A novel mutation operator based on the triangular distribution was developed for real and
integer coded genes in order to address the need for general purpose variational operators within
the WDSDO context. Triangular mutation was found to be superior to polynomial mutation
for pipe size allocation, and was consequently used throughout this dissertation.

8) The metaheuristic population sizing methodology of §5.4.6.

A population sizing methodology was developed primarily to ensure that populations are large
enough to contain sufficient solution building blocks (schemata). This method uses the technique
of Harik and Lobo [119] in the parameterless GA, whereby a race of populations is conducted
using populations whose sizes are doubled, until such time as the larger population fails to
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outperform the smaller one over an equivalent time period. This smaller size is then taken as
the preferred size. Because this size varied from trial to trial, stochastic sizing was repeated
ten times for each algorithm-benchmark pair in order to find the most prominent size, which
was then indicated as the ‘optimal’ size for that algorithm-benchmark pair. Once this had been
completed for all algorithms, the largest ‘optimal’ size within every algorithm group was applied
to the entire group. Having MOO algorithms produce similarly sized Pareto-approximation sets
has many advantages (including leveling the playing field in terms of algorithmic complexity and
allowing for fair comparison of solution set quality metrics). Relative algorithmic efficiencies
may still be compared by means of conducting hypervolume convergence trials.

9) The ǫ-archive size quality metric in §5.5.4.

The ǫ-archive size of final approximation sets was suggested as a non-Pareto-compliant measure
of solution spread / diversity. Each output approximation set is inserted into an ǫ-archive of
identical precision. This archive size is equivalent to the number of evenly spaced ǫ-dominance
hypergrid cells containing solutions. If two algorithms consistently converge to a common front
(e.g. they both have similar dominance ranks), but one algorithm has a larger ǫ-archive, then its
solutions cover more of the Pareto-front and are consequently better distributed. The ǫ-archive
size provides a dimensionless comparison of relative spread, but should only be considered in
conjunction with Pareto-compliant performance measures (e.g. dominance rank or hypervol-
ume).

10) The Partitioned UMD algorithm in §5.7.3.

A variant of the UMDA, called the Partitioned UMDA (and abbreviated as PUMDA), was
developed by the author in §5.7.3, whereby the objective space is re-partitioned along the
reliability axis during each generation. The size of each partition is generated independently
using half of the absolute value of a normal distribution sample with a mean of zero and a
standard deviation equal to one third of the reliability range (rmin, rmax), sampled iteratively
until the full range is partitioned. For each sub-range of the reliability range, all the solutions
that fall within that partition are then employed to generate a UMD probability model for that
partition. In order to generate new solutions, a partition is selected at random and its UMD
model sampled to produce offspring. This allows the algorithm to focus on different parts of the
solution space, corresponding to different design paradigms, but by redefining the partitions,
also allows for the mixing of these paradigms. PUMDA was found to outperform the UMDA
overall. PUMDA also formed one of the sub-algorithms in the most successful AMALGAM
implementation, namely AMALGAMSndp.

11) The ADMOEA algorithm in §5.7.4.

An algorithm was developed for this dissertation based on the original DMOEA [271], using
an identical cellular grid model for the cellular rank and density information, but differing in
terms of the population growth and decline strategies. This algorithm, called Another DMOEA
(and abbreviated as ADMOEA) incorporates a number of advanced features, including a growth
strategy whereby a number of new solutions are generated as a function of the grid-size and the
current Pareto-set size, three different search mechanisms and a probability vector to control
mechanism selection (updated during each generation depending on each mechanism’s success
rate), a solution age that is incremented during each generation (under the condition that
solutions may not be removed from the population before they reach a certain age, which
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allows them sufficient time to propagate their genes), a population decline strategy that selects
solutions for removal on the basis of their age, cellular rank and density, a regeneration strategy
that recreates the entire population using PUMDA once limited improvement has occurred for
fifty generations, an external epsilon archive to hold Pareto-optimal solutions (updated before
each regeneration), and compression and growth mechanisms to alter the dimensions of the
hypergrid in order to zoom in on the important region of the objective space, or to accommodate
new solutions outside of the current grid dimensions. Although the ADMOEA proved to be the
fastest algorithm in terms of convergence, it was significantly less stable than the other MOEAs
(exhibiting the worst average standard deviation of hypervolume) and was outperformed by ten
of the twenty-three metaheuristics during the full time-trials.

l2) The self-adaptive ANIMA MOEA in §5.7.5.

The novel algorithm ANIMA, a self-adaptive MOEA based on the NSGA-II framework, was
developed for this dissertation. It employs two different search mechanisms, namely the SBX
crossover operator with triangular mutation, and a differential evolution operator. ANIMA
encodes the variation operator parameters along with the solution genes, effectively making
each solution an agent carrying both the search instructions and the solution information.
These parameter values are generated randomly initially, but are passed on to newly created
offspring by their parent solutions. ANIMA proved more successful on average than ADMOEA,
but was still outperformed by eight of the twenty-three metaheuristics during the full time-trials,
showing less stable performance than several non-adaptive methods.

13) A comparison of two constraint handling techniques for WDSDO in §7.2.

Two constraint handling techniques were compared towards WDSDO, namely the penalty func-
tion method and the constrained domination method. Neither method consistently outper-
formed the other, with the constrained domination method performing poorly for the HANOI
benchmark, and outperforming the penalty function method for the FOSS benchmark. It is
suggested that the penalty function method may be more flexible, since it is able to allow
for the mixing of feasible and infeasible solutions for greater variation, while the constrained
domination method is more generally applicable since it has the advantage of not requiring
user-specified parameters.

14) The development of a demand adaptation method towards PDA using a DDA model in
§8.1.

In order to address the need for PDA, a demand adaptation method was developed using a
traditional DDA model, whereby nodal demands are lowered or increased in accordance with
an iterative procedure, depending on whether the pressure at the particular node is below
the minimum required or not. This method was used to quantify the demand deficit for a
network under extreme demands or pipe failure conditions, in order to calculate the ADS during
reliability analysis.

15) The definition of several novel metrics to describe WDS composition.

In addition to the ADS metrics, and basic metadata such as average cost and number of pipes,
several metrics were developed to describe WDS composition, in order to compare solutions
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produced by the RSMs. The first such metric was the summed diameter differences (SDD),
whereby all pipes adjacent to each node are checked and their diameter differences added to
the total. A similar metric was defined as the sum of the squared diameter differences (SQDD),
whereby the squared differences of adjacent pipes are added, in order to further penalize large
discontinuities. These metrics provide an indication of the smoothness of physical pipe size
gradients, since fewer discontinuities would indicate a more rational, balanced system, consisting
of more redundant pathways of high reliability. The third metric was the source share deviation
from the mean (SSDM), which considers the proportion of water supply provided by each
reservoir, calculates the mean share, and sums the share deviations from the mean, in order
to quantify how balanced the supply from the sources is, so as to determine whether or not a
system is overly dependant on a single source.

10.3 An Appraisal of the Contributions of this Dissertation

This dissertation constitutes an investigation into the effectiveness of numerous metaheuristics
and design strategies with respect to water distribution systems design optimisation. A large
number of metaheuristics and hyperheuristics, including both novel algorithms and variations
on well-known existing algorithms, were considered in this dissertation, in order to further
the knowledge in the field of WDSDO. The common design paradigm of bi-objective WDSDO
(focussing on pipe sizing and network layout), with the objectives of cost minimisation and reli-
ability maximisation, was adopted to maximise the general applicability of this study. As far as
this author is aware, a WDSDO study of this magnitude and carefully considered experimental
strategy has not been conducted before. This dissertation may serve the purpose of providing
a novel WDSDO framework for the rational investigation of algorithmic efficiency and solution
quality that future algorithmic comparison studies might consider adopting or improving upon.

The algorithms to be compared were selected on the basis of representing several different
metaheuristic design paradigms (including traditional MOEAs, auto-adapting MOEAs, local-
search heuristics, EDAs, heuristics derived from nature, and hyperheuristics). The top ten
performing algorithms applied in the full time-trials with respect to the first eight benchmarks
included NSGA-II, seven variants of AMALGAM [244] (an evolutionary hyperheuristic which
employs multiple sub-algorithms in a dynamic fashion, applied for the first time to WDSDO
in this study), SPEA-II and ANIMA. Attempts to develop state-of-the-art algorithms which
consistently outperform conventional multi-objective evolutionary algorithms (such as NSGA-
II and SPEA-II) were, however, unsuccessful. Compelling evidence was nevertheless provided
that advanced algorithms may be superior for the design of very large or complex WDSs. In
particular, one variant of the AMALGAM hyperheuristic design paradigm employing multiple
metaheuristics simultaneously (namely, AMALGAMSndp) convincingly outperformed the com-
mon “industry standard” NSGA-II algorithm on the design of a large WDS benchmark. This
impressive performance boost provides the research community with a new design strategy
for difficult problems, and contributes to state-of-the-art in design theory for WDSDO. Apart
from numerous AMALGAM variants, many of which improved upon the original AMALGAM
formulation, several novel algorithms were developed and investigated in this study, including
ADMOEA, ANIMA, GREEDY and PUMDA. This research provides fresh insights into some
alternative design paradigms, and reveals the difficulty of developing stable adaptive algorithms
for WDSDO.

Furthermore, several metaheuristics have been excluded as serious contenders for use in gen-
eral WDSDO, including naive multi-objective particle swarm optimization, the UMDA and
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PUMDA algorithms (at least under the proposed population assignment strategy — alterna-
tive automated strategies should be investigated), as well as algorithms based solely on greedy
search heuristic techniques. Whereas the EDAs showed much promise as sub-components within
a broader optimisation framework, it was demonstrated that greedy search techniques may ac-
tually impede performance when used as part of a broader strategy (e.g. as a local search
component, or within a hyperheuristic). It is recommended that greedy searches for WDSDO
only be used in combination with a tabu search method or a machine learning algorithm. This
is an important finding for the WDSDO community, since there is considerable interest in the
literature in improving algorithmic efficiency by means of local-search methods, but not enough
emphasis on the dangers of premature convergence, particularly for larger networks. It is hoped
that these investigations may serve as a discouragement to other researchers with respect to
following the same routes of investigation, or that it may encourage them to develop algorithms
that keep these limitations in mind. A technical note on the results of this comparative analysis
was well received by the reviewers, and published as

• Raad DN, Sinske A & Van Vuuren JH, 2010. Multiobjective optimisation for water
distribution system design using a hyperheuristic, Journal of Water Resources Planning
and Management, 136(5), 592–596.

A novel reliability study was conducted on four WDS reliability surrogate measures with the
aim of comparing their effectiveness at designing networks reliable under uncertain demands
and pipe failure scenarios. This is the first time that a practical, multifaceted framework for
testing the effectiveness of reliability surrogate measures has been developed and implemented.
This constitutes an important contribution to the field, where such investigations have hitherto
only been applied in a very narrow, limited fashion. Investigating the correlation between
RSMs and stochastic estimates of reliability has not been carried out before. It is essential
that RSMs be subjected to such rigorous scientific analysis in order to evaluate their real-
world practicality. The Network Resilience measure [194] was identified as the best candidate
for real-world design, since it demonstrates high correlation with both stochastic and failure
reliability, and yields solutions of superior robustness under failure, having lower average cost,
and exhibiting the smallest adjacent pipe-size discontinuities. This is a very useful result for
researchers and WDS engineers alike, but further investigation may be required into potential
dangers of using Network Resilience instead of a more intensive form of analysis, such as Monte
Carlo simulation. The results of this analysis were used to produce an article, published as

• Raad DN, Sinske A & Van Vuuren JH, 2010. Comparison of four reliability surrogate
measures for water distribution systems design, Water Resources Research, 46, Paper
W05524 (no page numbers).

Another important contribution was the comparison of two constraint handling techniques,
which revealed that neither consistently outperformed the other, but that the penalty method
is more flexible, while the constrained domination method [190] is more general. Since these two
techniques are interchangeable, the engineer might easily opt for either depending on preference,
or consider trying both during the course of a WDSDO exercise.

An in-depth literature survey was conducted with respect to WDSDO, addressing the need
to update some of the older surveys in the literature, particularly with respect to MOO in
a WDSDO context. A generic mathematical model was formulated for multi-objective WDS
design, and a normalized penalty function for hydraulic performance goals was also developed,
which may be useful for researchers.
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During the course of work towards this dissertation, several novel techniques and metrics were
developed, including a novel mutation operator based on the triangular distribution, the sug-
gestion of the ǫ-archive size quality metric, the development of a population sizing methodology
for comparative analysis based on the parameterless GA [119], the design of a fair algorithmic
comparison technique using convergence trials and equal time-trials, the definition of the Mixed
Surrogate RSM, and the development of novel metrics for describing performance (ADSU and
ADSF) and desirable WDS structure (SDD, SQDD,SSDM). These techniques expand the de-
sign and analysis toolkit of WDS design engineers. Evaluating results using such metrics will
empower the WDS community to make better decisions with regards to their choice of relia-
bility surrogate measures and final design selection. A particularly useful development for the
WDS engineering community was the demand-adaptation procedure for conducting PDA with
a DDA hydraulic engine. While this is not ideal in terms of efficiency, it provides a pragmatic
work-around in the interim for reliability analysis, while PDA is not yet an industry standard.

Some WDS design models were developed but not tested, including an automated fireflow
analysis procedure combining deterministic and stochastic analysis, and the development of a
new tank design optimization model with a normalised penalty function formulation addressing
the need for tank performance constraints. Despite not being tested here, these are deemed
practical enhancements to a WDSDO strategy.

Finally, a real-world South African WDSDO case study, called the R21 Corridor, was con-
ducted. In this study the results from an AMALGAMS design procedure were compared to a
computer-assisted human-engineered design. Significant cost savings (R11 877 193, equating to
16.47% of the project cost) and reliability improvements were obtained using the AMALGAMS
method within a realistic time-frame. This further demonstrates the power and practicality of
hyperheuristics in a WDSDO setting and was published as

• Raad DN, Sinske A & Van Vuuren JH, 2009. Robust multi-objective optimization for
water distribution system design using a meta-meta-heuristic. International Transactions
in Operational Research, 16(5), 595–626,

for which the Operations Research Society of South Africa awarded the prestigious Tom Rozwad-
owski medal in 2010.
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Chapter 11

Future Work

During the process of compiling this dissertation, several opportunities for further research
were identified by the author. This chapter contains several brief proposals for further research
in WDSDO. These proposals include expanding the WDSDO model, investigating alternative
metaheuristics towards WDSDO, the further investigation of RSMs and robust design method-
ologies, the standardisation of certain WDSDO objectives and performance metrics in order to
facilitate a database of WDS case studies and associated MOO results, enhancements to the
AMALGAM hyperheuristic and the novel algorithms developed in this dissertation (ANIMA,
ADMOEA), and a study of specific measures designed to accelerate WDSDO.

Proposal 1 Expanding the WDSDO model: Additional objectives, design variables,

features and analysis types.

There are numerous ways in which the WDSDO model may be extended to match the require-
ments of real-world WDS design more closely. The WDSDO model may be extended to include
additional objectives such as 1) water quality maximisation, 2) water age minimisation, 3) leak-
age minimisation, 4) pumping cost minimisation, 5) pipe replacement cost minimisation, and
6) the minimisation of nodal pressure deviations from goal pressures. New soft constraints may
also be incorporated, such as minimum peak-flow cleaning velocities for pipes and tank perfor-
mance constraints. The hydraulic simulation model may be adapted to incorporate some form
of critical transient analysis. The MOO WDSDO formulation may additionally be extended
to incorporate design over time. All algorithms would have to be re-evaluated in order to de-
termine whether they are capable of successfully handling design in higher-dimensional spaces.
The challenge lies in capturing the most essential design functionality without unnecessarily
complicating the optimisation. An large-scale industry survey would help with this decision.

The WDS benchmarks analysed in this dissertation did not include the design of tanks, valves
or pumps, a common requirement in the industry. The software library may be extended to
include these design variables relatively easily using the models provided in Chapter 4 and the
modelling capabilities of EPANET. Most of the algorithms analysed are capable of handling
both discrete and continuous variables, with the exception of GREEDY.

Another enhancement may be the development of a decision support system with a graphic user
interface to allow for ease of use, or the incorporation of the best optimisation routines into
an existing commercial software package. The facility of GIS analysis to determine maximal
practical layouts and excavation costs for WDSDO would also be extremely useful.

275
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The automated fire-flow analysis procedure of §4.2.3 has yet to be tested, particularly in respect
of industry regulations and specifications. The inclusion of economic costs due to estimated fire
damage in the objective function may also be considered.

In order to be more representative of reality, failure analysis may be conducted on the basis of
actual pipe failure probabilities as a function of pipe diameters (derived from empirical data)
[112]. The estimated cost of pipe replacement over the system lifespan may also be included in
the cost objective function.

Although WDSDO analysis carries a heavy computational burden, many more WDS bench-
marks should be used in a large-scale study of algorithmic performance, in order to enable more
general conclusions. This is particularly true for additional large systems such as EXNET. It
would be extremely useful if there were an initiative from the WDS engineering community to
make such designs readily available in a common format. On a similar note, the use of pressure-
driven analysis yields many benefits over DDA, particularly in terms of quantifying the level of
demand satisfaction. There should be a determined drive from the industry to standardise on
PDA models.

Proposal 2 The investigation of alternative metaheuristics for WDSDO.

Several additional algorithms may be investigated for use in WDSDO. The following represents
a sampling of modern metaheuristics across a broad range of design paradigms:

1. State-of-the-art MOEAs, such as GDE 3 [152], the Multi-objective Fast Messy Genetic
Algorithm1 (MOFMGA) [55], the Non-dominated Sorting Cooperative Coevolutionary Ge-
netic Algorithm (NSCCGA) [130], the Improved Self-Adaptive Chaotic Genetic Algorithm
(ISACGA) [272], the Multi-objective Cellular Algorithm (MOCell) [180], the Random Di-
rections Multiple Objective Genetic Local Searcher (RD-MOGLS) algorithm [137], and the
Fast Pareto Genetic Algorithm (FastPGA) [82],

2. modern EDAs, such as the Multi-objective Real-coded Bayesian Optimisation Algorithm
(MORBOA) [7], and the Eigenspace Estimation of Distribution Algorithm (EEDA) [245],

3. other nature inspired meta-heuristics, such as the Efficient Multi-objective Particle Swarm
Optimisation Algorithm (EMOPSO) [36], multi-objective ant colony optimisation algo-
rithms [275], the Memetic Algorithm with Population Management (MA—PM) [196], the
Immune Forgetting Multiobjective Optimization Algorithm (IFMOA) [273], and a multi-
dimensional version of the Honey Bee Mating Optimisation Algorithm [174],

4. hybrid algorithms which combine evolutionary optimisation with machine learning tech-
niques, such as the Pareto Efficient Global Optimisation Algorithm1 (ParEGO) [147],
the Learnable Evolution Model for Multi-objective Optimisation1 (LEMMO) [68], and the
Multi-objective Tchebycheff-based Genetic Algorithm (MOTGA) [10], and finally,

5. miscellaneous advanced metaheuristics such as the Multiple Trajectory Search (MTS) [232]
the MOSS-II Tabu/Scatter Search [19], and parallel MOEAs [26].

The GREEDY algorithm of §5.7.1 may readily form the basis of a multi-objective tabu search.
The method of tabu search requires a neighbourhood function in order to move between so-
lutions, which GREEDY provides by means of its various heuristic search steps. Tabu search

1These algorithms have already been investigated in limited WDSDO studies and are included here because
they show promise and should be used in larger studies.
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combats the tendency of local searches to become trapped in local optima by storing a history
of recent solutions, thereby preventing the search from revisiting a previous state. Tabu search
might prove particularly useful as a refinement optimisation technique after other algorithms
have converged.

Proposal 3 Further investigation of reliability surrogate measures and robust optimisa-

tion strategies.

Alternatives to the RSMs analysed in this dissertation may be investigated. For variants on
the known RSMs, one might create a new measure combining Flow Entropy with Network Re-
silience, or assign different weights to the Flow Entropy factor in the existing Mixed Surrogate
measure. Furthermore, one may consider multi-objective optimisation using several RSMs si-
multaneously, such as having Network Resilience and Flow Entropy as separate objectives to
be maximized.

Alternative RSMs might be based on graph theoretic network descriptors, such as measures
which explicitly take into account the number of independent pathways between critical ver-
tices, the size of the smallest edge cut set whose removal separates critical vertices (local edge
connectivity), the number of primary loops in the network, or approximations to the minimum
cut sets (graph edge connectivity) which would render the network disjoint. Obviously, the
higher these descriptor values, the more reliable a network would be in a purely topological
sense. Determining the number of independent pathways between two vertices can be solved
efficiently using a breadth-first search. Determining local edge connectivity may be determined
efficiently using the max-flow min-cut algorithm, and the graph edge connectivity as a whole
determined by considering the minimum local edge connectivity for all pairs of vertices in the
network (which is not necessarily practical to calculate within a reasonable time-frame, exclud-
ing this as a useful measure for very large networks) [113]. Such descriptors might be useful for
rapid reliability approximation if there is a means of identifying critical nodes in the network.
This would reasonably include all the water sources, and might additionally include the node(s)
of highest demand, the node(s) at the centroid of the network, and/or the node(s) furthest from
the sources. Descriptors such as these may be used in tandem with other RSMs, rather than
forming primary reliability indicators.

In 2002, Ostfield et al. [188] developed three water distribution reliability measures, namely
the Fraction of Delivered Volume (FDV), the Fraction of Delivered Demand (FDD) and the
Fraction of Delivered Quality (FDQ) for use in MCS-based reliability studies. The FDV is the
sum of the total volumes delivered to a consumer node divided by the sum of the total volumes
requested by the consumer over all the simulation runs (i.e. it is a macroscopic form of ADS).
The FDD is the sum of all time periods in all simulation runs for which the demand supplied at a
consumer node is above the necessary demand factor, divided by the total number of simulation
runs and multiplied by a demand cycle (e.g. 24 hours). Finally, the FDQ is the sum of all time
periods in all simulation runs for which the concentration supplied at a consumer node is below
a threshold concentration factor divided by the total number of simulation runs multiplied by a
demand cycle. Naturally FDV and FDD must be maximised, while FDQ should be minimised.
These reliability measures are very general, but require Monte Carlo simulation to calculate
them, and are closer to being actual measures of reliability than surrogate measures. However,
one may consider adapting them for a reduced set of critical scenarios.

Robust design strategies might include topological feature enforcement, such as the assurance
of at least 2-connectedness for a network, the minimisation of the number of pipes that do not
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form part of at least one primary loop, or the incorporation of pipe failure analysis during the
design process.

Future studies should compare the performance of RSMs to the best stochastic algorithms, such
as the RNSGA-II (Kapelan et al. [141]), i.e. those algorithms and their implementations which
explicitly take probabilistic and failure reliability into account. These algorithms will typically
require an order of magnitude increased processing time since numerous hydraulic simulations
must be conducted. This is applicable even when a sampling reduction technique such as LHS
is used.

Proposal 4 WDSDO metric standardisation and a database of WDS case studies and

associated MOO results.

One of the most significant problems with a MOO WDSDO study of this sort is the lack of
readily available data for validation of optimisation model results. The main stumbling block to
this problem is the lack of consensus on optimisation objectives in addition to cost minimisation.
The author suggests that the WDS research community agree on several standard quantifiers of
reliability (such as Network Resilience, ADS or FDV), water quality (chlorine concentrations,
water age, FDQ), pressure health measures (percentage deviation from ideal goal pressures),
and so forth. Such an agreement will enable future design studies to employ similar objectives,
which will allow for the creation of a public domain database of WDSDO results organised per
benchmark. This approach may also require a shift away from using DDA as standard, to-
wards the more physically accurate PDA models. Furthermore, there must be some consensus
on algorithmic comparison studies, since the current experimental methods employed are often
designed arbitrarily, may be statistically unsound, or use scientifically questionable principles
(such as comparing evolutionary algorithms for an equivalent number of generations). A guide-
line should be developed which includes specifications of standard experimental procedures, such
as convergence analysis (with associated standard parameter values), and the criteria for scien-
tifically meaningful results. This might even include the use of standard benchmark algorithms,
such as NSGA-II and SPEA-II.

This analysis of standardised metrics and experimental procedures for WDSDO may be con-
ducted by an extensive literature review, and by means of polling the leading researchers in the
field. Although there are already a few online repositories of WDS benchmarks (for instance [65]
and [84]), it would be ideal if far more WDS benchmarks were made available, particularly more
large, real-world systems such as EXNET, to improve the generality of results. Such a repository
may then double as a database of optimisation results for the relevant WDS benchmarks.

Proposal 5 Further investigation of the AMALGAM, ADMOEA and ANIMA paradigms.

The AMALGAM framework might be improved in several ways, particularly in terms of the
reward function which partitions offspring amongst the sub-algorithms. Currently, the use of
a partitioning formula acts as an instantaneous assessment of sub-algorithm performance, with
a limited memory based on the historical allocations. Instead, the use of a machine learning
component (such as an artificial neural network or rule induction algorithm) for the assignment
of offspring to different sub-algorithms may yield better global success. Statistical models such
as the Hierarchical Bayesian Optimisation Algorithm [191] may also potentially be used for
the same purpose. Sub-algorithm performance may be tracked over short, medium and long
term periods, for varied offspring assignment strategies. A round-robin offspring generation
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scheme may also be considered for sub-algorithms — so that each sub-algorithm will not have
to update its internal model during each generation, which should save numerical processing
time. A dynamic population sizing methodology may also potentially be incorporated into
the AMALGAM framework. Furthermore, better formalism may be warranted in terms of
AMALGAM sub-algorithm model building.

The ADMOEA and ANIMA paradigms may be developed further, or even merged, with a
primary focus on stablising performance and finding more rational evolution strategies. It
would be particularly worthwhile to investigate whether one could create ADMOEA variants
where the speed benefits can be maintained without a reduction in solution quality.

Some ideas for future variants of AMALGAM, ADMOEA and ANIMA include:

1. A library of basic search operators, with variable search parameters, used to build search
mechanisms dynamically in true hyperheuristic form. This could potentially involve sta-
tistical models or a rule induction algorithm, such as the C4.5 algorithm of Quinlan [198],
both for operator selection and parameter assignment / adaptation.

2. The incorporation of search landscape approximation techniques, such as a Kriging (Gaus-
sian process) model [147], or a Tchebycheff scalarising function [10].

3. Allowing for competitive / cooperative evolution with sub-populations [69].

4. The incorporation of search concepts found in Simulated Annealing (to allow moves re-
sulting in worse solutions) and Tabu search (to prevent revisiting known solutions).

5. The incorporation of explicit solution building-block filtering and recombination using
non-dominated templates [55].

6. Alternative environmental selection mechanisms, such as the use of an ǫ-dominance scheme
[125], external archiving schemes, and explicit removal of the best solutions (solution
death) to force new search trajectories.

7. A multi-layer evolutionary scheme for search parameter evolution (a meta-MOEA).

Proposal 6 Conducting a WDSDO acceleration study

One of the most significant challenges of WDSDO is the high computational cost associated
with such an exercise, which grows exponentially in the size of the problem. For very large WDS
systems found in the real-world, current generation optimisation algorithms may be insufficient
for solving WDSDO within a realistic time-frame. There are several avenues of research available
towards speeding up the WDSDO process.

On a physical computation level, it is well-known that current generation technology is exceed-
ingly under-utilised. It is expected that significant speed enhancements might be achieved by
employing multi-threading with numerous processors, through distributed computing (involving
multiple computers communicating across networks), or using the parallel processing capabil-
ities of modern graphics cards (especially with respect to solving the large matrix equations
required in hydraulic simulation), also known as GPU programming [150]. Employing these
methods alone or in tandem could potentially achieve several orders of magnitude improvement
in processing speed.

Considering the optimisation-simulation framework of §3.2, there are numerous mathematical
techniques that might be employed to accelerate all levels of the WDSDO process — both with
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respect to the hydraulic simulation model and the stochastic demand simulator, as well as the
actual optimisation algorithms.

Acceleration at a hydraulic simulation level may include:

1. the use of metamodels, such as an Artificial Neural Network (ANN) that replaces the
traditional hydraulic simulator [22],

2. practical heuristics such as intelligent pipe grouping whereby groups of pipes are sized
similarly to greatly reduce dimensionality, or the Explicit Integration Method [241] whereby
subsections of the network are simulated independently and results combined for a global
solution, or

3. employing specialised numerical approximation techniques for solving sparse nonlinear
systems of equations (e.g. the method using Gaus-Seidel-iterations developed by Abou
El-Seoud [3]).

Care should be taken when using any approximation techniques, since a global optimum is
typically concealed and there may be a high probability of converging to a local optimum.
This suggests the use of multi-resolution analysis, whereby approximation models are used pre-
dominantly to accelerate the optimisation, but in conjunction with regular accurate functional
evaluation.

In an attempt at speeding up the stochastic demand simulator, one may consider the use of
LHS or Descriptive Sampling [121]. Such an approach will require fewer samples than tradi-
tional Monte Carlo Simulation. Alternatively one may attempt to approximate performance by
spreading samples across multiple generations (as per the RNSGA-II developed by Kapelan et
al. [141]).

There are several methods for accelerating optimisation algorithms, including:

1. modern initialisation strategies for population-based algorithms (as opposed to purely ran-
dom initialisations) such as Latin Hypercube or Orthogonal sampling of decision variable
values and the use of heuristic initialisation,

2. the use of evolutionary approximation techniques such as fitness inheritance (whereby
offspring inherit fitness from their parents without the need for simulation) and fitness
imitation (whereby solutions are clustered according to some rule and only the fitness of
a single solution per cluster is evaluated),

3. the use of multiple sub-populations with different search mechanisms or levels of fitness
approximation, and the migration of solutions between sub-populations, and,

4. the use of hybrid MOEAs which incorporate machine learning techniques (e.g. LEMMO
[140]).

A study could be undertaken to investigate the use of the acceleration techniques mentioned
above towards the speed enhancement of WDSDO. The advantages and shortcomings of the
various techniques may be identified, and an attempt may be made to find the most suitable /
practical combination of acceleration methods for real-world WDSDO.
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Appendix A

Hydraulic Theory

This section contains a brief review of basic fluid mechanics definitions and theory with examples
and hydraulic equation derivations. It may be considered a supplement to Chapter 2.

A.1 Density

The mass density of a fluid is its mass per unit volume, measured in SI units of kilograms per
cubic meter (kg/m3). The Greek symbol ρ is used to denote density. The density of water at
4oC is 1000 kg/m3 [170, 42].

A.2 Specific Weight

The specific weight of a fluid is its weight per unit volume, measured in SI units of Newtons
per cubic meter (N/m3). Specific weight is denoted by the Greek symbol γ. The specific weight
of water at 4oC is 9810 N/m3 [170, 42]. The relationship between density and specific weight
is γ = ρg, where g ≈ 9.81 denotes the gravitational acceleration constant of the earth near its
surface.

A.3 Density variations

Fluids for which density changes occur as a result of pressure are said to be compressible.
Incompressible fluids should therefore have a constant density, although density changes may
still occur as a result of chemical impurities (such as salt in water) and temperature changes.
Many fluids (such as water) are treated as incompressible under normal operating conditions.
A fluid for which density is not constant in its flow field is said to be nonhomogeneous [170, 42].

A.4 Specific Gravity

The specific gravity of a fluid is the ratio of its specific weight to the specific weight of water at
a standard reference temperature of 4o C [170, 42]. The specific gravity, S, of a fluid is therefore
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the ratio
S =

γfluid

γwater
=

ρfluid

ρwater
.

A.5 Viscosity

In the flow of fluids, shear stress (the force tangential and opposite to the flow direction) is
present, causing fluid friction. Viscosity is a measure of a fluid’s resistance to shear or angular
deformation. In a viscous fluid, shear stress τ is proportional to the velocity gradient, dv/dy,
also known as the time rate of strain [170, 42].

For example, a fluid flowing next to a wall undergoes a friction force which manifests itself less
as the distance from the wall increases (as shown in Figure A.1). The time rate of strain is
dv/dy, where v is the horizontal velocity of the fluid and y is the distance from the wall. The
concept of shear stress applies equally between two thin sheets of fluid. Shear stress is expressed
as

τ = µ
dv

dy
, (A.1)

where the proportionality factor µ is called the dynamic viscosity of the fluid. Shear stress has
units of N/m2, and dynamic viscosity has units of N.s/m2. The SI units of dynamic viscosity
is centipose (cP), where 1 cP = 1 N.s/m2 × 10−3.

The flow profile in Figure A.1 is typical of that for a laminar (non-turbulent) flow close to a
solid boundary. The velocity gradient at the boundary is finite. The curve of velocity variation
cannot be tangent to the boundary since this would imply an infinite velocity gradient and,
in turn, an infinite shear stress, which is impossible. A velocity gradient, which becomes less
steep (dv/dy becomes smaller) with distance from the boundary, has a maximum sheer stress
at the boundary, and the shear stress decreases with distance from the boundary. Note that
the velocity of the fluid at the boundary is zero (the fluid assumes the velocity of the boundary
and no slip occurs). The viscosity of water at 20oC is 10−3 N.s/m2.

y dy

v

dv

Figure A.1: Velocity distribution next to a boundary.

The kinematic viscosity, ν, of a fluid is the ratio of its dynamic viscosity to its density. Therefore
ν = µ/ρ, which has SI units of m2/s. The notion of kinematic viscosity has been defined because
many equations in hydraulics include the ratio µ/ρ.

When a shear stress is applied to a fluid, motion occurs. Solids can resist shear stress in a
static condition, but fluids deform continuously under shear stress. The viscous resistance of



A.6. ELASTICITY 303

fluids is independent of the normal force (pressure) acting within the fluid. For liquids, shear
stress is involved with cohesive forces between molecules. These forces decrease with increasing
temperature which results in a decrease in viscosity. An equation for the variation of liquid
viscosity with temperature is

µ = cebT , (A.2)

where c and b are empirical constants which require viscosity data at two known temperatures
for evaluation. Equation (A.2) should therefore be used for interpolation purposes [42].

Ideal fluids are defined as ones in which viscosity is zero. There are no such fluids [170, 42].

A.6 Elasticity

The elasticity (or compressibility) of a fluid is related to the amount of deformation (expansion
or contraction) for a given pressure change. Elasticity is characterised by the bulk modulus
of elasticity, Ev, which is defined as the ratio of relative change in volume, dV/V , due to a
differential change in pressure, dp, expressed as

Ev = − dp

dV/V
.

Also, it is true that dV/V = dρ/ρ, so that Ev = − dp
dρ/ρ . The bulk modulus of elasticity of water

is approximately 2.2 GN/m2, which corresponds to a 0.05% change in volume for a 1 MN/m2

change in pressure. This justifies its treatment as an incompressible fluid [170, 42].

A.7 Surface Tension

The molecules of water below the surface exert forces on each other which are equal in all
directions. Molecules near the surface have greater attraction for each other. These molecules
are not able to bond in all directions and consequently form stronger bonds with adjacent
molecules. The surface water therefore acts like a stretched membrane seeking a minimum
possible area by exerting a tension on the adjacent portion of the surface or an object in
contact with the water surface. This surface tension acts in the plane of the surface for capillary
action and is a function of temperature. Surface tension may usually be ignored in macro-scale
applications, such as the subject matter of this dissertation [42, 93, 170].

A.8 Velocity and Flow Visualization

The two ways to visualise the motion of fluids are the Lagrangian and Eulerian viewpoints.
The Lagrangian viewpoint considers the motion over time of individual particles. It is therefore
necessary to consider the motion of all the particles simultaneously to model macroscopic fluid
behaviour. If F is the resultant force acting on a particle of mass m and a is its resulting
acceleration, then the motion in the flow field is obtained by solving the basic equation of
motion, F = ma (Newton’s second law), for every fluid particle in the field of flow [42].

It is common in fluid mechanics to consider fluids as a continuum. The Eulerian viewpoint
focuses on a particular point or control volume in space, and considers the motion of fluid that
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passes through it as a function of time. The velocity of the particles passing through a point
depends on the location of the point in space and time. This may be expressed as

v = f1(x, y, z, t)i + f2(x, y, z, t)j + f3(x, y, z, t)k. (A.3)

In order to describe the flow field, the Eulerian approach requires that one knows the fluid
motion at all points in the field. Owing to the difficulty of tracking the motion of individual
particles, the Eulerian approach is used in the vast majority of fluid dynamic analyses.

Streamlines are lines drawn in the flow field so that the velocity vectors of the fluid at any point
on a streamline are tangent to the streamline at any instant in time (see Figure A.2). The total
velocity can be expressed as a function of distance along a streamline, s, and time t,

v = v(s, t). (A.4)

Streamlines together form a flow pattern which clearly shows the geometry of the flow field. It

Streamline

Conduit boundary

Figure A.2: Streamline representation in fluid flow.

should be noted that streamlines are an instantaneous representation of a flow field. A pathline
is the true path followed by a fluid particle.

Uniform flow is fluid motion characterised by a constant velocity which does not change from
point to point along any of the streamlines (∂v

∂s = 0), which are both straight and parallel.
The variation in velocity with respect to time at a given point in a flow field is used to classify
flow. Steady flow occurs when the velocity does not vary in magnitude or direction with respect
to time (∂v

∂t = 0). This means that the overall flow pattern does not change with time, and
therefore that the overall mass in a control volume is constant over time. Pathlines coincide with
streamlines if flow is steady The counterparts of uniform flow and steady flow are nonuniform
flow (∂v

∂s 6= 0) and unsteady flow (∂v
∂t 6= 0) respectively. A flow pattern for unsteady flow can

only be regarded as an instantaneous representation of the flow geometry [170, 42].
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A.9 Laminar and Turbulent Flow

Turbulent flow is irregular with no definite flow patterns. It is caused by eddies of varying
size within the flow that create a mixing action. The fluid particles follow irregular and erratic
paths, with no two particles having similar motion. The index relating to turbulence is the
Reynolds number,

Re =
vDρ

µ
=

vD

ν
,

where D is a characteristic length such as the internal diameter of a pipe. If the average velocity
with respect to time (a temporal mean taken over a relatively long period of time) is constant at
a given point, turbulent flow may be simplified to a steady flow process in analysis. Turbulent
flow can sometimes be caused by increasing the flow velocity, or by boundary surfaces causing
abrupt changes in velocity.

Laminar flow does not exhibit eddies which cause intense mixing. Flow is therefore very smooth
and may be represented by means of streamlines. The fluid particles move in definite paths and
the fluid appears to move by the sliding of laminations of infinitesimal thickness relative to the
adjacent fluid layers. The viscous shear of the fluid particles produces resistence to the flow.
Resistence to flow varies with the first power of the velocity.

Flow may be one-, two-, or three-dimensional, for which one, two or three coordinate directions
respectively, are required to describe velocity and property changes in a flow field. An example of
one-dimensional flow could be average flow velocity in a conduit (a simplified analysis technique).

Pipe flow is generally turbulent for Re > 2000 and laminar for Re < 2000. This is also dependent
on the initial conditions of the fluid (before it enters the pipe), and whether the pipe undergoes
vibration or not. In pipe flow, it is common to use D = 4R, where R is the hydraulic radius,
defined as the cross-sectional area A divided by the wetted perimeter P . Therefore for full pipe
flow R = A/P = (πD2/4)/πD = D/4 [42, 170].

A.10 Control Volume Approach

Since it is difficult to identify individual particles, problems in fluid mechanics are solved by
focusing on a given space through which fluids flow (the Eulerian viewpoint), rather than solely
considering a given mass of fluid. The actual method is called the Reynolds transport theorem
or control-volume approach.

A fluid system is defined as a given mass of fluid which is continuous and always contains the
same fluid particles. The system has a system boundary or control surface (as illustrated at
time t by the dashed line in Figure A.3). Mass does not cross the system boundary.

A control volume is a selected volumetric region in space, surrounded by a control surface, CS.
This surface may coincide with physical boundaries, such as the wall of a pipe. A portion of
a control surface may be a hypothetical surface through which the fluid flows. Therefore the
fluid mass within the control volume may change with time and can cross the control volume
boundary. A control volume may deform with time as well as move and rotate in space.

Extensive and intensive properties are used in the control volume approach to apply physical
properties for discrete masses to a fluid flowing continuously through a control volume. Ex-
tensive properties are related to the total mass of the system, whereas intensive properties are
independent of the mass of fluid. Extensive properties include mass m, momentum mv, and
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energy E. Intensive properties include unit mass, momentum per unit mass (velocity v), and
energy per unit mass (represented by e). Both intensive and extensive properties may be scalar
or vector properties.

The relationship between extensive (B) and intensive (b) properties for a given system S is
defined by

B =

∫

S
b dm =

∫

S
bρ dV, (A.5)

where dm and dV denote differential mass and differential volume respectively.

For the control volume indicated by the dotted line in Figure A.3 the net flowrate (or net outflow
rate) is

Q̇ = Qout −Qin

= v2 ·A2 − v1 ·A1

=
∑

CS

v ·A.

System boundary
System boundary

Control Surface
Upstream section Downstream section

∆Min

∆Mout

at time t
at time t + ∆t

A1

A2

v1
v2

Figure A.3: Control-volume in pipe flow.

In other words, the dot product, v ·A, for all flows in and out of a control volume is the net
rate of outflow. If the flow is steady in a control volume, Q̇ = 0, and

v2 ·A2 = v1 ·A1.

This is known as the one-dimensional continuity equation for incompressible fluids undergoing
steady flow. The mass rate of flow out of the control volume is

dm

dt
= ṁ =

∑

CS

ρv ·A.

Therefore the rate of flow of extensive property B is the product of the mass rate and the
intensive property,

dB

dt
= Ḃ =

∑

CS

bρv ·A.



A.11. CONTINUITY 307

If the velocity varies across the flow section, then one must integrate across the section, so that
the previous equation becomes

Ḃ =

∫

CS
bρv · dA. (A.6)

The basic equation for the control-volume approach is derived by considering the rate of change
of an extensive property B of the system of fluid that is flowing through a control volume.
Consider Figure A.3 again. The dashed lines form the control surface of a system at time t.
The solid lines form the control surface of the same system at time t + ∆t (the system has
flowed along the pipe). Note that the vertical lines divide the flow space into three regions,
the first and last of which have been labeled ∆Min and ∆Mout respectively. Let the dashed
lines represent a control volume CV. The rate of change of extensive property B of the system,
dBsys/dt, may be stated as

dBsys

dt
= lim

∆t→0

[
Bt+∆t −Bt

∆t

]
.

The mass of the system at time t+∆t is equal to the mass of the fluid within the control volume
at time t + ∆t (MCV,t+∆t), together with the mass of fluid that has moved out of the control
volume during time ∆t (∆Mout), less the mass of fluid that has moved into the control volume
during time ∆t (∆Min). Let ∆Bout and ∆Bin satisfy a similar definition, except pertaining to
extensive property B of the system. Thus, the property B of the system at time t + ∆t may be
written as BCV,t+∆t + ∆Bout −∆Bin, and the rate of change of B may hence be expressed as

dBsys

dt
= lim

∆t→0

[
(BCV,t+∆t + ∆Bout −∆Bin)− (BCV,t)

∆t

]

= lim
∆t→0

[
BCV,t+∆t −BCV,t

∆t

]
+ lim

∆t→0

[
∆Bout −∆Bin

∆t

]
(A.7)

=
dBCV

dt
+ ḂCV.

The first term on the right-hand side of (A.7) is the rate of change with respect to time of
extensive property B of the fluid inside the control volume, and the second term is the net rate
of flow of extensive property B from the control volume. Substituting (A.5) and (A.6) into
(A.7) yields

dBsys

dt
=

d

dt

∫

CV
bρ dV +

∫

CS
bρv · dA. (A.8)

This is known as the general control volume equation (also referred to as Reynolds transport
theorem). This equation is applied to develop continuity, energy and momentum equations for
hydraulic systems [42, 170].

A.11 Continuity

The extensive property in the continuity equation is mass (B = m) and the intensive property
is b = dB/dm = 1. The mass of the system is constant owing to the law of conservation of
mass, therefore dB/dt = dm/dt = 0. From (A.8), the general form of the continuity equation
is then

0 =
d

dt

∫

CV
ρ dV +

∫

CS
ρv · dA, (A.9)

also called the integral equation of continuity for unsteady, variable-density flow. Equation (A.9)
may be rewritten as ∫

CS
ρv · dA = − d

dt

∫

CV
ρ dV, (A.10)



308 APPENDIX A. HYDRAULIC THEORY

which states that the net rate of outflow of mass from the control volume is equal to the rate of
decrease of mass within the control volume. If the density is constant, (A.10) may be divided
on both sides by ρ. The continuity equation for flow with a uniform velocity across the flow
section and constant density then becomes

∑

CS

v ·A = − d

dt

∫

CV
dV.

For constant density, steady one-dimensional flow, such as water flowing in a conduit, the
equation becomes ∑

CS

vA = 0.

Considering a control volume between locations 1 and 2 in a pipe conduit, the continuity
equation then delivers

Q1 = v1A1 = v2A2 = Q2.

For constant-density, unsteady flow, consider that
∫
CV dV is the volume of fluid stored in a

control volume denoted by S. This means that

d

dt

∫

CV
dV =

dS

dt
. (A.11)

The net outflow is defined as∫

CS
v · dA =

∫

outlet
v · dA +

∫

inlet
v · dA = Q(t)− I(t). (A.12)

Equations (A.11) and (A.12) may be substituted into (A.10) to arrive at

dS

dt
= I(t)−Q(t), (A.13)

an equation frequently used in hydraulic analyses [42].

A.12 Energy

The control volume approach may be combined with the first law of thermodynamics to de-
velop the energy equation for fluid flow in hydro processes. This energy balance must form
an accounting of the energy inputs and outputs to and from a system [170, 42, 93]. The first
law of thermodynamics states that the rate of change of energy with time is the rate at which
heat is transferred into the fluid, dH/dt, less the rate at which the fluid performs work on its
surroundings, dW/dt, expressed as

dE

dt
=

dH

dt
− dW

dt
.

The total energy of a fluid system is the sum of the internal energy Eu, the kinetic energy Ek, and
the potential energy Ep. The extensive property of the system is then B = E = Eu + Ek + Ep,
and the intensive property b = dB

dm = e = eu + ek + ep, where e represents the energy per unit
mass. Substituting B and b into a one-dimensional version of the control volume equation (A.8)
yields

dE

dt
=

dH

dt
− dW

dt
=

d

dt

∫
eρ dV +

∑

CS

eρv · dA

=
d

dt

∫
(eu + ek + ep)ρ dV +

∑

CS

(eu + ek + ep)ρv · dA.
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The kinetic energy per unit mass is the total kinetic energy of the mass with velocity v divided
by the mass m,

ek =
mv2/2

m
=

v2

2
. (A.14)

The potential energy per unit mass is the weight of the fluid, γV , multiplied by the centroid
elevation z divided by the mass m, producing

ep =
γV z

m
=

γV z

ρV
= gz. (A.15)

The general energy equation for unsteady variable-density flow may therefore be written as

dH

dt
− dW

dt
=

d

dt

∫
(eu +

v2

2
+ gz)ρ dV +

∑

CS

(eu +
v2

2
+ gz)ρv · dA. (A.16)

For steady flow, this reduces to

dH

dt
− dW

dt
=

∑

CS

(eu +
v2

2
+ gz)ρv · dA. (A.17)

The work done by a system on its surroundings may be divided into shaft work, Ws, and flow
work, Wf . Flow work is the result of the pressure force as the system moves through space, and
shaft work is any other work. Considering Figure A.3 again, let the force at the upstream end
of the control volume be p1A1, and the distance travelled over time ∆t be l1 = v1∆t. Recalling
that work is the product of force and the distance over which the force acts, one arrives at the
conclusion that the work done on the upstream end is

Wf1 = v1p1A1∆t,

and the downstream end
Wf2 = −v2p2A2∆t.

The minus sign for the upstream work is because the pressure on the surrounding fluid acts in
the opposite direction to the motion of the system boundary. The rate of work at the upstream

and downstream ends respectively is
dWf1

dt = v1p1A1 and
dWf2

dt = −v2p2A2.

This demonstrates that the rate of flow work may be expressed generally as

dWf

dt
=

∑

CS

pv ·A =
∑

CS

p

ρ
ρv ·A,

which allows the net rate of work of the system to be written as

dW

dt
=

dWs

dt
+

∑

CS

p

ρ
ρv ·A. (A.18)

Employing (A.18) and (A.16), the general energy equation for unsteady, variable-density flow
may therefore be expressed as

dH

dt
− dWs

dt
+

∑

CS

p

ρ
ρv ·A =

d

dt

∫
(eu +

v2

2
+ gz)ρ dV +

∑

CS

(eu +
v2

2
+ gz)ρv · dA,

which may be rearranged to yield

dH

dt
− dWs

dt
=

d

dt

∫
(eu +

v2

2
+ gz)ρ dV +

∑

CS

(
p

ρ
+ eu +

v2

2
+ gz)ρv · dA.
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For steady flow, this reduces to

dH

dt
− dWs

dt
=

∑

CS

(
p

ρ
+ eu +

v2

2
+ gz)ρv · dA. (A.19)

A.13 Momentum

The control volume approach may be combined with Newton’s second law of motion to derive
the general momentum equation for fluid flow in hydraulic systems. Newton’s second law states
that the resultant force,

∑
F, on a body of mass m is equal to the rate of change of momentum,

p, of the body, that is ∑
F =

dp

dt
= ma,

where a denotes the acceleration of the body. Although Newton’s law applies to a single particle,
the law may also be formulated for a fluid system. If the extensive property of the system is
the momentum of the entire mass forming the system, B = p = mv, the equation becomes

∑
F =

dBsys

dt
.

The intensive property is b = dB
dm = ve. This velocity is represented with the symbol ve because

it is the velocity of a unit mass fluid element referenced with respect to an inertial reference
frame (a reference frame that is not itself accelerating).

If B is momentum, then substituting b into the general control volume equation (A.8) yields

dBsys

dt
=

∑
F =

d

dt

∫

CV
veρ dV +

∫

CS
veρv · dA, (A.20)

known as the integral momentum equation for fluid flow. For steady flow, (A.20) reduces to

∑
F =

∫

CS
veρv · dA,

and for steady flow where velocity across the control surface is uniform, one obtains

∑
F =

∑

CS

veρv · dA.

Under true uniform flow,
∑

CS veρv · dA = 0 and
∑

F = 0 [170, 42, 93].

A.14 Velocity Distribution Correction Factor

Owing to the fact that velocity is not actually uniform over a cross section, an energy correction
factor is typically introduced in the pipe flow energy equation. Consider the velocity distribution
shown in Figure 2.2. The mass of fluid flowing through an area dA per unit time is ρv dA,
where v is the velocity through dA. The flow of kinetic energy per unit time through this area
is ρv dA(v2/2) = (γ/2g)v3 dA. The total kinetic energy flowing through the section per unit
time is

γ

2g

∫

A
v3 dA. (A.21)
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Using the mean velocity v and the energy coefficient α, the total energy per unit weight is
αv2/2g, because the flow across the entire section is γAv. Therefore the total kinetic energy is

(γAv)

(
α

v2

2g

)
= γαA

v3

2g
. (A.22)

From (A.21) and (A.22) one obtains

γ

2g

∫

A
v3 dA = γαA

v3

2g
.

Solving for the correction factor yields

α =
1

Av3

∫

A
v3 dA.

The new energy equation for pipe flow is

p1

γ
+ z1 + α1

v2
1

2g
+ hp =

p2

γ
+ z2 + α2

v2
2

2g
+ ht + hL.

The value of α for a full parabolic velocity distribution is equal to 2 for laminar flow. However,
α normally ranges from 1.03 to 1.06 for turbulent flow. In practice α is typically a value close
to 1 and is therefore often ignored (as is the case in this dissertation). [42, 93].

A.15 Moody diagram

The Moody diagram is presented in Figure A.4 showing the Darcy Williams frictional factors
for the various combinations of Reynolds number and relative roughness values.
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Figure A.4: Moody diagram for Darcy Williams friction factors derived from Re and relative
roughness (source: Wikimedia Commons, S Beck and R Collins, University of Sheffield).



Appendix B

Mathematical Supplement

This appendix contains some miscellaneous prerequisite mathematical theory. Topics discussed
include Newton’s method, regression analysis, numerical integration and the normal and uniform
probability distributions.

B.1 Taylor Series Expansion

In mathematics, the Taylor series is a representation of a function as an infinite sum of terms
calculated from the values of its derivatives at a single point. It may be regarded as the limit
of the Taylor polynomials. The Taylor series of a function f(x) that is infinitely differentiable
in the region x0 is expressed as the following power series:

f(x0) +
f ′(x0)

1!
(x− x0) +

f ′′(x0)

2!
(x− x0)2 +

f (3)(x0)

3!
(x− x0)3 + . . . .

Since f(x) is often equal to its Taylor expansion evaluated close to x0, it is considered a very
important function. Taylor series need not be convergent in general, but they often are. The
limit of a convergent Taylor series of a function f need not in general be equal to the function
value f(x), but this is frequently the case. If f(x) is equal to its Taylor series in a neighbourhood
of a, it is said to be analytic in this neighborhood. If f(x) is equal to its Taylor series everywhere
it is called entire. Taylor series expansion is at a point a is often conducted using only the
most significant terms (including the first and often the second derivative), in order to simplify
analysis [24].

B.2 Newton’s Method

Newtons method is an iterative procedure towards the numerical solution of a root problem,
which frequently approaches the exact solution rapidly. Newtons method may be derived by
performing a Taylor series expansion and discarding all derivatives higher than the first deriva-
tive term. For instance, in solving f(p) = 0, with a first order Taylor series expansion and a
current approximation to p as x̂, one obtains

f(x̂) + (p− x̂)f ′(x̂) ≈ 0,

which allows one to use

p ≈ x̂− f(x̂)

f ′(x̂)
.
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This allows one to start with an initial approximation, and iteratively attempt to find the correct
p. Newton’s algorithm cannot, however, guarantee convergence. The algorithm is presented as
Algorithm 31 [8, 24].

Algorithm 31 Newton’s Method

Input: An initial approximation p0, a tolerance T , and a maximum number of iterations N .

1: Set k ← 1.
2: while k ≤ N do
3: Set p = p0 − f(p0)/f ′(p0)
4: if |p− p0| < T then
5: Output p; STOP.
6: end if
7: k ← k + 1
8: p0 ← p
9: end while

10: Output “Method failed after N iterations”

B.3 Regression Analysis

In statistics, regression analysis is a collective name for techniques for the modeling and analysis
of numerical data consisting of values of a dependent variable (also called response variable or
measurement) and of one or more independent variables (also known as explanatory variables
or predictors). The dependent variable in the regression equation is modelled as a function
of the independent variables, corresponding parameters, and an error term. The error term is
treated as a random variable. It represents unexplained variation in the dependent variable.
The parameters are estimated so as to give a best fit of the data. Most commonly, the best fit
is evaluated by using the least squares method, but other criteria have also been used.

An equation of the form y = ax + c is used for linear regression. Expanding this to include
an error term yields y = ax + c + u, where u varies according to some probability distribution.
The test of significance approach is frequently used to determine how well a fitted regression
line matches the data. This involves the calculation of a test statistic according to a known
probability distribution (typically the t distribution), which allows the null hypothesis of a lack
of a relationship between the estimator (regression line) and the actual measurement to be
evaluated probabilistically [38].

B.4 Numerical Integration

The need for numerical integration (or quadrature) arises when a function has no antiderivative,
or the integration is too complex. A sum of is used to approximate the function. In the simplest
case, a trapezium is constructed between the points (x0, f(x0)), (x1, f(x1)), and [x0, x1]. Thus∑n

i=0 aif(xi) approximates f(x).

If the points are kept close enough to each other, the area of the trapezium approaches the
integral over the region [x0, x1]. This concept can exploited to n points over the region, hopefully
gaining a more exact approximation. The Trapezoidal rule, Simpson’s rule, and Simpson’s 3

8 ’s
rule are the approximation formulas for n values of 1, 2 and 3 respectively. Newton Cotes
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formulas are the class of formulas using n degree polynomials to approximate curves. Due to
the high oscillatory nature of polynomials, this method is inapplicable to most functions over a
large interval.

It is useful to exploit the aforementioned formulas piece-wise, i.e. defining new polynomials to
approximate parts of the curve, keeping the intervals small enough to minimize the oscillation.
This method greatly reduces the error of approximation, and for a system of n intervals the
error is given by the formula

b− a

180
h4f

(4)(µ),

where h is the size of the interval and µ is an element of the domain (when using Simpson’s
rule). Setting b−a

180 h4f
(4)(µ) < ǫ where ǫ is the maximum error or deviation allowed, solving for

n will give the minimum number of intervals [24].

B.5 Normal Distribution

The normal distribution, also called the Gaussian distribution, is an important family of con-
tinuous probability distributions, applicable in many fields. Each member of the family may be
defined by two parameters, location and scale: the mean (average, µ) and variance (standard
deviation squared, σ2) respectively. When µ is 0 and the standard deviation is 1 (N(0, 1)), the
distribution is known as the standard normal distribution. Measurements of physical phenom-
ena can be approximated, to varying degrees, by the normal distribution [38].

The continuous probability density function (PDF) of the normal distribution is the Gaussian
function

ϕµ,σ2(x) =
1

σ
√

2π
ǫ−

(x−µ)2

2σ2 =
1

σ
ϕ

(
x− µ

σ

)
x ∈ R

and ϕ(x) = ϕ0,1(x) = ǫ
−x2/2√

2π x ∈ R for µ = 0 and σ = 1.

The cumulative density function (CDF), which measures the probability of a randomly selected
variable X being less than or equal to some point x on a probability distribution, may be
expressed as

Φµ,σ2(x) =

∫ x

−∞
ϕµ,σ2(u) du

=
1

σ
√

2π

∫ x

−∞
exp

(
−(u− µ)2

2σ2

)
du

= Φ
(x− µ

σ

)
, x ∈ R.

In simulation studies, it is often necessary to generate normally distributed samples for model
parameter values. The normal distribution has the useful feature that any random variable X
which is distributed as N(µ, σ2) is isomorphic to the standard normal distribution by X = µ+σY
where Y ∈ N(0, 1). There are numerous techniques for generating stochastic samples from
N(0, 1), such as the Box-Muller method or the polar method.
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B.6 Uniform Distribution

For the continuous uniform distribution, the PDF is

f(x) =

{
1

b−a for a ≤ x ≤ b,

0 for x < a or x > b.

The values at the two boundaries a and b are usually unimportant because they do not alter
the values of the integrals of f(x) dx over any interval, nor of x f(x) dx or the like [38].

The CDF of the uniform distribution is

F (x) =





0 forx < a,
x−a
b−a for a ≤ x < b,

1 for x ≥ b.



Appendix C

Algorithmic Examples

Two simple examples are provided here for the GA and ACO, in order to provide the user with
a firm understanding of the underlying strategies of these algorithms.

C.1 Genetic Algorithm Example

Consider a simple application of the genetic algorithm. Suppose that the fitness of an individual
in a population is determined by the mathematical function f(x) = −x2+15x (higher is better —
see Figure C.1), and each individual possesses a 4 bit binary string constituting its chromosome.
Such a string may represent the values 0-15 in binary arithmetic. The objective function is

2 4 6 8 10 12 14

10

20

30

40

50

x

f(x)

Figure C.1: The fitness function f(x) = −x2 + 15x.

positive in the range 0-15, with a maximum occurring at x = 7.5. Since the individuals can
only be discrete integers, no individual will be able to attain the maximum fitness provided
by the function, but a value of x∗ = 7 or x∗ = 8 both result in the highest possible fitness of
f(x∗) = 56. Now consider an initial population comprising 4 members. This is an unrealistically
low figure used only for illustration purposes. Suppose a crossover probability of 70% and a
mutation probability per bit of 2% are used. Table C.1 contains the randomly generated initial
population. The combined (total) fitness of the first generation is 148. The method used to
select individuals for reproduction is fitness-proportionate selection, whereby the number of
times an individual is expected to reproduce is proportional to the ratio of its fitness to the
total fitness of the population. The selection process uses a pseudo-random number generator
to select two pairs of parents — A,A and A,D. Note that in this model solutions are allowed
to ‘reproduce’ with themselves. Parents A,A can only generate identical copies of themselves,
yielding E and F in Table C.2, although child E undergoes a mutation of its first bit. This

317
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Individual Chromosome String Decimal Value (x) Fitness (f(x) = −x2 + 15x)

A 0 1 1 0 6 54
B 1 1 0 0 12 36
C 0 0 0 1 1 14
D 1 0 1 1 11 44

Total Fitness 148

Table C.1: First generation population.

actually has the effect of reducing E’s fitness from 54 to 14, but it adds desired variety to the
population. The next reproduction pair A,D have offspring G and H, where G is the result of
a genetic crossover occurring at bit position 3. G has the first two bits of A and the last two
bits of D. Child H is an identical copy of D — containing none of A’s chromosome. The total
fitness of the second generation has increased to 168. For the next reproduction session, parent

Individual Chromosome String Decimal Value (x) Fitness (f(x) = −x2 + 15x)

E 1 1 1 0 14 14
F 0 1 1 0 6 54
G 0 1 1 1 7 56
H 1 0 1 1 11 44

Total Fitness 168

Table C.2: Second generation population

pairs G,F and G,F are selected. These are the two fittest individuals and therefore have the
highest probability of selection. Third generation children I, J, K, and L (Table C.1) are the
result of genetic crossovers between G and F occurring at various it positions. No mutations
occur and the total population fitness increases to 220. For the next generation, parent pairs

Individual Chromosome String Decimal Value (x) Fitness (f(x) = −x2 + 15x)

I 0 1 1 0 6 54
J 0 1 1 1 7 56
K 0 1 1 0 6 54
L 0 1 1 1 7 56

Total Fitness 220

Table C.3: Third generation population.

L,I and L,J are selected. A crossover occurs between L and I at the second bit position to
generate individual N. Although crossovers also occur between L and J, their chromosomes are
identical so that their offspring are equivalent. The new individuals are now as fit as possible.
The population fitness of 224 has been maximized in only four generations (Table C.1).

C.2 Ant Colony Search Example

This simplified example comes from Maier et al. [168]. Consider Figure C.2. The eight sub-
figures show the progression over time of an ant colony finding the shortest path around an
obstacle from their nest at position A to a food source at position B, illustrating their method
of social collaboration. The distances are indicated in the first sub-figure (for example, distance
AC is d=1 length units). The time units are the time it takes for an ant to traverse a single
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Individual Chromosome String Decimal Value (x) Fitness (f(x) = −x2 + 15x)

M 0 1 1 1 7 56
N 0 1 1 1 7 56
O 0 1 1 1 7 56
P 0 1 1 1 7 56

Total Fitness 224

Table C.4: Fourth generation population.

distance unit. In the following sub-figures, the pheromone concentration on a path is indicated
by means of a value p. This value is equivalent to the number of ants which have traveled along
that path. Initially, all paths have a value of p = 0.

At time T = 0, sixteen ants depart from the nest in search of food (the bracketed figures indicate
how many ants are headed down a path in the direction of the arrow). At time T = 1 the ants
reach position C, and have deposited 16 units of pheromone into path AC. At this point the
ants must decide which path to take. Since both paths are unexplored, there is an equal chance
of taking either one. It is assumed therefore that eight ants will choose path CD and eight will
choose path CE. At time T = 2, the eight ants which chose path CE have reached E, so that
the pheromone concentration of CE is 8. The ants who chose CD are only halfway along its
length, and the pheromone count of the path is only compounded once they reach D. Three
time units later, at time T = 5, the ants who were at E have traversed EF and FB, and then
back to F, depositing 16 units of pheromone on FB, whereas the ants who went the long way
around have only just arrived at F. The pheromone counts on the paths FD and FE are both
equal to 8, therefore the returning group will split into two groups of four each. At time T = 7,
the group who were on their way to the food have travelled to B and back again, depositing
an additional 16 units of pheromone on FB, totalling 32 units — this group also splits into two
groups of four going to D and E. Meanwhile, the other groups of four have travelled FD and
FEC respectively.

At time T = 9 the group which was at C has returned to the nest and has set out again,
travelling along CA and then AC, depositing an additional 8 units of pheromone on path AC.
In the same time, the other group of four which was heading down FE has reached C, depositing
another 4 units of pheromone on path EC, so that the total is 16 units. Meanwhile, the group
of four at D have traveled DC, raising its pheromone count to 12. The ants who have just
reached C from A must now choose which path to take to the food. Since path CE has a higher
pheromone count than CD, the ants are more likely to follow CE. For arguments sake, say three
ants set off down CE and one down CD. As time continues, it is easy to see that the shorter
path will become dominant. The principle to be learnt is simple. More ants will travel over a
shorter (more efficient) path than a longer one in the same time span, reinforcing the pheromone
concentration of that path and increasing its desirability.
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Figure C.2: The shortest path finding mechanism of an ant colony.
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Optimisation Routine: Input Format

The optimisation routine named Waternet.exe was coded in C++ and uses as input an ‘.inp’
file that contains the physical specification of a particular WDS and has the same input format
as EPANET2 (EPANET2 is called as a subroutine). Additionally, it requires a ‘.opt’ file with
the same name containing the optimisation settings for that WDS. The format of these two
files for the R21 Corridor system appears next. Note that any line preceded by a semicolon is
a comment that is ignored. Furthermore, the identifiers of pipes and nodes must be numeric,
but not necessarily in a particular order. However, the pipe diameter options should appear in
increasing order of size, as many of the algorithms assume this is the case.

This ‘.inp’ format illustration is not comprehensive. The full format specification appears in
the EPANET2 Users Manual [204], made available on the accompanying CD.

Input file: “R21.inp”

[TITLE]
R21 Corridor WDS (Atteridgeville, Erkuhuleni)

[JUNCTIONS]
;ID Elevation Demand Pattern
; – m l/s –
86 1 649.808 0 1
88 1 575.698 10.3 1
90 1 650.27 0 1
91 1 630.131 0 1
92 1 570.321 10.3 1
96 1 628.97 0 1
97 1 561.797 10.3 1
101 1 604.409 0 1
102 1 565.795 4.5 1
106 1 590.173 0 1
107 1 579.097 4.5 1
111 1 593.238 7.9 1
116 1 590.001 7.9 1
117 1 585.106 7.9 1
121 1 602.184 7.9 1
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122 1 566.384 7.9 1
126 1 601.9 7.9 1
131 1 612.68 7.9 1
136 1 603.938 7.9 1
141 1 613.226 7.9 1
146 1 602.761 7.9 1
150 1 614.388 7.9 1
151 1 593.916 7.9 1
155 1 603.896 7.9 1
157 1 599.065 7.9 1
158 1 635.887 0 1
162 1 632.199 0 1
163 1 629.394 0 1
167 1 622.4 0 1
172 1 612.801 0 1
177 1 602.288 0 1
182 1 600 0 1
187 1 593.533 2.2 1
192 1 587.578 2.2 1
197 1 589.137 2.2 1
202 1 589.137 2.2 1
207 1 607.182 2.2 1
212 1 573.055 0 1
217 1 580.293 4.5 1
222 1 593.084 4.4 1
227 1 606.625 4.4 1
232 1 590 2.2 1
237 1 595.048 2.2 1
242 1 596.694 2.2 1
247 1 612.636 2.2 1
252 1 600 2.2 1
257 1 599.052 3.7 1
262 1 606.592 3.7 1
267 1 604.163 3.7 1
277 1 607.272 0 1
282 1 605.377 9.5 2
287 1 603.346 9.5 2
292 1 602.083 9.5 2
297 1 597.741 9.5 2
302 1 592.063 9.5 2
307 1 580.563 9.5 2
312 1 587.149 9.5 2
317 1 592.238 3.9 1
322 1 588.636 3.9 1
332 1 583.609 3.9 1
337 1 564.546 4.5 1
342 1 577.904 3.9 1
347 1 590.505 3.9 1
357 1 572.943 0 1
362 1 587.472 8.7 2
367 1 597.906 8.7 2
372 1 598.054 8.7 2
377 1 607.223 8.7 2
382 1 614.492 8.7 2
387 1 613.147 8.7 2
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397 1 594.951 10.3 1
402 1 596.012 10.3 1
407 1 590 10.3 1
412 1596.108 10.3 1
417 1593.98 10.3 1

[RESERVOIRS]
;ID Head
; – m
81 1652.500

[TANKS]
;ID Elev. Init. Min. Max. Diam. MinVol VolCurve
;– m m m m m m3 –
;no tanks present

[EMITTERS]
;ID Flow Coeff
;no emitters present

[PIPES]
; ID Node 1 Node 2 Length (m) Diam. (mm) RCoeff. LCoeff (CV)
1 81 90 65.782 726 0.1 0
2 81 86 67.456 976 0.025 0
3 407 88 1 100.012 322 0.025 0
4 90 163 853.095 726 0.1 0
5 86 91 808.687 976 0.025 0
6 88 92 1 049.382 322 0.025 0
7 91 96 597.345 976 0.025 0
8 92 97 696.525 322 0.025 0
9 96 101 779.517 976 0.025 0
10 97 102 688.665 322 0.025 0
11 101 106 1 176.919 777 0.025 0
12 102 107 693.839 322 0.025 0
13 106 111 1 328.135 286 0.025 0
14 317 107 738.327 322 0.025 0
15 111 116 227.272 182 0.025 0
16 111 117 377.473 227 0.025 0
17 116 121 941.809 182 0.025 0
18 117 122 1 155.206 227 0.025 0
19 126 121 134.614 182 0.025 0
20 131 126 1166.876 182 0.025 0
21 136 131 1124.708 675 0.025 0
22 141 136 667.668 675 0.025 0
23 131 150 719.268 227 0.025 0
24 146 141 878.81 675 0.025 0
25 150 151 815.574 227 0.025 0
26 157 146 347.602 675 0.025 0
27 101 157 441.81 675 0.025 0
28 151 155 1 336.207 227 0.025 0
29 163 158 370.646 726 0.025 0
30 158 162 311.696 726 0.025 0
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31 162 167 472.308 726 0.025 0
32 167 172 508.588 726 0.025 0
33 172 177 642.09 726 0.025 0
34 177 182 412.397 726 0.025 0
35 182 187 358.365 726 0.025 0
36 187 192 317.258 726 0.025 0
37 192 197 450.051 227 0.025 0
38 197 202 406.549 227 0.025 0
39 202 207 576.672 227 0.025 0
40 192 212 798.446 726 0.025 0
41 212 217 507.656 726 0.025 0
42 217 222 572.172 322 0.025 0
43 222 227 548.41 322 0.025 0
44 217 232 755.095 322 0.025 0
45 232 237 240.19 322 0.025 0
46 232 242 547.734 227 0.025 0
47 242 247 448.942 227 0.025 0
48 247 252 461.212 227 0.025 0
49 237 257 409.535 322 0.025 0
50 257 262 667.581 227 0.025 0
51 257 267 382.609 322 0.025 0
52 267 227 405.367 322 0.025 0
53 227 277 93.513 428 0.025 0
54 277 282 542.87 286 0.025 0
55 282 287 471.842 286 0.025 0
56 287 292 380.83 286 0.025 0
57 292 297 400.409 286 0.025 0
58 297 302 475.652 286 0.025 0
59 307 302 1 009.589 286 0.025 0
60 312 307 894.515 286 0.025 0
61 317 312 1 172.701 286 0.025 0
62 322 317 619.901 322 0.025 0
63 277 322 540.41 322 0.025 0
64 332 317 456.401 227 0.025 0
65 337 332 659.768 227 0.025 0
66 342 337 1047.515 227 0.025 0
67 342 347 485.255 322 0.025 0
68 347 277 597.906 322 0.025 0
69 357 342 728.84 322 0.025 0
70 362 357 816.463 322 0.025 0
71 367 362 597.304 675 0.025 0
72 372 367 211.854 675 0.025 0
73 377 372 470.718 675 0.025 0
74 382 377 537.272 675 0.025 0
75 387 382 437.266 675 0.025 0
76 101 387 602.973 675 0.025 0
77 106 397 376.871 675 0.025 0
78 397 402 465.392 675 0.025 0
79 402 407 448.446 675 0.025 0
80 407 412 447.379 675 0.025 0
81 412 417 537.311 675 0.025 0
82 362 417 611.11 675 0.025 0
83 141 155 2 955.915 0.0001 0.025 0
84 88 122 714.126 0.0001 0.025 0
85 207 252 1 504.713 0.0001 0.025 0
86 252 262 1 648.126 0.0001 0.025 0
87 262 267 688.391 0.0001 0.025 0
88 172 207 1 117.011 0.0001 0.025 0
89 337 97 1 070.074 0.0001 0.025 0
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[PUMPS]
;Head Tail Properties
;ID Node Node
;no pumps present

[CURVES]
;ID Flow Head
;– l/s m
;no curves present

[VALVES]
;ID Head Tail Diam Type Setting (Losscoeff)
;– Node ID Node ID mm – l/s m
;no valves present

[PATTERNS]
;ID Multipliers...

[OPTIONS]
UNITS LPS
HEADLOSS D-W
QUALITY NONE
VISCOSITY 0.1
DIFFUSIVITY 1.0
SPECIFIC GRAVITY 1.0
TRIALS 40
ACCURACY 0.01
UNBALANCED STOP
EMITTER EXPONENT 1.0
TOLERANCE 0.01
MAP D:\ Masters \ Code \ WATERNET \ Waternet \ R21.map

;note: EPANET allows a coordinate map file in order to draw the network

[TIMES]
Duration 21:00
Hydraulic Timestep 1:00
Quality Timestep 1:00
Pattern Timestep 1:00
Pattern Start 0:00
Report Timestep 1:00
Report Start 0:00
Start ClockTime 12 pm
Statistic None

[REPORT]
STATUS NO

[END]

End of “R21.inp”
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Optimisation file: “R21.opm”

[TITLE]
R21 Corridor WDS (Atteridgeville, Erkuhuleni)

[UNITS]
FLOW CMS
ROUGHNESS HW
COST R

[PIPE COST]
SZ 127 145 182 227 286 322 363 428 479 530
574 626 675 726
SZ 777 828 878 929 976 1074 1176 1366 1568 1773
1970 2174
FN1 263 293 374 500 714 869 1058 1353 1472 1684
1832 2228 2346 2557
FN1 2687 3060 3062 3335 3539 4564 5078 7599 9551 10634
13426 14688
FN2 31000 36000 46000 59000 77000 89000 103000 126000 146000 166000
185000 207000 230000 254000
FN2 279000 306000 332000 361000 387000 446000 511000 643000 798000 971000
1153000 1356000

[PIPE SIZE GROUPS]
;Id Option / Size in (mm)

SZ1 127 145 182 227 286 322 363 428 479 530 574 626 675 726
SZ1 777 828 878 929 976 1074 1176 1366 1568 1773 1970 2174 E

[PIPE OPTION GROUP 1]
PIPES All
TYPE new
PRICE FUNC FN1
SIZE GROUP SZ1
NEW ROUGHNESS 0.0
SPECIAL COST 0.0

[PIPE OPTION GROUP 2]
PIPES 282
TYPE new
PRICE FUNC FN1
SIZE GROUP SZ1
NEW ROUGHNESS 0.0
SPECIAL COST 100000

[PIPE CONSTRAINTS]
;Id MinFlushVelocityAtPeak (m/s) MaxVelocity (m/s) MaxEnergyGradient
ID MNFLV MXV MXEG
All 0 2.68224 100
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[LOADING CONDITION 1]
TYPE Steady State
DESCRIPTION Peak Condition 1
;FAILED PIPES
;FAILED PUMPS
DEMAND FACTOR 4
MIN HEAD -1.E10
MAX HEAD 1.E10

NODE FLOW MINHEAD MAXHEAD
86 0 -100 92
88 10.3 30 92
90 0 -100 92
91 0 -100 92
92 10.3 30 92
96 0 -100 92
97 10.3 30 92
101 0 -100 92
102 4.5 25 92
106 0 -100 92
107 4.5 25 92
111 7.9 25 92
116 7.9 25 92
117 7.9 25 92
121 7.9 25 92
122 7.9 25 92
126 7.9 25 92
131 7.9 25 92
136 7.9 25 92
141 7.9 25 92
146 7.9 25 92
150 7.9 25 92
151 7.9 25 92
155 7.9 25 92
157 7.9 25 92
158 0 -100 92
162 0 -100 92
163 0 -100 92
167 0 -100 92
172 0 -100 92
177 0 25 92
182 0 25 92
187 2.2 25 92
192 2.2 25 92
197 2.2 25 92
202 2.2 25 92
207 2.2 25 92
212 0 25 92
217 4.5 25 92
222 4.4 30 92
227 4.4 30 92
232 2.2 25 92
237 2.2 25 92
242 2.2 25 92
247 2.2 25 92
252 2.2 25 92
257 3.7 25 92
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262 3.7 25 92
267 3.7 25 92
277 0 30 92
282 9.5 35 92
287 9.5 35 92
292 9.5 35 92
297 9.5 35 92
302 9.5 35 92
307 9.5 35 92
312 9.5 35 92
317 3.9 30 92
322 3.9 30 92
332 3.9 30 92
337 4.5 25 92
342 3.9 30 92
347 3.9 30 92
357 0 25 92
362 8.7 35 92
367 8.7 35 92
372 8.7 35 92
377 8.7 35 92
382 8.7 35 92
387 8.7 35 92
397 10.3 30 92
402 10.3 30 92
407 10.3 30 92
412 10.3 30 92
417 10.3 30 92

[LOADING CONDITION 2]
TYPE Steady State
DESCRIPTION Fire Condition 1
;FAILED PIPES
;FAILED PUMPS
DEMAND FACTOR 2
MIN HEAD -1.E10
MAX HEAD 1.E10

NODE FLOW MINHEAD MAXHEAD
86 0 -100 92
88 10.3 9 92
90 0 -100 92
91 0 -100 92
92 10.3 9 92
96 0 -100 92
97 10.3 9 92
101 0 -100 92
102 4.5 8 92
106 0 -100 92
107 4.5 8 92
111 7.9 8 92
116 7.9 8 92
117 7.9 8 92
121 7.9 8 92
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122 7.9 8 92
126 7.9 8 92
131 7.9 8 92
136 7.9 8 92
141 7.9 8 92
146 7.9 8 92
150 7.9 8 92
151 7.9 8 92
155 7.9 8 92
157 7.9 8 92
158 0 -100 92
162 0 -100 92
163 0 -100 92
167 0 -100 92
172 0 -100 92
177 0 8 92
182 0 8 92
187 2.2 8 92
192 2.2 8 92
197 2.2 8 92
202 2.2 8 92
207 2.2 8 92
212 0 8 92
217 4.5 8 92
222 4.4 9 92
227 4.4 9 92
232 2.2 8 92
237 2.2 8 92
242 2.2 8 92
247 2.2 8 92
252 2.2 8 92
257 3.7 8 92
262 3.7 8 92
267 3.7 8 92
277 0 9 92
282 9.5 10 92
287 25 15 92
292 25 15 92
297 25 15 92
302 25 15 92
307 9.5 10 92
312 9.5 10 92
317 3.9 9 92
322 3.9 9 92
332 3.9 9 92
337 4.5 8 92
342 3.9 9 92
347 3.9 9 92
357 0 8 92
362 8.7 10 92
367 8.7 10 92
372 8.7 10 92
377 8.7 10 92
382 8.7 10 92
387 8.7 10 92
397 10.3 9 92
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402 10.3 9 92
407 10.3 9 92
412 10.3 9 92
417 10.3 9 92

[ECONOMIC OPTIONS]
PUMPING COSTS no

[OTHER OPTIONS]
OPTIMIZATION METHOD unspecified
OPTIMIZATION TIME LIMIT 31536000
STATIC FLOW yes
INCLUDE BASE DEMAND SCENARIO no
INCLUDE INITIAL no
OPTIMIZE PUMP SCHEDULE no
PENALTY FACTOR 30156608915
HYPERVOLUME THRESHOLD 0.0005
POPULATION SIZE 100
GENERATIONS 10000000
CROSSOVER PROBABILITY 1
MUTATION PROBABILITY 0.01

;Whichever termination condition of Generations, Time limit, or Hypervolume convergence periods is
reached first will result in termination (use with caution).

[END]

End of “R21.opm”

Table D.1: Demand loading condition for the MOD bench-
mark.

Demand MaxPres Demand MaxPres Demand MaxPres
Node (ℓps) m Node (ℓps) m Node (ℓps) m

1 0.000 06 35.007 91 0.002 00 39.305 181 0 44.108
2 0.001 45 34.875 92 0.002 24 38.860 182 0.000 01 43.953
3 0.005 13 35.797 93 0.000 20 38.571 183 0.001 84 43.366
4 0.002 76 37.254 94 0.002 27 36.861 184 0.000 04 42.690
5 0.000 96 38.235 95 0.001 44 37.332 185 0.001 68 42.155
6 0.000 78 38.545 96 0.002 67 37.395 186 0.002 37 41.674
7 0.001 03 38.545 97 0.000 60 37.529 187 0.000 09 40.806
8 0.002 12 38.413 98 0.002 76 37.503 188 0.001 23 41.325
9 0.001 16 36.321 99 0.000 05 37.761 189 0.003 90 41.271
10 0.001 78 37.497 100 0.002 06 39.724 190 0.001 17 41.157
11 0.000 44 38.000 101 0.003 19 40.243 191 0.001 70 40.728
12 0.000 03 37.112 102 0.004 69 40.840 192 0.002 15 40.732
13 0.000 57 36.426 103 0.001 70 40.716 193 0.004 00 42.296
14 0.000 36 37.481 104 0.000 02 40.754 194 0.004 46 40.095
15 0.003 30 33.243 105 0.000 10 41.123 195 0.000 05 41.111
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Demand MaxPres Demand MaxPres Demand MaxPres
Node (ℓps) m Node (ℓps) m Node (ℓps) m

16 0.000 03 35.150 106 0.001 11 39.650 196 0.000 01 40.155
17 0.002 10 34.971 107 0.001 02 40.227 197 0.004 12 39.473
18 0.004 67 37.906 108 0.000 88 40.203 198 0.000 39 40.061
19 0 37.739 109 0.002 33 40.546 199 0.000 15 39.966
20 0.001 53 36.785 110 0.000 31 40.580 200 0.001 82 39.565
21 0.004 61 37.188 111 0.000 45 42.183 201 0.003 43 39.796
22 0.001 06 36.877 112 0.002 96 39.742 202 0.000 62 37.800
23 0.001 32 37.513 113 0.008 12 40.287 203 0.004 17 38.297
24 0.002 74 39.295 114 0.001 76 39.576 204 0.002 26 39.469
25 0.000 59 39.387 115 0.005 96 38.544 205 0.001 01 37.735
26 0.000 45 39.846 116 0 43.811 206 0.000 54 38.303
27 0.000 64 40.175 117 0.006 34 43.905 207 0.000 77 36.621
28 0.007 11 38.355 118 0 43.769 208 0.000 33 36.465
29 0.000 93 38.204 119 0 43.797 209 0.001 15 37.637
30 0.000 04 38.403 120 0.003 03 43.480 210 0.001 53 37.262
31 0.000 02 38.361 121 0.001 85 43.468 211 0 37.842
32 0.002 93 38.700 122 0.001 77 42.755 212 0.000 30 38.010
33 0.002 34 41.239 123 0.001 48 42.500 213 0.000 32 37.200
34 0.001 94 41.163 124 0 42.452 214 0.000 56 34.201
35 0.001 19 40.987 125 0.001 32 42.402 215 0 34.651
36 0.001 41 41.800 126 0.002 24 40.740 216 0.000 19 33.502
37 0.002 98 41.853 127 0.001 26 42.229 217 0.001 42 33.340
38 0.002 11 41.935 128 0.005 39 42.640 218 0.000 59 39.451
39 0.007 74 40.935 129 0.001 00 42.083 219 0.001 48 40.580
40 0.004 29 42.905 130 0.001 61 41.498 220 0.000 92 42.356
41 0.007 78 43.119 131 0.004 71 40.874 221 0.000 33 40.333
42 0.003 75 41.833 132 0.002 64 38.134 222 0.000 06 39.403
43 0.002 37 41.001 133 0.002 11 38.806 223 0.000 46 42.951
44 0.001 42 40.929 134 0.001 51 38.976 224 0.000 72 42.755
45 0.000 32 40.726 135 0.000 84 38.940 225 0 42.434
46 0.001 14 40.363 136 0.001 05 38.583 226 0 42.556
47 0.001 23 40.820 137 0.001 16 39.133 227 0.000 20 42.843
48 0.001 37 40.794 138 0.002 45 39.443 228 0.000 08 43.460
49 0.001 18 42.823 139 0.001 66 40.375 229 0.001 30 43.450
50 0.001 81 41.155 140 0 35.150 230 0.001 07 36.008
51 0.000 97 41.668 141 0 35.396 231 0.001 03 38.816
52 0.000 55 41.722 142 0 34.659 232 0.000 03 39.110
53 0.002 77 35.224 143 0.000 80 34.659 233 0.001 15 39.612
54 0.000 65 37.377 144 0.000 33 35.051 234 0.001 43 39.642
55 0.001 38 38.016 145 0.000 34 34.795 235 0.004 86 39.505
56 0.008 28 38.084 146 0.001 02 36.549 236 0.004 71 41.959
57 0.001 22 38.365 147 0.001 23 36.890 237 0.001 34 40.087
58 0.003 85 38.451 148 0.000 09 36.549 238 0.001 87 38.343
59 0.002 62 37.735 149 0.000 43 38.814 239 0.000 82 39.195
60 0.002 78 39.016 150 0.001 56 39.183 240 0.000 94 39.329
61 0.001 56 39.451 151 0.000 80 38.690 241 0.000 09 41.582
62 0.001 16 39.395 152 0.001 38 38.688 242 0.001 28 41.434
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Demand MaxPres Demand MaxPres Demand MaxPres
Node (ℓps) m Node (ℓps) m Node (ℓps) m

63 0.001 22 36.549 153 0.000 53 38.481 243 0.000 43 42.590
64 0.002 93 36.058 154 0.000 59 36.246 244 0.000 51 42.498
65 0.001 13 36.693 155 0.002 33 36.996 245 0 42.452
66 0.001 12 36.282 156 0.000 03 36.964 246 0.000 01 42.446
67 0.000 48 35.773 157 0.000 31 37.421 247 0.000 01 43.795
68 0.001 37 35.547 158 0.008 49 37.745 248 0 43.168
69 0.002 26 34.799 159 0.000 32 38.615 249 0.001 75 38.204
70 0.001 31 33.911 160 0.000 21 38.732 250 0.001 03 38.669
71 0.001 06 33.688 161 0.000 02 39.796 251 0.001 26 37.555
72 0.000 38 33.436 162 0.001 23 39.131 252 0.001 36 36.487
73 0.001 76 33.047 163 0.000 99 39.507 253 0.000 14 37.850
74 0.000 56 32.670 164 0.000 55 38.573 254 0 37.595
75 0 33.065 165 0.000 78 38.235 255 0.001 96 37.727
76 0.004 64 33.408 166 0.000 27 41.833 256 0.002 21 43.003
77 0.001 03 33.757 167 0.000 27 41.746 257 0.000 62 35.849
78 0.003 08 35.895 168 0.000 07 41.616 258 0 34.957
79 0.001 60 37.585 169 0.009 47 40.415 259 0.000 50 34.919
80 0.004 49 37.751 170 0.002 64 38.407 260 0.000 11 34.919
81 0.001 25 37.687 171 0.001 02 38.451 261 0.000 12 33.949
82 0.000 87 37.455 172 0.000 88 38.459 262 0.000 22 33.714
83 0.000 72 38.617 173 0.000 49 38.483 263 0.001 28 33.546
84 0.000 49 38.046 174 0 42.743 264 0.000 19 36.745
85 0.003 92 38.339 175 0.001 12 42.590 265 0.000 22 38.537
86 0.000 94 39.509 176 0 42.701 266 0.001 19 37.691
87 0.003 33 38.888 177 0 43.017 267 0.001 69 38.289
88 0.004 17 39.608 178 0.000 01 43.384 268 0.000 43 38.888
89 0.001 44 38.914 179 0 43.404 - - -
90 0.001 84 38.800 180 0 43.306 - - -
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Contents of Dissertation CD

A compact disc accompanies this dissertation, including software, data and electronic docu-
ments, organized into the folders Code, EPANET2, GSL and WDS Benchmarks. These
folders are described next.

Code

This folder includes the C++ source code of the optimisation software developed for this dis-
sertation, the majority of which appear in the subfolder Waternet. The most important files
here include:

alg admoea.h
alg anima.h
alg de.h
alg greedy.h
alg nsgaii.h
alg pbb.h
alg pso.h
alg speaii.h
algorithms.h
earchive.h
elements.h
epanet2.dll
epanet2.h
epanet2.lib
epanet2vc.lib
network.h
optimizer.h
options.h
stdafx.h
utils.h
Waternet.cpp
Waternet2.sln

EPANET2

This folder contains the setup file for EPANET Version 2.00.12, as well as the source code and
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programmers toolkit in zipped format. The EPANET 2 manual is also included here, as well
as the source code making up the OOTEN toolkit. These programs are freely available for
download. EPANET is available from the US EPA website [81]. These files are:

EN2setup.exe
EN2source.zip
EN2toolkit.zip
EPANET2manual.pdf
ooten.zip

GSL

The freely available open source GNU Scientific Library v1.13 was used for this dissertation.
The software and reference manual are provided as:

gsl-1.13.tar.gz
gsl-ref.ps

WDS Benchmarks

The input and optimisation files of the ten WDS systems used in this dissertation are included
in this folder. These files include:

black.inp
black.opm
exnet.inp
exnet.opm
foss poly 1.inp
foss poly 1.opm
hanoi.inp
hanoi.opm
modena.inp
modena.opm
nytun.inp
nytun.opm
pescara.inp
pescara.opm
R21.inp
R21.opm
trp.inp
trp.opm
tln.inp
tln.opm




