
A decision support system for scheduling the
harvesting and wine making processes at a winery

Adri van der Merwe

Thesis presented in partial fulfilment of the requirements for the degree
MSc (Operations Research)

Department of Logistics,
University of Stellenbosch, South Africa

Supervisor: Prof JH van Vuuren
Co-Supervisor: Dr FE van Dyk December 2009

Declaration

By submitting this dissertation electronically, I declare that the entirety of the work contained
therein is my own, original work, that I am the owner of the copyright thereof (unless to the
extent explicitly otherwise stated) and that I have not previously in its entirety or in part sub-
mitted it for obtaining any qualification.

December 2009

Copyright c© 2009 Stellenbosch University
All rights reserved

Abstract

Technological advances made over the past century have had a major impact on traditional
wineries. Software solutions for management issues are widely available and give rise to the
prospect of computerized decision support systems assisting in various aspects of managing a
winery. The most popular applications seem to be concerned with supply chain management
or harvest scheduling. Such projects are under way all over the globe and great success has
been achieved to this effect. However, prior to this study no such project has been considered
in South Africa.

The phrase active cellar scheduling problem refers to the assignment of grape batches to pro-
cessors inside the cellar where bottlenecks often occur during the busy harvesting period. The
phrase harvest scheduling problem, on the other hand, refers to selecting the best possible dates
to harvest the respective vineyard blocks in order to preserve grape quality.

A mixed integer programming model for the active cellar scheduling problem is derived in
this thesis, but proves to be too time consuming to solve exactly via the branch-and-bound
method. A meta-heuristic tabu search approach is therefore designed to solve the problem
approximately instead. When applied to a small, fictitious cellar, it is found that the tabu
search method often solves the problem optimally. The computer processing time associated
with the tabu search approach also constitutes a significant (often thousand-fold) improvement
over that of the branch-and-bound approach for realistically sized problem instances.

A generic tabu search is also designed to solve the over-arching harvest scheduling problem for
a general winery. This schedule is found by referring to the smaller tabu search of the active
cellar scheduling in order to verify the impact that harvesting moves have on activities in the
cellar. One harvesting schedule is considered a better schedule than another when it has a lower
harvest evaluation score, determined by the placement of the vineyard blocks in the harvesting
schedule. The harvest evaluation score takes into account the combination of vineyard blocks
selected for harvesting on the same day (and their effect on the active cellar) as well as the
ripeness and quality of the grapes.

Both tabu searches are finally included in a flexible, computerized decision support system,
called VinDSS. This system is found to produce good harvesting schedules when compared
to an actual five day schedule during the 2009 harvesting period at Wamakersvallei, a winery
serving as case study for this thesis.

Uittreksel

Tegnologiese vooruitgang oor die afgelope eeu het ’n groot invloed op tradisionele wynkelders
gehad. Sagteware-oplossings wat besluitsteun tot bestuursaangeleenthede bied, is algemeen
beskikbaar en het gelei tot die rekenaarmatige implementering van besluitsteunstelsels vir
wynkelders. Dit blyk dat die mees populêre besluitsteuntoepassings in die wynindustrie te
make het met besluite rakende van voorsieningskettings en oes-skedulering. Sulke besluitsteun-
projekte is wêreldwyd onderweg en het alreeds groot sukses behaal. Daar is egter tot dusver
geen so ’n projek in Suid-Afrika onderneem nie.

Die frase aktiewe kelderskeduleringsprobleem verwys na die toekenning van druifvragte aan
masjiene binne die kelder waar bottelnekke algemeen tydens die besige parstydperk voorkom.
Die frase oes-skeduleringsprobleem, daarenteen, verwys na die seleksie van bes moontlike oes-
datums vir elk van die wingerdblokke om sodoende druifkwaliteit te verseker.

’n Gemengde heeltallige programmeringsmodel is vir die aktiewe kelderskeduleringsprobleem
ontwikkel, maar die rekenaaroplossingstyd van hierdie benadering blyk te lank te wees om die
probleem eksak deur middel van ’n vertak-en-begrens metode op te los. ’n Meta-heuristiese tabu
soektog is dus ontwikkel om die probleem benaderd op te los. Wanneer hierdie benadering op ’n
klein, fiktiewe kelder toegepas word, word optimale oplossings dikwels verkry. Verder toon die
rekenaaroplossingstyd van die tabu soektog ’n groot (in sommige gevalle byna ’n duisendvoudige)
verbetering op dié van die eksakte oplossingsmetode.

’n Generiese tabu soektog is ook ontwikkel om die oorkoepelende oes-skeduleringsprobleem vir
’n algemene wynkelder op te los. So ’n oes-skedule word gevind deur na die kleiner tabu soektog
vir die aktiewe kelderskedulering te verwys om sodoende die effekte van veranderinge in die oes-
skedule op die prosesse binne die aktiewe kelder na te speur. Een oes-skedule word beter as ’n
ander skedule beskou wanneer dit met ’n beter oes-evalueringswaarde gepaard gaan, soos deur
die plasing van die wingerdblokke in die skedule bepaal. Die oes-evalueringswaarde neem die
moontlike kombinasies van wingerblokke wat op dieselfde dag geoes word, in ag (en ook die
effek wat dit op aktiwiteite in die kelder het), asook die rypheid en kwaliteit van die druiwe.

Beide tabu soektogte word in ’n plooibare, rekenaar-gëımplementeerde besluitsteunstelsel, be-
kend as VinDSS, ingesluit. Daar word gevind dat hierdie stelsel goeie oes-skedules lewer
wanneer dit vergelyk word met ’n werklike vyf-dag skedule tydens die 2009 parsseisoen van
Wamakersvallei, die kelder wat as gevallestudie vir hierdie tesis gedien het.

Terms of Reference

Although this project is of a generic nature, Wamakersvallei Winery, situated in Wellington,
South Africa, served as a case study for this thesis. The initial problem identified wss to focus
on the merging of Wamakersvallei Winery with two other Wellington cellars. There would thus
be three facilities to which grapes may be transported for processing during the harvesting
season. A decision support system was sought to assist in deciding to which facility a vineyard
block should be assigned, taking into account the processes required for the production of wine
as well as the processors available at each of the facilities. However, the merger never took place
and the project was steered in a different direction with the active cellar and harvest scheduling
problems currently considered as the main focus. The first two years of the project was funded
by the CSIR in the form of a bursary to the author.

Prof JH van Vuuren was the supervisor for this thesis. At the commencement of this project in
February 2007, he occupied the position of Associate Professor at the Department of Applied
Mathematics of the University of Stellenbosch. During the course of this project, Prof JH
van Vuuren was promoted to full Professor and Subject Head of Operations Research and
Quantitative Management at the University of Stellenbosch. Dr FE van Dyk, of the Logistics
and Quantitative Methods section of the Built Environments Department of The Council for
Scientific and Industrial Research (CSIR), acted as co-supervisor of this project. Facilities
of both the Applied Mathematics division, Department of Mathematical Sciences, and the
Operations Research and Quantitative Management division, Department of Logistics, of the
University of Stellenbosch were used during the course of this project which was completed in
June 2009.

Acknowledgements

The author of this thesis hereby wishes to personally express her gratitude towards those who
played a significant role during the progress of this thesis:

• Prof van Vuuren for his dedication, guidance and support during the good times and
especially for his understanding and patience during the more difficult times throughout
the duration of this project and also for his mutual interest and support of the South
African wine industry.

• Dr FE van Dyk for the idea of this project and her dedication, guidance and support
during the duration of this project, as well as all the kind words of encouragement before
workshop presentations and the opportunity to attend such a workshop in Santiago, Chile.

• The Department of Mathematical Sciences (Division of Applied Mathematics) as well as
the Department of Logistics (Division Operations Research and Quantitative Manage-
ment) of the University of Stellenbosch (South Africa), for the use of their computing
facilities.

• The Council for Scientific and Industrial Research (CSIR) for funding the first two years
of this project and also for granting me the opportunity to represent the CSIR along with
Dr FE van Dyk at a workshop in Santiago, Chile.

• Wamakersvallei Winery for their support of this project and their willingness to provide
information and data, as well as the occasional (significant) discount on purchases made
at their cellar.

• All of my Applied Mathematics and Operations Research office colleagues over the past
two and a half years for creating a fun and supportive environment to work in as well
as a strong basis of moral and technical support, especially Frank Ortmann for helping
with the proofreading of my thesis and for always finding time to help others with LATEX
emergencies.

• My family whom I love dearly, parents for the moral and financial support over the years
and for giving me the opportunity to attain my University of Stellenbosch education,
as well as my brother for the support and also the relaxing lunches and conversations
empowering me to push through during the difficult times.

• Last but not at all least, my friends for their moral support and for understanding the
pressure of the last month during which my time was dedicated only towards completing
my thesis, those who joined me for an unforgettable time in Thailand resulting in a
refreshed vitality with which I could focus on my thesis and Daneel Smuts who often bore
the brunt of my thesis frustration and supported me throughout this thesis more than
anyone could realize.

Table of Contents

List of Figures vii

List of Algorithms ix

List of Tables xi

Glossary xv

List of Acronyms xix

List of Reserved Symbols xxi

1 Introduction 1

1.1 A brief history of South African wine . 1

1.2 Informal problem description . 4

1.3 Scope and objectives . 5

1.4 Thesis overview . 5

2 The South African wine industry 7

2.1 Organisational structure of the South African wine industry 7

2.1.1 The development of the organisational structure 8

2.1.2 The current organisational structure . 9

2.2 Wine production in South Africa . 11

2.2.1 Wine producing regions . 12

2.2.2 Wine production statistics . 14

2.2.3 The import and export of wine in South Africa 17

2.3 From the vine to wine . 21

2.3.1 Viticulture (grape growing) . 21

2.3.2 Oenology (wine making) . 25

i

ii Table of Contents

2.4 Chapter overview . 31

3 Methodological background 33

3.1 Introduction to the scheduling problem . 34

3.1.1 Machine environment . 34

3.1.2 Processing restrictions and constraints . 36

3.1.3 Performance measures and optimality criteria 37

3.1.4 Representation of task sets and the corresponding schedules 38

3.2 A concise survey of literature . 42

3.2.1 The job shop scheduling problem . 43

3.2.2 Decision support in the wine industry . 45

3.3 Solving scheduling problems via mathematical programming 46

3.3.1 Mixed integer programming in the context of scheduling 46

3.3.2 The branch-and-bound method . 48

3.4 Tabu search methodology . 50

3.5 Chapter overview . 53

4 Formal problem statement 55

4.1 Wamakersvallei Winery . 55

4.1.1 Cellar location and layout . 55

4.1.2 Cellar machinery and location . 57

4.1.3 The staff at Wamakersvallei . 61

4.1.4 The product . 62

4.2 From the vineyards to the press . 65

4.2.1 Harvesting the grapes . 65

4.2.2 Scheduling the arrival of the grapes . 67

4.2.3 On arrival at the winery . 68

4.3 Production flow and layout inside the cellar . 70

4.3.1 Production flow of white grapes . 71

4.3.2 Production flow of red grapes . 72

4.4 EzyWine . 73

4.5 Chapter overview . 74

5 Mathematical formulation of the cellar scheduling problem 75

5.1 Defining the workspace mathematically . 75

5.1.1 Jobs and their characteristics . 76

Table of Contents iii

5.1.2 Processors and their characteristics . 76

5.1.3 Further parameters and variables . 77

5.2 Model formulation disregarding pipe assignment 80

5.2.1 The constraint sets . 81

5.2.2 Objective function . 88

5.3 Chapter overview . 91

6 Tabu Search solution of the cellar scheduling problem 93

6.1 The initial solution . 95

6.1.1 Assignment of jobs to the tipping bins . 95

6.1.2 Further assignment of Type I jobs . 96

6.1.3 Further assignment of Type II jobs . 99

6.1.4 Further assignment of Type III jobs . 100

6.2 Evaluating a solution . 102

6.2.1 The cellar packing algorithm . 102

6.2.2 Evaluating an assignment to the red fermentation tanks 107

6.3 Generating candidate moves and selecting the best move 109

6.3.1 The general ejection chain move and further communal move aspects . . . 110

6.3.2 Move Type A: Tipping bins . 115

6.3.3 Move Type B: separators . 116

6.3.4 Move Type C: presses . 117

6.3.5 Move Type D: separator or press assignment of Tj2 118

6.3.6 Move Type E: red fermentation tanks . 119

6.4 Solving the cellar scheduling problem with a tabu search 121

6.5 Chapter overview . 127

7 The harvest scheduling problem at Wamakersvallei Winery 129

7.1 Defining the harvest scheduling attributes . 129

7.2 The initial harvest schedule . 131

7.3 Evaluating a harvest schedule . 133

7.3.1 Creating cellar scheduling scenarios . 133

7.3.2 Calculating the harvest evaluation score 137

7.4 Generating candidate moves and selecting the best move 141

7.5 Solving the harvest scheduling problem with the tabu search 145

7.6 Chapter overview . 145

iv Table of Contents

8 The Wamakersvallei decision support system 147

8.1 Required changes to the tabu searches . 148

8.1.1 A new generation approach for candidate moves on the presses 148

8.1.2 Job generation for the active cellar scheduling problem 149

8.1.3 Generating moves in the harvest scheduling problem 150

8.1.4 Evaluation a harvesting schedule . 150

8.2 The decision support system applied to Wamakersvallei 152

8.2.1 Importing data . 152

8.2.2 Solving the harvest scheduling problem with VinDSS 154

8.2.3 Generating the candidate list of moves . 158

8.3 A short analysis of the performed tabu search . 159

8.4 The suggested schedule vs Wamakersvallei selection 161

8.5 Chapter overview . 163

9 Conclusion 165

9.1 Thesis summary . 165

9.2 Suggestions and recommendations . 166

9.3 Possible future work . 167

9.3.1 Improving the cellar and harvest scheduling problems 167

9.3.2 Improving the mathematical representation of winery characteristics . . . 169

9.3.3 Improving the functionality of VinDSS 169

References 171

A Processor specifications 181

A.1 Tank capacities and processor numbering . 181

A.1.1 Tank capacities . 181

A.1.2 Processor numbers . 188

A.2 Grape Intakes . 188

B Mathematical formulation of the scheduling problem 191

B.1 IP formulation without pipe assignment . 191

B.2 Solving the problem instance in Example 5.1 . 193

B.3 The IP formulation including pipe assignment . 198

C Wamakervallei harvesting application data 205

C.1 Sample sugar levels . 205

Table of Contents v

C.2 Example information . 217

D VinDSS user manual 219

D.1 Importing data from Excel . 219

D.2 Generating a harvesting schedule from the imported data 220

vi Table of Contents

List of Figures

2.1 The institutional organization of the South African wine industry 9

2.2 The institutional organization of the South African Wine Industry Council . . . 10

2.3 The institutional organization of the South African Wine Industry Trust 11

2.4 The South African wine producing regions . 13

2.5 A schematic illustration of viticulture practices in South Africa 22

2.6 A flowchart for making white table wine . 26

2.7 A flowchart for making dry red table wine . 30

3.1 The precedence relation of the nine jobs in Example 3.3 40

3.2 A Gantt chart representation of a solution to a scheduling problem 40

3.3 A single vertex of the disjunctive graph representation 41

3.4 The uncompleted disjunctive graph of Example 3.4 42

3.5 The completed disjunctive graph from Figure 3.4 42

3.6 The branching tree for of Example 3.5 . 50

4.1 The view of the Wamakersvallei Winery building from the parking area 56

4.2 A map of the Cape winelands, with Wellington at the top, middle 57

4.3 A floor plan of the cellar layout at Wamakersvallei 58

4.4 Tipping bins, crusher and destemmer . 59

4.5 Stainless steel fermentation tanks . 61

4.6 Wine bottles displaying two of the Wamakersvallei labels 63

4.7 A typical grape harvester . 66

4.8 A form containing information regarding samples received 67

4.9 An example of the list of vineyard blocks selected by the Wamakersvallei team . 69

4.10 The weighing station at Wamakersvallei . 70

4.11 The layout of pipes in the Wamakersvallei cellar 71

4.12 Production options for white wine at Wamakersvallei wine cellar 72

vii

viii List of Figures

4.13 Production options for red wine at Wamakersvallei wine cellar 73

5.1 The cellar graph representation of the active cellar at Wamakersvallei Winery . . 78

5.2 The cellar graph for the active cellar used in Example 5.1 86

5.3 Minimum makespan Gantt chart for Example 5.1 89

5.4 Total completion time Gantt chart for Example 5.1 90

6.1 An outline of the Tabu Search applied to the active cellar scheduling problem . . 94

6.2 The initial cellar graph for the active cellar situation in Example 6.5 104

6.3 The final cellar graph for the active cellar from Figure 6.2 105

6.4 The Gantt chart for the active cellar assignment 107

8.1 A screen shot of the user interface of VinDSS after importing data 153

8.2 A screen shot of the user interface of VinDSS displaying a solution 162

B.1 The numbered cellar graph for the small, fictitious active cellar 199

D.1 A screen shot of the exact format of the Excel input file 220

D.2 A screen shot of the drop down month selection function in VinDSS 222

List of Algorithms

3.1 The general framework of a tabu search . 52

6.1 Initial active cellar assignment for the tipping bins 97

6.2 Further initial active cellar assignment for Type I jobs 98

6.3 Further initial active cellar assignment for Type II jobs 99

6.4 Further initial active cellar assignment for Type III jobs 101

6.5 Evaluating a possible solution . 103

6.6 Initialize times(o, t,f ,m) . 103

6.7 Update with arrival times(o, e) . 104

6.8 Apply forward move(o,om, t,f ,m1) . 106

6.9 Evaluate a red fermentation tank assignment . 108

6.10 The general ejection chain move . 111

6.11 Check correct order . 112

6.12 checkAndAddPair(pairs, j1, j2) . 113

6.13 Update influenced machine . 114

6.14 Selecting the best candidate solution . 115

6.15 Move on tipping bins . 115

6.16 Move on separators . 116

6.17 Move on presses . 117

6.18 Move on b of Type II jobs . 118

6.19 Move on red fermentation tanks . 119

6.20 createFeasibleList(Le) . 120

6.21 createRealListAndEvaluate(Lf) . 121

6.22 The cellar scheduling tabu search . 122

7.1 Generating the order of assignment for the initial harvesting schedule 132

7.2 Generating arrival times . 137

7.3 Evaluating a harvest schedule . 139

7.4 determineSugarLevelScore(Hx) . 140

ix

x List of Algorithms

7.5 Generating the list of swap moves . 141

7.6 createListOfSwapMoves(b, d, p,H) . 143

7.7 chooseAndApplyBestMove(L, Ω, b) . 144

7.8 The harvest scheduling tabu search . 145

8.1 determineSecondSugarLevelScore(Hx) . 152

List of Tables

2.1 Geographic distribution of South African wine grape vineyards 12

2.2 South African grape varieties as percentage of total area 14

2.3 The distribution between red and white wines produced 15

2.4 The white grape varieties as a percentage of total white grape area in South Africa 16

2.5 The red grape varieties as a percentage of total red grape area in South Africa . 16

2.6 The wine production and per capita consumption per country 17

2.7 The volume share per country of the world wine exports 18

2.8 The value share per country of the world wine exports 18

2.9 The volume share per country of the world wine imports 19

2.10 The value share per country of the world wine imports 19

2.11 Packaged and bulk natural wine exports ranked per receiving country 20

2.12 Imports to South Africa, bottled and bulk . 21

3.1 The predecessor requirements for each of the nine jobs in Example 3.3 39

3.2 The processors (Pi) assigned to each of the tasks Tjk in Example 3.4 41

3.3 A summary of the optimization algorithms for the scheduling problem 43

3.4 A summary of the heuristics for the scheduling problem 44

3.5 The characteristics of the single machine scheduling problem of Example 3.6 . . . 52

3.6 The neighbourhood of schedule s2 in Example 3.6 along with the move values . . 53

3.7 The neighbourhood of schedule s3 in Example 3.6 along with the move values . . 53

3.8 The neighbourhood of schedule s4 in Example 3.6 along with the move values . . 53

4.1 The functions and theoretical total capacities (in litres) of the different stores . . 62

4.2 A price list of the La Cave and Bains Way wines 63

4.3 A price list of the Wamakersvallei dessert wines and 33◦ South wines 64

4.4 Summary of grape grading according to sugar level 68

4.5 Summary of the annual grape intakes at Wamakersvallei cellar 70

xi

xii List of Tables

5.1 The different tasks required in order to process a load of red grapes 80

5.2 The different tasks required in order to process a load of white grapes 80

5.3 The allowed capacities ci of the machines (P4, . . . , P15) 86

5.4 The jobs to be scheduled and the allowed red fermentation tanks of Example 5.1 87

5.5 The duration of processing pijk for task Tjk in Example 5.1 87

6.1 The distribution of assigning Type I or Type II jobs 96

6.2 The final order matrix o in Example 6.3 in table form 101

6.3 The makespan υ(a) for every move a in list Lr 126

6.4 The number of optimal schedules found with the active cellar tabu search 126

7.1 The most recent sample sugar levels of the cellar considered in Example 7.1 . . . 131

7.2 The frequency of sb batches for vineyard blocks smaller than 21 tonnes 134

7.3 The frequency of sb batches for vineyard blocks between 21 and 51 tonnes 134

7.4 The frequency of sb batches for vineyard blocks between 51 and 71 tonnes 134

7.5 The frequency of batch sizes for vineyard blocks larger than 91 tonnes 135

7.6 The resulting jobs after splitting the blocks in Example 7.4 136

7.7 The types 0, 1, 2 and 3 of the harvesting schedule entries 142

7.8 The swap move restrictions . 142

8.1 The list of blocks constructed from the sample sugar levels 155

8.2 The initial harvesting schedule, HI . 158

8.3 An analysis of harvesting schedules H50 and H100 160

8.4 An analysis of H100 and the Wamakersvallei harvest 163

A.1 Physical capacities of the tanks found in Stores A to F of Wamakersvallei cellar . 182

A.2 Values of Pi for machinery in the active cellar, excluding fermentation tanks. . . 188

A.3 Daily grape intakes at Wamakersvallei Winery from 2000 to 2006 189

B.1 The values of all µijk for the processors, jobs and their tasks in Example 5.1 . . . 193

B.2 All non-zero setup times sij` for Example 5.1, expressed in hours 194

B.3 The different tasks with pipe assignments to process a load of red grapes 198

B.4 The different tasks with pipe assignments to process a load of white grapes . . . 198

B.5 The duration pijk of processing of task Tjk regarding pipe assignment 200

B.6 All non-zero setup times sij` for Example 5.1, expressed in hours 200

B.7 The values of ui1,i2 when including pipe assignments 201

C.1 The sugar levels of the samples received from January 26th to February 3rd . . . 205

List of Tables xiii

C.2 The sugar levels of the samples received from February 4th to February 12th . . 211

C.3 Jobs J1, . . . , J40 generated as part of the first scenario in §8.2 218

D.1 The abbreviations used to refer to the cultivars when importing data 221

xiv List of Tables

Glossary

A juice The free-run juice that is released from a press or separator before pressing.

B juice The juice released from a press after grape skins have been pressed.

Balling The concentration of a sucrose solution as the weight percentage of sucrose at 17.5◦C.

Brix A measurement of the dissolved sucrose level.

Buffer tank Used to collect juice when grapes are pressed, which may then be transported to
fermentation tanks.

Cooperative cellar A cellar which works on a communal basis processing grapes of their
farmer members into wine. All the grapes are pooled, so that farmers with poor quality
grapes benefit most.

Corporate cellar A cooperative cellar that has been transformed into a company that may
therefore make a profit.

Distilling wine Wine that is specially prepared for distillation to spirits and is intended for
use in brandy or other spirits, for fortification of wine or for industrial purposes.

Dedicated processors A set of processors, each with a specialized function.

Estate cellar A small farm with its own cellar where all the grapes used for producing wine
must come from the farm. An estate cellar may not buy in any grapes from other growers.

Feasible active cellar schedule A schedule for which no two processing time intervals over-
lap on the same machine in which a number of problem-specific characteristics are met.
Multiple processors may be used, but no two time intervals may be allocated to the same
job.

Feasible harvest cellar schedule A harvesting schedule for which no vineyard block is as-
signed to more than one day.

Fermentation The process by which sugar is transformed to alcohol.

Fermentation tank A stainless steel tank which is temperature-controlled and in which fer-
mentation of grapes occurs.

Flexible job shop A combination of the job shop and parallel processors environments, where
a job follows its own predetermined route through work centres.

xv

xvi Glossary

Flexible flow shop A combination of the flow shop and the parallel processors environments,
where a number of flow shop stages operate in series and in which all jobs follow the same
production route.

Flow shop A manufacturing facility where all jobs consist of the same number of tasks which
follow the same production route on the processors.

Flow shop stage A set of parallel processors used in the flexible flow shop machine environ-
ment.

Fortified wine Non-sparkling wine which has been fortified with wine spirit, including the
volume of wine spirit used in the fortification process.

Job A load of grapes that is received at a cellar for which processing consists of a fixed number
of tasks.

Job shop A manufacturing facility where each job follows its own predetermined production
route.

Job shop with machine repetition A job shop where more than one task of the same job
is allowed to be processed on a specific processor.

Lees Old English for the sediment that settles at the bottom of a container during maturation
of wine.

Maceration Leaving the partially fermented wine on the skins of red grapes to draw out more
tannin, colour and flavour during the red winemaking process.

Multi-purpose processor A machine that is equipped with different tools for processing
tasks.

Must The thick liquid that forms as a result of crushing grapes. It is a mixture of grape juice,
stem fragments, grape skins, seeds and pulp.

Natural wine Non-fortified and non-sparkling wine, including perlé wine. It further includes
any grape juice or must (concentrate) used to sweeten such natural wine.

Non-alcoholic Refers to unfermented, undiluted or concentrated juice from grapes destined
for use in non-alcoholic products such as fruit juices.

Non-preemtive schedule A production schedule in which a task may not be interrupted.

Oenologist A person who studied oenology and who makes wine as part of their daily activities.

Oenology The scientific study of making wine.

Open shop A production facility where each job has to be processed on each of the processors.

Parallel processors A set of identical processors in a production facility performing the same
function.

Perlé wine Wine that is carbonated to the extent that the pressure in the container in which
it is sold is between 75 and 300 kPa.

Phylloxera Louse-like aphids which attack only grapevines, killing these vines by attacking
their roots.

Glossary xvii

Pomace The skins, stalks and seeds that remain after making wine.

Precedence constraint A constraint that requires one or more production tasks to be com-
pleted before another production task may commence.

Precedence diagram A diagram showing elemental tasks and their precedence requirements.

Preemptive schedule A schedule allowing the processing of a task to be interrupted at any
point in time and a different job to commence processing on the machine instead.

Press A machine used to separate juice (or wine) from grapes and grape skins, which does so
by applying pressure to grapes or pomace.

Private cellar A cellar which is allowed to buy in (all) grapes for the production of its wine.

Processing time The time required on a specific processor (machine) to complete a specified
job or task.

Processor A machine on which a job may be processed in a manufacturing facility.

Rebate wine Wine especially prepared for double distillation in a pot still and then, as distil-
late, matured for a period of at least three years in oak casks with a capacity of no more
than 340 litres.

Release date The time a job arrives in a production system. Also the earliest time that a job
can be processed.

Recirculation A job in a job shop visiting each processor at most once.

Scheduling The allocation of resources (such as production centres or workers) to production
tasks over a set period of time.

Single machine processing The case where there is only one processor in the system and
each job to be performed therefore consists of a single task.

Sparkling wine Wine carbonated (either by fermentation or by impregnation with carbon
dioxide) to the extent that the pressure in the container in which it is sold is more than
300 kPa. It includes any grape juice or must (concentrate) used to sweeten such sparkling
wine.

Task A production process performed by a single processor at a production facility. The tasks
performed on a batch of production material are referred to collectively as a job.

Terroir The total natural environment of any viticultural site, including climate, soil and slope
of the area.

Tipping bin A container into which the grapes are offloaded on arriving at a cellar.

Uniform processors A set of parallel processors operating at different speeds.

Unrelated processors A set of parallel processors for which the processing speeds are job-
dependent.

Viticulture That part of horticulture involving the cultivation of grape vines.

Weight A real number assigned to a job indicating its priority relative to the other available
jobs.

xviii Glossary

Work centre A collection of parallel processors (instead of single processors) used in the pre-
determined route of a job in a job centre within a production facility.

List of Acronyms

BAWSI Black Association of the Wine & Spirit Industry

BEE Black Economic Empowerment

BUSCO wine industry Business Support Company

DEVCO wine industry Development Support Company

KWV Cape Wine Growers’ Co-operation

NAFU National African Farmers Union

RUDNET Rural Development Network

SALBA South African Liquor Brand-owners Association

SAWB South African Wine & Brandy Company

SAWFA South African Wine Farmers Association

SAWIS South African Wine Industry Information & Systems

SAWIT South African Wine Industry Trust

WCSA Wine Cellars of South Africa

WCSC Wine Charter Steering Committee

WIDA Wine Industry Development Association

WIECO Wine Industry Empowerment Company

WIP Wine Industry Strategy Plan

WOSA Wines of South Africa

xix

xx List of Acronyms

List of Reserved Symbols

The symbols listed below are reserved for a specific use. However, other symbols may be used
throughout the thesis in an unreserved fashion.

aijk equal to 1 if task Tjk is assigned to machine Pi, or 0 otherwise.
B the set of N vineyard blocks {B1, . . . , BN} under consideration.
Bb a vineyard block; may consist of a set of sb jobs.
b(j) equal to 1 if job Jj is assigned to a separator, or 0 otherwise.
ci the capacity of processor Pi.
D the number of days for which a harvest scheduling solution is generated.
d day d of the harvesting schedule.
ej the estimated time of arrival for job Jj .
fjk the finishing time of task Tjk.
J a set of n jobs {J1, J2, . . . , Jn}.
Jj a job; may consist of a set of kj tasks

{
Tj1, Tj2, . . . , Tjkj

}
when working with multi-

operational environments.
kj the number of tasks that make up job Jj .
m the number of processors available for processing.
N the number of vineyard blocks under consideration.
n the number of jobs requiring processing.
o the order matrix of a suggested active scheduling problem solution, where row i refers

to processor Pi, the entries refer to jobs and the columns to the order in which the jobs
are processed on processor Pi.

om the machine order matrix, where row j refers to job Jj , the entries to processors and
the columns to the order in which jobs are assigned to the different processors.

ot the tank order matrix, where row j refers to job Jj (only of Type I) and the entries to
red fermentation tanks.

P a set of m processors {P1, P2, . . . , Pm}.
Pi the i-th processor.
pijk the time required by processor Pi to process task Tjk.
pij the time required in order to process all allowed tasks Tjk (k = 1, . . . , kj) of job

Jj on processor Pi.
qj` equal to 1 if jobs Jj and J` are allowed to be mixed, or 0 otherwise.
sij` the setup time required to have machine Pi ready to process any task from job J`

directly after processing a task of job Jj .
T the set of all tasks {T11, . . . , T1k1 , T21, . . . , T2k2 , . . . , Tn1, . . . , Tnkn}.
Tjk task k of job Jj ; refers to a stage in the processing of wine.
tjk the starting time of task Tjk.

xxi

xxii List of Reserved Symbols

tqij equal to 1 if it is allowed to assign job Jj to red wine fermentation tank Pi, or 0
otherwise.

ui1i2 equal to 1 if processor Pi2 is allowed to be used directly after processor Pi1 , or
0 otherwise.

vi the current volume of tank Pi.
wj the physical weight of job Jj .
xij` equal to 1 if a task of job J` follows a task of Job Jj directly on processor Pi, or 0

otherwise.
α the best completion time uncovered by the cellar scheduling tabu search.
ε the best red evaluation score uncovered by the cellar assignment tabu search.
κ an index denoting cultivar.

µijk equal to 1 if task Tjk is allowed to be performed on processor Pi, or 0 otherwise.
µij equal to 1 if some task Tjk of job Jj is allowed to be performed on processor Pi, or

0 otherwise.
ϑ the best harvest evaluation score achieved in the harvest scheduling problem.
Ω the harvest evaluation score employed to evaluate harvesting schedules.

Ωc the contribution of a single generated cellar scheduling problem to the harvest
evaluation score Ω.

Ωs the contribution of expected sugar levels of the blocks scheduled for harvesting with
respect to the harvest evaluation score Ω.

Ωx̄ the average contribution of each generated cellar scheduling problem to the harvest
evaluation score Ω.

CHAPTER 1

Introduction

Contents
1.1 A brief history of South African wine . 1

1.2 Informal problem description . 4

1.3 Scope and objectives . 5

1.4 Thesis overview . 5

Throughout the ages, wine has been a part of civilization. The earliest evidence of wine pro-
duction dates back to between 6000 and 5000 BC from archaeological sites in Georgia and Iran.
The archaeological evidence from around the third millennium BC points to the domestication
of the grapevine in the Early Bronze Age sites of the Near East. In Egypt wine played an
important role in ancient ceremonial life and became a part of recorded history. Wine was also
common in classical Greece and in the Roman Empire [145]. Wine is both alive in this age
and able to link us to civilizations of the past, bestowing all with a sensory stimulation beyond
compare. Even more important, wine has proven to be a rewarding and curiously multidisci-
plinary subject for study. In this chapter the focus of and problems considered in this thesis
are introduced, starting with the history of South African wine in §1.1. In §1.2 the problem
under investigation is described informally and in §1.3 the scope and objectives of this thesis
are given. An overview of the thesis is also given in §1.4.

1.1 A brief history of South African wine

The first European settler of South Africa, Jan van Riebeeck, established the Dutch East India
Company’s fuelling station at the Cape of Good Hope in 1652. He soon after sent to Europe
for vine cuttings in the belief that sailors would suffer less from scurvy if they drank wine [42].
In 1655 the first vines arrived, mainly of French origin. Even though he was a rather unwilling
pioneer and no expert on winemaking, on 2 February 1659 he recorded: ‘Today, praise be to
God, wine was pressed for the first time from Cape grapes’ [100]. This led to the planting of
vines on a larger scale at Roschheuvel, known today as Bishopscourt, Wynberg.

Vine cuttings were distributed amongst servants of the company who had been freed to farm
their own land, called Free Burghers, to encourage them to plant vineyards. Initially they were
reluctant to do so [154]. There were also many other setbacks in the beginning, mainly because
of the ignorance of viticulture amongst the grape farmers. Fine quality wine was not produced

1

2 Chapter 1. Introduction

until Simon van der Stel was appointed as van Riebeeck’s successor as governor of the Cape
in 1679. Van der Stel was a wine enthusiast and very knowledgeable about viticulture and
winemaking. He planted a 750 hectare vineyard on his legendary farm Constantia in 1685. The
winemaking circumstances were improved even further with the arrival of the French Hugenots
in the Cape in 1688. Although they did not have direct winemaking experience, they brought
with them their culture and knowledge of vineyard and cellar practice [119]. The Hugenots had
very little money, since they were religious refugees and had to make a living with only the bare
essentials. They also had to adapt their established French winemaking techniques to the new
conditions of the Cape [119]. The Dutch had almost no wine tradition, so the culture and skills
of the French left a permanent impression on the South African wine industry. Thanks to Van
der Stel, with the help of French Hugenot refugees, the quality of Cape wine started to improve.

Van der Stel made Groot Constantia into a model wine estate and reorganised the local farming
community by introducing crop quotas. He also established Stellenbosch1, the second oldest
Cape colony and the first settlement inland from Cape Town. Simon van der Stel’s son, Willem
Adriaan, succeeded his father as governor of the Cape. Willem Adriaan contributed greatly to
the improvement of viticulture in the Cape and had a Gardener’s Almanac which reflected a
detailed account of the progress he made [119]. This almanac also serves as the first official
record of a vineyard in the Cape. Unfortunately he was despised by the Free Burghers for his
tyrannical style and corrupt practices and in 1708 the Free Burghers rebelled. This meant the
end of his career as governor of the Cape and he was banished to Holland where he spent the
rest of his life in exile [119].

Groot Constantia regained much greater fame when a talented and ambitious grower, Hendrik
Cloete, who descended from Van Riebeeck’s under gardener, bought the farm in 1788 [119, 100].
They had such great success that the Constantia wines came to fill the glasses of the famous.
According to the The Oxford Companion to Wine [100], ‘their fame was never matched by
any other New World wines and at their height they commanded more prestige, more fabulous
prices, and enjoyed more crowned patronage than the most celebrated wine of Europe’. Even
Napolean Bonaparte is known to have ‘yearned for the sweet wines of Constantia’ when he was
imprisoned on St. Helena [119].

In 1886 misfortune struck the wine industry of the Cape. The epidemic of louse-like aphids,
commonly called Phylloxera, destroyed most of the South African and European vines [119].
Phylloxera attacks only grapevines and kills vines by attacking their roots. At the time there
was no known cure [100]. This led to a 20-year recuperation period and to make up for the lost
time, growers had re-established some 80 million high yielding vines, such as Cinsaut, by the
early 1900s. This led to an uncontrolled overproduction and with the lack of a market, as well
as the Anglo Boer War, the industry erupted into chaos [154]. Surplus wine was literally poured
into the local rivers. In order to stabilize the industry, the Cape Wine Growers’ Co-operative2

(KWV) was formed by Western Cape wine farmers, headed by Charles Kohler, on 8 January
1918. They had the legal power to limit production and set minimum prices [100] and their aim
was ‘to overcome the oppressive constraints of wine surpluses and the exploitation of wine and
brandy contractors by improving co-operation and by raising the quality of South African wine
and brandy’ [76]. This initiative was supported in Parliament by then Prime Minister, General
Jan Smuts.

Members of KWV had to sell all their wine through the KWV and contribute a levy of 10% on
their sales. An annual surplus of wine was declared by the KWV and removed from the market.

1Stellenbosch may be translated directly as ‘Stel’s forest’.
2Known at the time as Koperatieve Wijnbouwers Vereniging van Zuid-Afrika Bpkt.

1.1. A brief history of South African wine 3

This ‘surplus’ of wine would be distilled and stored by manufacturing-wholesalers on behalf of
KWV who would, in return, not ‘compete with the established wine or spirit trade or distilling
or manufacturing interests in Africa south of the equator’ [118].

The KWV almost immediately began constructing new cellars to store brandy and spirits and
acquired the distillery and some cellars from the SA Motor Fuel Supply Company near Paarl
Station. Depots were established in Stellenbosch, Worcester, Montagu and Robertson. They
also began an export trade relationship with Vine Products, a British company [76].

The South African Wine Farmers Association (SAWFA) was founded during the 1930s with
KWV and Vine Products each controlling half the shares. A new important trading partnership
was formed with Sainsbury’s in Toronto following the Ottawa Agreement. Additional markets
opened in Sweden and Norway in 1935 which led to another factory being opened in Worcester
for the production of grape juice and KWV Eau De Cologne [76].

In 1939 Europe was destroyed in the throes of the Second World War which solved the immediate
problem of surplus brandy disposal [118]. Upon seeing such a gap in the wine market, SAWFA
started fanatically updating its distillery and storage facilities. Financial support was offered
to Stellenbosch/Elsenburg Agricultural College by the KWV in order to support this proposal.
At the same time KWV gained legal control over the minimum price [76].

Also, KWV withdrew from buying grapes for export production which led to farmers needing
access to cellars to produce good wine, since prices of good wine had increased relative to
distilling wine. This caused the number of co-operative wine cellars (who now supplied wine
rather than grapes) to increase from 6 to 19 between 1939 and 1944, to 30 by 1950, to 46 by
1955 and finally to 69 by the end of 1975 [118].

In the wake of the war KWV acquired 100% of the shares in SAWFA and started focusing on
the improvement of fertilisation and trellising of vines which resulted in larger crops. By 1950s,
the harvest had increased form a quarter million hectolitres to three million hectolitres. By the
end of the 1950s KWV’s cellars received 12 000 visitors a year [76].

In 1961 white wines were prepared using controlled fermentation techniques for the first time
through the initiative of the KWV’s new German cellar master, Willi Hacker. The KWV also
reached the interest of the general public by starting public wine courses. Truly phenomenal
changes occurred in the wine industry when the KWV provided financial support for the erection
of an office and laboratory complex for viticulture and oenological research at Nietvoorbij near
Stellenbosch. The European principle of wine and beer sales in restaurants were promoted by
the KWV chief executive, Jean de Villiers. Restraining legislation was lifted, allowing the sale
of ‘white man’s liquor’ to black, Asian and coloured South Africans.

During the 1980s the South African wine industry was brought to its knees when the United
States, the United Kingdom, and 23 other nations passed laws placing various trade sanctions
on South Africa. Individual cities and provinces around the world implemented various laws and
local regulations forbidding registered corporations under their jurisdiction from doing business
with South African firms, factories, or banks [142].

The 1980s also gave way to the formation of both the Brandy Foundation, with the aim to aid
the development of premium brandies, as well as the Cape Wine and Spirits Educational Trust
with the title of Cape Wine Master being the highest qualification [76]. KWV also installed
high-tech bottling lines at the cellar in Paarl in attempt to maintain and improve efficient wine
production through new technology.

4 Chapter 1. Introduction

The 1990s earned the KWV international acclaim, starting with the largest brandy cellar of its
kind in the world, the KWV House of Brandy in Worcester, opening its doors to the public
in 1992. The following year the KWV celebrated its 75th anniversary and was honoured by
being awarded the State President’s Export Award. After trade sanctions were lifted in 1994,
South African wine exports reached unexpected heights. The conversion of the KWV from
a co-operative to a company was set in motion at the start of 1996, directed by a Board
chaired by Lourens Jonker and KWV’s new managing director, Dr Willem Barnard. The end
of 1997 marked the end of this transformation, making the KWV’s wine producer members
shareholders in the company, KWV Group Limited [76]. As a result of this transformation, The
South African Wine Industry Trust was formed, managed in conjunction with the Department of
Agriculture and financed by the KWV. The objective of this organisation is to ‘gather valuable
input over a broad spectrum of issues related to the best application of funds available for
wine export, research, employee empowerment and socio-economic upliftment’ [76]. Technical
services previously provided by the KWV was now continued by a new producer services division
called VinPro. An internal restructuring of the group took place in 1999 and resulted in KWV
South Africa (Pty) Ltd and KWV International (Pty) Ltd, the latter being awarded the 1999
State President’s Award for Export. The current role of the KWV and the other organizations
involved in the wine industry today, are further discussed in Chapter 2.

1.2 Informal problem description

The South African wine industry has come a long way from the early days of Jan van Riebeeck.
Today (2008) there are approximately 4 000 wine producers and 560 wine cellars of which more
than 300 were built during the last decade. The majority of these producers and cellars are
situated in the Western Cape containing more than 93% of all South African vines [103].

Even though the topic of this thesis is of a generic nature, Wamakersvallei Winery is used as a
case study in order to demonstrate workability of the methodology developed. Wamakersvallei
Winery is a modern South African winery situated in Wellington (60 km from Cape Town) in
the Western Cape Province. As with most cellars, traditional methods of making wine is being
replaced by more technologically advanced practices and machinery at Wamakersvallei. These
advances require the concurrent introduction of software to assist in the management of such a
winery. At Wamakersvallei Winery there is currently the opportunity to assist in two scheduling
problems experienced.

Grapes are received from more than 80 different suppliers, each further divided into vineyard
blocks. During the harvesting period, roughly spanning mid January to mid April, grape
samples are received from the suppliers on a two-weekly basis per vineyard block, and sugar, pH
and acidity analyses are performed on these samples. Based on these analyses, the viticulturist
and winemaker, along with the cellar manager, manually sort through the large volumes of data
in order to agree on a fitting harvesting block selection for each day. This decision is most often
made during a tedious meeting occurring at the end of each harvesting day, when deciding upon
the selection of blocks to be harvested during the next day.

The main criteria for the selection of vineyard blocks to be harvested on a specific day is that the
vineyard blocks selected for harvesting should consist of grapes that are fully ripened and that
there should be enough space at the cellar to receive and process the grapes. Two scheduling
problems therefore arise. The first is the scheduling of vineyard blocks selected for harvesting
over a set period of time rather than only one day in advance and the second is the scheduling
of grapeloads being processed on the different machinery inside the harvesting cellar every day.

1.3. Scope and objectives 5

1.3 Scope and objectives

In order to lend decision support to the Wamakersvallei viticulturist and winemakers, three
objectives are pursued in this thesis:

I. To assist the winemaker in the scheduling process of assigning grapeloads from the differ-
ent producers to the tipping bins and further processors within the active cellar.

II. To assist the viticulturist in the sometimes difficult scheduling decisions by generating a
suggested harvesting schedule (in the sense of suggesting vineyard blocks to be harvested)
stretching over a set number of days.

III. To develop a decision support system which may be used to import sample data from Mi-
crosoft Excel [86] and then suggest a harvesting schedule for a set number of days along
with the assignment of grapeloads consisting of red grapes to the fermentation tanks. The
focus should be on processing the grapes within business hours as well as ensuring the
ripeness and retaining the quality of grapes.

1.4 Thesis overview

Apart from this introductory chapter, this thesis consists of a further eight chapters. Chapter
2 provides the reader with a basic understanding of wine making and the South African wine
industry. More specifically, the development of the South African wine industry organisational
structure as well as its current state is discussed. Some statistics are given on wine production
in South Africa as well as the import and export of wine. Furthermore, viticultural practices
and a basic overview of wine making methods are considered.

In Chapter 3, the necessary background information is presented in order to properly identify
the scheduling problems experienced at a winery as well as the methodological possibilities
to consider when designing a decision support system for wineries. The chapter contains a
review of the notation commonly used in classical scheduling problems, and also throughout
this thesis, as well as an overview of the three-field α|β|γ notation used to classify classical
scheduling problems. Typical representations of schedules are also considered. A concise survey
of literature is conducted with respect to the job shop scheduling problem as well as other
applications of optimization and decision support in the wine industry. Finally, this chapter
also contains an overview of the exact methods with which the scheduling problems are solved
in this thesis. The first exact solution method consists of formulating the scheduling problem
as a mixed integer programming model and then applying the well-known branch-and-bound
method to solve the problem. A meta-heuristic tabu search approach is also considered in this
thesis and the methodological background section therefore focusses on the tabu search method
as well.

The goal in Chapter 4 is to provide the reader with the necessary information to fully understand
the origin of the scheduling problems experienced at Wamakersvallei. In the first section of this
chapter, some important aspects of Wamakersvallei are discussed, such as its physical location
and current cellar layout, the machinery used, products delivered and staff employed. The work

6 Chapter 1. Introduction

methods of the employees and the process of ensuring the grape quality that is received at the
cellar, is also considered. Furthermore, aspects such as the harvesting process, the scheduling
of vineyard blocks to be harvested and the required procedures are described. The different
processes and orders of production are presented, focussing mainly on the production of white
and red wines, excluding the minority of cases such as Rosé and desert wines. The EzyWine
[43] data management system used at Wamakersvallei is also discussed.

The first scheduling problem identified at Wamakersvallei, referred to as the active cellar schedul-
ing problem, is concerned with the assignment and ordering of the processes occurring in the
part of the cellar identified as the problem area during the harvesting period (i.e. where bottle-
necks often occur). The purpose of Chapter 5 is to derive a mathematical programming model
with which an exact solution may be found to the cellar scheduling problem.

An alternative tabu search approach towards solving the active cellar scheduling problem is
developed and outlined in Chapter 6. The goal of this tabu search is to indicate whether or
not a feasible production schedule may be found for a specific harvesting day if a given set of
vineyard blocks were to be harvested on that day. A solution is feasible if it adheres to the
constraint set defined in the mathematical programming model of Chapter 5 and if the solution
may be carried out during the business hours of the cellar.

In the seventh chapter, the tabu search method developed in order to solve the second scheduling
problem identified at Wamakersvallei, called the harvest scheduling problem, is discussed. A
good harvesting schedule should ensure that vineyard blocks are harvested as close to their
optimal maturity dates as possible. Furthermore, the restrictions imposed by the physical
capacity of the cellar, are used in order to further distinguish between harvesting schedules.
The measured sugar levels of the vineyard block samples are employed to ensure the ripeness
of harvested grapes. The tabu search method of Chapter 6 is used to take into account the
physical capacities and time limit imposed by the selected operating hours.

Chapter 8 contains an overview of the newly developed decision support system, called VinDSS.
The tabu searches developed in Chapters 6 and 7 are applied to Wamakersvallei 2009 harvesting
data, with some minor updates, in order to illustrate the working of VinDSS. A short analysis
of the performance of the tabu search is performed and the final harvesting solution is compared
to the Wamakersvallei harvest that occurred, based on the same data.

Finally, a short thesis summary is presented in Chapter 9, as well as some future suggestions
that may be applied to improve the working of VinDSS and the general tabu search approach
implemented in this thesis.

CHAPTER 2

The South African wine industry

Contents
2.1 Organisational structure of the South African wine industry 7

2.1.1 The development of the organisational structure 8

2.1.2 The current organisational structure . 9

2.2 Wine production in South Africa . 11
2.2.1 Wine producing regions . 12

2.2.2 Wine production statistics . 14

2.2.3 The import and export of wine in South Africa 17

2.3 From the vine to wine . 21
2.3.1 Viticulture (grape growing) . 21

2.3.2 Oenology (wine making) . 25

2.4 Chapter overview . 31

The South African wine industry is an important economic sector of the country, especially in
the Western and Northern Cape provinces. It comprises a R13 billion sector [117], producing
3.3% of the global wine production (number 9 in the world) during 2003, when it was the
8th largest exporter of wine globally. The South African wine industry supports an estimated
350 000 farm workers and their dependants, over 4 500 commercial producers and 3 300 cellar
personnel [117]. The annual taxes and excise duties earned by the state from the wine industry
may be as high as R1.8 billion. Another R3.5 billion is generated annually in earnings through
wine tourism [117]. Hence it is clear that the South African wine industry plays a significant
role in the well-being of this country. It is a complex industry that is only now starting to
develop the neccessary organisational structures.

This chapter contains a more in-depth look at the South African wine industry, starting with
its organisational structure in §2.1. Aspects concerned with the production of wine in South
Africa as well as some statistics on the subject follow in §2.2 and in §2.3 the actual process of
wine making is considered.

2.1 Organisational structure of the South African wine industry

The South African wine industry has come a long way since its inception during the 17th century.
The development of the organizations involved until the end of the 20th century, which was for

7

8 Chapter 2. The South African wine industry

quite some time only the KWV, was briefly discussed in §1.1. A further look will now be taken
at the wine industry of the 21st century, first at the development of the associated organisational
structure (in §2.1.1) and then at the current organisational structure and its role (in §2.1.2).

2.1.1 The development of the organisational structure

When the KWV changed from a co-operative to a company in 1997 the industry embarked
on a deregulating process. The first step was that the remaining statutory powers be placed
under the control of a body that represented the whole industry, hence the forming of the South
African Wine Industry Trust (SAWIT). This meant that by the end of the 20th century the
South African wine industry was no longer subject to the restraining structures of regulation
that had maintained farm incomes, but repressed innovation [118].

These changes left the future of the industry laying bright ahead. Unfortunately, to date,
the industry has only been transformed partially. Large quantities of standard, high-yielding
grapes are stilled produced in order to produce large quantities of cheap wine for which demand
is declining. The dependence of the industry on unschooled workers still proves to be an area
of concern, as does the lack of opportunities for new entrants to the industry [118].

The deregulation of the wine industry also led to the forming of a vast number of organizations
representing the different sectors of the industry and/or performing statutory functions. Exam-
ples are Wines of South Africa (WOSA), busying themselves with generic promotion, Winetech,
a technical research, development and transfer unit, SA Wine Industry Information & Systems
(SAWIS) and so forth. The need was realized to form a head industry body to represent and
shape the highly disjointed representative and business structure of the industry. Therefore, the
SA Wine & Brandy Company (SAWB) was established in 2002 by VinPro (representatives of
wine producers), Wine Cellars of South Africa (WCSA) (representing the cellars), the SA Liquor
Brand-owners Association (SALBA) (representatives of the wholesale trade) and BAWSI, the
Black Association of the Wine & Spirit Industry.

After the establishment of the SAWB, the Wine Industry Strategy Plan (WIP, approved in 2003
by the Minister of Agriculture) was developed as required by the Ministry of Agriculture [118].
The goals of WIP was to ‘increase global competitiveness and profitability, to generate equitable
access and participation within the wine value chain, to enable environmentally sustainable
production systems and to promote socially responsible consumption of the produce of the vine’
[117]. In 2003 SAWIT, in coordination with the SAWB as representatives of the wine industry,
also drafted a Wine-BEE (Black Economic Empowerment) Charter & Industry Scorecard to
set the standard for dealing with matters that may present themselves during the next decade
[118]. The structure of the SAWB is shown graphically in Figure 2.1.

Activities of the SAWB were then mainly directed by the WIP. A board of directors consisting of
representatives from the wine producers (VinPro), the cellars (WCSA), the workers (BAWSI),
the trade (SALBA) and an independent chair oversaw the organizations which may be divided
into four business units. The first is the Development Unit whose role concerns the development
of human resources, economic development and empowerment. The next category comprises
all of the organizations involved in market development and promotion such as WOSA, SA
Brandy Foundation and SA National Wine Association. The third category is concerned with
knowledge and information systems (including inspection services) coordinated by SAWIS. The
last and fourth category is one of technology innovation and transfer, which is coordinated by
Winetech.

2.1. Organisational structure of the South African wine industry 9

South African Wine and Brandy

Company

Board of Directors

Representatives from

Wine Producers (VinPro)

Cellars (WCSA)

Workers (BAWSI)

Trade (SALBA)

Independent Chair

CEO Office Support Staff

Technology Innovation

and Transfer

(Winetech)

Development Unit:

Human Resources
Development

Economic Development
& Empowerment

Market Development &

Promotion

(WOSA - Exports)
(SA Brandy Foundation)

(SA National Wine Association)

Knowledge & Information

Systems Including

Inspection Services

(SAWIS)

Figure 2.1: The institutional organization of the South African wine industry [118].

The institutional structure of the representative wine industry organization, as shown in Figure
2.1, has been under review by the SAWB and SAWIT in order to ‘provide an efficient and fully
representative industry governance structure’ [118]. In June 2006 a new structure was launched,
the South African Wine Council which now serves as the apex organization [154]. The structure
of the SA Wine Council and the roles of involved representative organizations in the current
organisational structure of the South African wine industry is described in the next section.

2.1.2 The current organisational structure

From 2006 major changes have occurred in the South African wine industry. The most signifi-
cant of these is without doubt the restructuring of the SAWB to form the SA Wine Council on
30 June 2006 and is briefly discussed in this section.

There are also other relevant structures, other than the SA Wine Council. These include
the Wine & Spirits Board, SAWIT (the ministerial appointment to act as industry trust as
mentioned in §2.1.1), RUDNET (a consortium of rural and civil society non-government organi-
zations), a number of voluntary, private or professional wine societies and also service providing
groups or bodies [118]. There is also the Wine Charter Steering Committee (WCSC) whose
purpose is to ‘fundamentally transform the wine industry within the context of a growing and
profitable wine industry’ [149]. Of these, one of importance, if not the most important orga-
nization is SAWIT. The structure and functions of SAWIT are also briefly described in this
section.

The restructuring of SAWB

With the restructuring of SAWB to form the SA Wine Council in June 2006, Dr Johan van
Rooyen stayed on as the CEO of SA Wine Council and on 1 October 2006 Professor Kader
Asmal, a member of parliament and a former Minister of Education and of Water Affairs,

10 Chapter 2. The South African wine industry

took over as chairperson [154]. Soon after his appointment as chairperson, Asmal was recorded
as saying that ‘fragmentation is one of the major factors preventing the South African wine
industry from reaching its full potential’. Therefore, according to Asmal, the role of SA Wine
Council should be to ‘harness different bodies and energies to create a unified vehicle through
which the wine industry can increase its competitiveness and grow to the economic pillar it
deserves to be’ [55].

The SA Wine Council is managed by a Board of Directors with representatives from VinPro,
WCSA, SALBA, Labour (consisting of inter thirteen different trade unions and labour organ-
isations), Civil Society (consisting of BAWSI, the Rural Development Network (RUDNET)),
Emerging Agriculture (such as the National African Farmers Union (NAFU)), the chairpersons
of Winetech, WOSA, SAWIS and the Development & Transformation Unit [151].

The consultation process also resulted in the introduction of the Advisory Forum which consults
to and engages with the SA Wine Council Board of Directors. The Advisory Forum includes
representatives from SALBA, VinPro, WCSA, SAWIT, BAWSI, NAFU and RUDNET [68].

EXECUTIVE OFFICE WINE

INDUSTRY COUNCIL

WIDASAWIS WOSA Winetech

WINE INDUSTRY COUNCIL

ADVISORY FORUM

WINE INDUSTRY COUNCIL

BOARD OF DIRECTORS

Figure 2.2: The institutional organization of the South African Wine Industry Council [150].

The current institutional structure of the SA Wine Council is shown graphically in Figure 2.2.
The SA Wine Council is divided into four business units. The first is SAWIS, with their main
functions being the collection, processing and dissemination of industry information, as well
as the administration of the industry’s Wine of Origin system [108]. The second is WOSA
who, amongst other things, have been mandated to control wine tourism and local marketing
of wine in South Africa [154]. Winetech, the third subdivision, has as its core business the
‘improvement of the South African wine industry’s competitive position with the support of
the newest research, technological development, training and transfer of technology’ [150]. The
last subdivision is the Wine Industry Development Association (WIDA), focusing on sectoral
determination and employment conditions1 [85].

The organisational structure and function of SAWIT

As the ministerial appointed trust, SAWIT has been the main contributor to the reconstruction
of SAWB to form the SA Wine Council. Their goal is currently to ‘generate equitable access and
participation in the South African wine industry on the part of those historically marginalized
and still on the fringes of the industry to meaningfully participate in a globally competitive,

1Since the completion of this thesis, the SA Wine Council has been dispersed. The four business units
illustrated in Figure 2.2, now function independantly and there is no overseeing council or body [128].

2.2. Wine production in South Africa 11

profitable and sustainable industry, as well as facilitating or contributing in the cohesiveness of
the industry and speaking in one voice’ [116].

SAWIT consists of three subdivisions, as shown in Figure 2.3. The first is the wine industry
Business Support Company (BUSCO), the second the Wine Industry Empowerment Company
(WIECO) and the third the wine industry Development Support Company (DEVCO). BUSCO
manages technology transfer, wine research and development. Through BUSCO, SAWIT is
also able to provide funds to Winetech. WIECO endorses and facilitates the economic empow-
erment of previously disadvantaged communities. DEVCO precipitates social transformation
through direct support and intervention, with black economic empowerment at the heart of the
organisation, in order to ensure global competitiveness of the South African wine industry [116].
DEVCO funds organizations such as RUDNET and WOSA as well as other projects serving its
goal.

SAWIT

(South African Wine
Industry Trust)

DEVCO

(wine industry
Development Support

Company)

BUSCO

(wine industry Business
Support Company)

WIECO

(Wine Industry
Empowerment
Company)

Figure 2.3: The institutional organization of the South African Wine Industry Trust [116].

2.2 Wine production in South Africa

Now that the organisational structure of the South African wine industry has been discussed
briefly, wine production in South Africa may be considered. This section now includes the
different regions of wine production in South Africa as well as the different types of cellars
found in South Africa. It also includes various statistics from the industry in terms of the
preferred varieties of white and red grapes and also some statistics on import and export. First,
some basic definitions are required.

The meaning of the word ‘wine’ in terms of the South African wine industry is much wider than
its everyday meaning. There exist products such as rebate wine and distilling wine that form
the building blocks of brandy and have always formed a significant part of South Africa’s wine
industry. The South African wine industry therefore encompasses wine (natural, fortified and
sparkling), rebate wine, distilling wine, brandy and other spirits distilled from distilling wine,
as well as grape juice and grape juice concentrate for use in wine and non-alcoholic products
[103].

Throughout this thesis, the following definitions (as defined by SAWIS in its annual report of
2006 [103]) applies unless otherwise indicated.

The term wine includes natural, fortified and sparkling wine. Natural wine is non-fortified and
non-sparkling wine, including perlé wine2. It further includes any grape juice or must as well as
grape juice or must concentrate used in the sweetening of such natural wine. Fortified wine is

2Perlé wine is wine carbonated to the extent that the pressure in the container in which it is sold is between
75 and 300 kPa.

12 Chapter 2. The South African wine industry

non-sparkling wine which has been fortified with wine spirit, including the volume of wine spirit
used in the fortification process. The last product included in the term ‘wine’ is sparkling wine
which is wine carbonated (either by fermentation or by impregnation with carbon dioxide) to
the extent that the pressure in the container in which it is sold is more than 300 kPa. As with
natural wine, it includes any grape juice or must as well as grape juice or must concentrate used
in the sweetening of such sparkling wine.

Rebate wine3 is specially prepared for double distillation in a pot still and then, as distillate,
maturation for a period of at least three years in oak casks with a capacity of no more than
340 litres. Distilling wine is wine specially prepared for distillation to spirits intended for use
in brandy or other spirits, for fortification of wine or for industrial purposes. The term non-
alcoholic refers to unfermented, undiluted or concentrated juice from grapes destined for use in
non-alcoholic products such as fruit juices.

The different wine producing regions of South Africa are described in §2.2.1 and is followed
by a brief description of the different types of cellars found in South Africa. Statistics of the
industry are reviewed in §2.2.2 and in §2.2.3 a brief look is taken at wine import and export in
South Africa.

2.2.1 Wine producing regions

There seems to be no official division of the wine producing regions since different sources mostly
have different divisions. However, the regions are commonly divided into five subregions: Little
Karoo, Breede River Valley, Boberg, Coastal Region and Orange River [108]. In order to
best suit the purposes of this project, the regions as used by SAWIS for statistical purposes
are adopted in this thesis. They are listed as Malmesbury, Olifants River, Paarl, Robertson,
Stellenbosch and Worcester, the Little Karoo and Orange River areas, as shown in Figure 2.4.

The majority of these regions occur in the Western Cape, i.e., all save two, namely the Little
Karoo and Orange River areas. In Table 2.1, the distribution of the grapevines throughout
these regions are listed. It is clear from these percentages that the majority of vines, as well
as the majority of wine production, occurs in the Western Cape Province. It contains 84.5% of
the South African vines and 82.3% of the wine producing area hectares.

Wine regions Number % of total Area % of total
of vines vines (hectares) hectares

Malmesbury 37 767 450 12.30 14 883 14.60
Olifants River 27 381 384 8.92 9 861 9.67
Paarl 53 613 681 17.47 17 413 17.08
Robertson 47 308 545 15.41 13 802 13.54
Stellenbosch 53 086 710 17.29 17 265 16.93
Worcester 67 698 826 22.05 20 588 20.19
Little Karoo 9 269 687 3.02 2 966 2.94
Orange River 10 829 502 3.53 5 149 5.05

Total 306 955 785 100.00 101 957 100.00

Table 2.1: Geographic distribution of South African wine grape vineyards per wine region during
2007 (Excluding sultana) [105].

3Rebate wine is not discount or bulk wine, but is specially prepared for use in manufacturing brandy.

2.2. Wine production in South Africa 13

Figure 2.4: The South African wine producing regions [103].

In all of these regions, wine cellars may further be divided into four different types of cellars.
This is due to the significant changes occurring in the South African wine industry since the
conversion of the KWV from a co-operative to a company. The first is the cooperative cellar.
Cooperative cellars work on a communal basis processing grapes of their farmer members into
wine. All the grapes are pooled; hence farmers with poor quality grapes benefit most. There
are currently 65 cooperative cellars in South Africa that are responsible for pressing about 80%
of the total South African harvest.

The second type of cellar is a corporate cellar. These cellars have been transformed into com-
panies. They may therefore pay the producer based on the quality of the grapes delivered and
may make a profit. On request of the wine industry, both corporate cellars and cooperative
cellars will be referred to as producer cellars as of 2009 [128].

The third type, namely estate cellars, are small farms with their own cellars where all the grapes
for producing wine must come from the farm, i.e. they are not allowed to buy in grapes or wine.

The last type of cellar is private cellars. These cellars are allowed to buy in (all) grapes for the
production of their wine.

14 Chapter 2. The South African wine industry

2.2.2 Wine production statistics

The South African wine industry produces a very large variety of cultivars and blends with its
ideal climates and land qualities for wine grape growing; this aspect of growing grapes is further
discussed in §2.3.1. The area under cultivation of each of the different cultivars over the last
eight years is given in Table 2.2.

VARIETY 2000 2001 2002 2003 2004 2005 2006 2007

Chenin blanc 24.1 22.3 20.6 19.6 19.1 18.8 18.7 18.8
Colombar(d) 12.2 11.8 11.4 11.2 11.2 11.3 11.4 11.6
Chardonnay 6.4 6.3 6.4 6.8 7.3 7.8 8.0 8.7
Sauvignon blanc 5.7 6.1 6.7 6.9 6.9 7.5 8.2 8.1
Hanepoot 4.3 3.8 3.4 3.1 2.8 2.6 2.5 2.4
Cape Riesling 2.3 1.9 1.6 1.4 1.2 1.1 1.0 1.1
Sémillon 1.1 1.0 1.0 1.0 1.0 1.1 1.1 1.0
Weisser Riesling 0.6 0.4 0.4 0.3 0.3 0.3 0.2 0.2
Other white
varieties 7.1 5.5 4.7 4.3 4.1 3.9 3.9 3.9
Total white
varieties 63.8 59.4 56.2 54.6 54.0 54.3 55.1 55.8

Cabernet
Sauvignon 9.5 11.0 12.4 13.0 13.5 13.4 13.1 12.8
Shiraz 6.0 7.5 8.4 8.6 9.4 9.6 9.6 9.7
Merlot 5.2 6.0 6.6 6.7 7.0 6.8 6.7 6.6
Pinotage 7.0 7.3 7.2 6.8 6.7 6.4 6.2 6.0
Cinsaut noir 3.7 3.6 3.3 3.1 3.0 2.8 2.5 2.4
Ruby Cabernet 2.1 2.4 2.5 2.5 2.6 2.6 2.5 2.4
Cabernet franc 0.6 0.6 0.8 0.9 0.9 1.0 1.0 1.0
Pinot noir 0.6 0.5 0.6 0.5 0.5 0.5 0.6 0.6
Other red
varieties 1.5 1.7 2.0 3.2 2.4 2.6 2.7 2.7
Total red
varieties 36.1 40.6 43.7 45.3 46.0 45.7 44.9 44.2

Total white
and red 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Total hectares 93 656 94 412 96 233 98 605 100 207 101 607 102 146 101 957
Sultana
(Hectares) 11 910 11 919 11 765 11 595 11 392 10 983 10 571 9 958

Table 2.2: South African grape varieties as percentage of total area [105].

All of the cultivars listed in Table 2.2, save Hanepoot4 and Sultana5, are used solely for the
production of wine. The first aspect one notices in Table 2.2 is the gradual shift in the production
of white and red wines. In 2000 more than 60% of the industry consisted of the processing of

4Used for wine production as well as raisins and table grapes.
5Used only for raisins and table grapes.

2.2. Wine production in South Africa 15

white grapes6. By 2007 the growing of red grape varieties had grown to constitute almost half
the wine grapes produced. These grapes are not only used to produce natural wine, but also
the other types of wine listed in the beginning of §2.2. Together with the fact that red grapes
may be used (without contact to their skins) to produce white and rosé wines, the percentages
given in Table 2.2 do not directly imply the same results in the production of actual red and
white wines. The relationship between white and red wine grapes utilized towards making red
and white wines is given in Table 2.3.

Wine grapes utilised for Wine
total wine making purposes Produced

Year % Red % White % Red % White

1997 11.6 88.4 15.1 84.9
1998 13.2 86.8 15.2 84.8
1999 13.4 86.6 16.3 83.7
2000 15.0 85.0 21.0 79.0
2001 21.1 78.9 25.2 74.8
2002 22.7 77.3 27.9 72.1
2003 28.1 71.9 32.1 67.9
2004 29.9 70.1 36.2 63.8
2005 33.5 66.5 38.9 61.1
2006 33.4 66.6 36.5 63.5
2007 34.4 65.6 36.1 63.9

Table 2.3: The distribution between red and white wines produced [103, 105].

From this table it is clear that the increase in red wine production is not as dramatic as the
increase in the production of red grapes, but was nevertheless at three times the percentage
in 2005 compared to what it was in 1997. According to WOSA this is due to shifting market
demands and the growth of red wine consumption. The industry has rapidly increased its
plantings of red wine varieties to over 80% of all new plantings in 2001, which once again fell
to 51% in 2003 [154].

Still focusing on Table 2.2 and concentrating first on the white grape varieties, it is clear that
even though Chenin Blanc is still the most common white grape varietal, its percentage of the
total area used has dropped by 5% from 2000 to 2007. This is also the largest decline of all
the listed varieties. It may be argued that since the percentage of South African wines that
are exported have doubled during this period, the rather remarkable change in the production
of wine grapes may be due to the more significant influence of the international market. If
this is the case, it would seem that the global demand for Chardonnay and Sauvignon Blanc
have both been increasing over this period. Even more so since the total percentage of white
grape varieties have been decreasing. In order to eliminate the influence of this factor on the
interpretation of the data, the white wine grape varieties as a percentage of the total white
grape area only is shown in Table 2.4. From the table it is also clear that the only varieties
showing an increase, when expressed as the percentage of total white grape area, is Columbar,
Chardonnay, Sauvignon blanc and Sémillon.

Returning to the interpretation of the information in Table 2.2, but now turning the focus to
red grape varieties, it is apparent that there has been an increase in all red grape varieties in
terms of the total area of grapes, i.e. all save one, Cinsaut noir. In Chapter 1 the breakout

6This is already a significant decrease from the 75% of 1998 [103].

16 Chapter 2. The South African wine industry

Variety 2000 2001 2002 2003 2004 2005 2006 2007

Chenin blanc 37.77 37.73 36.65 35.90 35.44 34.56 33.94 33.69
Columbar(d) 19.12 19.97 20.28 20.51 20.78 20.77 20.69 20.79
Chardonnay 10.03 10.66 11.39 12.45 13.54 14.34 14.52 15.59
Sauvignon blanc 8.93 10.32 11.92 12.64 12.80 13.79 14.88 14.52
Hanepoot 6.74 6.43 6.05 5.68 5.19 4.78 4.54 4.3
Cape Riesling 3.61 3.21 2.85 2.56 2.23 2.02 1.81 1.97
Sémillon 1.72 1.69 1.78 1.83 1.86 2.02 2.00 1.79
Weisser Riesling 0.94 0.68 0.71 0.55 0.56 0.55 0.36 0.36
Other white varieties 11.13 9.31 8.36 7.88 7.61 7.17 7.08 6.99

Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Table 2.4: The white wine grape varieties as a percentage of total white grape area in South
Africa over the period 2000–2007.

of the disease, Phylloxera, was mentioned and also that in a desperate attempt to revive the
wine industry large quantities of high yielding vines (80 million to be precise) was planted by
the early 1900s, the most common variety being Cinsaut. Since one of the goals of the newly
transformed South African wine industry has been to break away from its legacy and produce
more high quality wines, the decrease in Cinsaut noir seems very sensible. In order to acquire
an unbiased view of the increase or decrease of specific red grape cultivars, the percentages of
the various red grape varieties of the total red grape area are given in Table 2.5.

Variety 2000 2001 2002 2003 2004 2005 2006 2007

Cabernet Sauvignon 26.24 27.09 28.31 28.70 29.35 29.32 29.18 28.95
Shiraz 16.57 18.47 19.18 18.98 20.43 21.01 21.38 21.95
Merlot 14.36 14.78 15.07 14.79 15.22 14.88 14.92 14.93
Pinotage 19.34 17.98 16.44 15.01 14.57 14.00 13.81 13.57
Cinsaut noir 10.22 8.87 7.53 6.84 6.52 6.13 5.57 5.43
Ruby Cabernet 5.80 5.91 5.71 5.52 5.65 5.69 5.57 5.43
Cabernet franc 1.66 1.48 1.83 1.99 1.96 2.19 2.23 2.26
Pinot noir 1.66 1.23 1.37 1.10 1.09 1.09 1.34 1.36
Other red varieties 4.14 4.19 4.57 7.06 5.22 5.69 6.01 6.11

Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Table 2.5: The red wine grape varieties as a percentage of total red grape area in South Africa
over the period 2000–2007.

As expected, Cinsaut noir still shows the largest decrease in its vineyard area, with the percent-
age of the total grape area in 2007 being half of that in 2000. The other relatively large decrease
is with the uniquely South African varietal, Pinotage7. Most of the other red grape varieties
show either an increase, with Shiraz showing the largest increase and Cabernet Sauvignon, also
showing an increase and still the most popular, or they seem to be relatively unchanged.

7Pinotage was cultivated in 1925 in South Africa by Abraham Izak Perold, the first Professor of Viticulture
at Stellenbosch University. Pinotage is a cross between Cinsaut and Pinot Noir. The name, Pinotage, is due to
the fact that Cinsaut is known as Hermitage in South Africa, hence the portmanteau name of Pinotage.

2.2. Wine production in South Africa 17

The conclusions derived from Table 2.2 for both red and white grapes is supported by a state-
ment from WOSA that ‘the local wine industry as a whole is strengthening its focus on five
noble varietals and is primarily replanting, on a large scale, Cabernet Sauvignon, Merlot and
Shiraz, and Chardonnay and Sauvignon Blanc’ [154]. They also note that the most dramatic
increase in the planting of a specific grape variety is with that of the Shiraz grape, which is also
evident in Table 2.2.

Statistics are also available on which grape varieties are favoured by which of the wine producing
regions. The region, as defined in §2.2.1, with the largest percentage of white grapes, is the
Worcester area with almost a quarter of all white grapes planted there. Worcester is also the
largest region in terms of area. Red grapes are planted mostly in Stellenbosch, Paarl and
Malmesbury, which collectively has 64% of all areas planted with red grapes [105].

2.2.3 The import and export of wine in South Africa

South Africa was responsible for 3.5% of wine production globally in 2006 and also plays a
significant role in the global wine industry [153]. In this section, the top ten exporting and
importing countries are listed and interpreted according to volume. This is followed by a
summary of South African wine exporting.

Global wine import and export

In 2006 twenty eight thousand four hundred million litres of wine were produced worldwide
[153] of which South Africa produced 1 013 million litres, ranking as the seventh largest wine
producer. However, when it comes to the per capita consumption of wine, South Africa does not
even reach the top 15. Tables 2.7–2.10 further support this notion by showing large quantities
of wine being exported and very little being imported. In terms of production and per capita
consumption of wine, the French are in the lead with the Italians not too far behind. From
Table 2.6, it may be deduced that France produced almost 20% of the global wine production
in 2006 and the top three producing countries, France, Italy and Spain, collectively produced
half of the wine. In Tables 2.7 and 2.8 the volumes and values of wines exported are listed
per country for the ten largest exporting countries and in Tables 2.9 and 2.10 the volumes and
values of wines imported are listed per country for the ten largest importing countries.

Wine production Per capita consumption
2000 2003 2006 2000 2003 2006

1 France 5 754 4 749 5 340 France 58.2 54.7 53.9
2 Italy 5 409 4 665 4 712 Italy 53.5 51.1 47.2
3 Spain 4 179 4 037 4 010 Portugal 45.9 52.6 46.9
4 United States of America 2 660 2 350 2 338 Croatia 42.0 42.5 42.3
5 Argentina 1 254 1 323 1 540 Switzerland 43.1 41.4 38.1
6 Australia 806 1 086 1 430 Spain 34.5 33.6 31.6
7 South Africa 837 956 1 013 Uruguay 32.0 32.0 32.5
8 Germany 1 008 819 900 Denmark 30.5 31.8 33.7
9 Portugal 784 715 715 Hungary 31.5 31.6 31.8

10 Chile 667 687 845 Argentina 33.7 32.1 28.1

Table 2.6: The wine production and per capita consumption per country [153].

18 Chapter 2. The South African wine industry

Rank Country 2000 2003 2006

1 Italy 28.2 17.9 20.7
2 France 24.2 21.1 16.8
3 Spain 14.5 15.9 19.2
4 Australia 4.5 7 8.5
5 Chile 4 5.2 5.6
6 United States of America 4.1 4.4 4.2
7 Germany 3.7 3.6 3.6
8 Moldova 2.8 5 2.2
9 South Africa 2.0 4.7 3.2
10 Portugal 2.7 3.4 3.7

Other 9.3 11.8 12.3

Total 100.0 100.0 100.0

Table 2.7: The volume share per country of the world wine exports expressed as a percentage
of the total [153].

Rank Country 2000 2003 2006

1 France 39.8 38.8 34.4
2 Italy 18.1 17.8 17.7
3 Spain 9.6 10 9.6
4 Australia 6.6 9.1 9.4
5 Chile 4.5 4.3 4.1
6 United States of America 4.1 3.5 3.7
7 Germany 2.8 3.2 3.6
8 Portugal 3.6 2.3 2.9
9 South Africa 1.9 2.4 2.3
10 Argentina 1.2 0.8 1.7

Other 7.8 7.8 10.6

Total 100.0 100.0 100.0

Table 2.8: The value share per country of the world wine exports expressed as a percentage of
the total [153].

From Table 2.7 it may be deduced that once again the top three countries exporting wine in
terms of volume exported produce over half of the wine exported worldwide. These top three
exporting countries are also the top three producing countries globally.

In terms of value, as listed in Table 2.8, the two countries who export the highest value of wine
own more than half of the value of wine exported globally. These two countries, France and
Italy, are also the two largest producing countries as well as the two countries with the highest
per capita consumption of wine.

Another conclusion that may be drawn from Tables 2.7 and 2.8 is that the French export mostly
superior quality wines (or perhaps merely more expensive wines). This assumption may be made
due to the fact that even though they do not export the largest quantities of wine (rather the
second largest) they still earn the highest value of exported wines. South Africa is consistently
ranked as number nine in both wine exported when listed according to the volume and to the
value of the exported wine.

2.2. Wine production in South Africa 19

Rank Country 2000 2003 2006

1 Germany 19.2 18.2 16.7
2 United Kingdom 16.2 17.1 15.6
3 United States of America 7.7 8.3 8.9
4 France 9.3 6.3 7.6
5 Russia 3.8 7.6 5.7
6 Netherlands 5.7 4.6 4.5
7 Belgium Luxembourg 4.6 3.9 3.5
8 Other Central Eastern Europe 3.2 3.7 4.5
9 Canada 3.5 3.6 3.9
10 Denmark 2.8 2.5 2.5

Other 24 24.2 26.6

Total 100.0 100.0 100.0

Table 2.9: The volume share per country of the world wine imports expressed as a percentage
of the total [153].

Rank Country 2000 2003 2006

1 United Kingdom 18.1 18.9 19
2 United States of America 15.7 18 17.3
3 Germany 14.5 13.3 11.3
4 Japan 5.6 4.7 4.7
5 Belgium Luxembourg 5.7 5 4.5
6 Netherlands 5.7 4.4 4.5
7 Canada 4.5 4.6 5.2
8 Switzerland 4.5 4.4 3.5
9 France 3.4 3.3 2.9
10 Denmark 2.8 3.6 2.3

Other 19.5 19.8 24.8

Total 100.0 100.0 100.0

Table 2.10: The value share per country of the world wine imports expressed as a percentage
of the total [153].

In Tables 2.9 and 2.10 the top ten importing countries are listed in terms of volume and value
respectively. The largest importer of wine in terms of volume is Germany and in terms of value,
the United Kingdom. The top three wine importing countries in terms of volume and value
once again support more than half the market concerned.

As expected, the numbers concerning the importing of wine differs greatly from those concerned
with export. Countries who produce large quantities of wine or good quality wine do not need
to import wine as much as those who do not produce high enough quantities to satisfy the
expected consumption of wine. This is made clear by top exporting and producing countries
such as Italy and Spain not even appearing under the top ten wine importing countries in both
Tables 2.9 and 2.10. South Africa, ranked as the ninth largest exporter and seventh largest
producer, is not even in the top 15 importers of wine in terms of volume or value [153].

20 Chapter 2. The South African wine industry

South African wine exports

The countries who import South African wines are listed in Table 2.11 together with the quantity
of wines imported from South Africa in 2006 and 2007, given in litres and expressed as a
percentage of the total volume of wine exported by South Africa.

2006 2007
Volume % Volume %

Country (in litres) of total (in litres) of total

United Kingdom 81 925 610 30.44 87 051 366 28.13
Germany 41 551 559 15.44 59 546 131 19.24
Netherlands 36 806 310 13.67 29 038 337 9.38
Sweden 23 121 009 8.59 25 967 932 8.39
Denmark 12 007 674 4.46 13 364 361 4.32
Canada 11 998 202 4.46 12 996 576 4.20
U.S.A 10 669 427 3.96 10 667 279 3.45
Belgium 9 125 380 3.39 9 572 926 3.09
Angola 319 557 0.12 8 544 964 2.76
France 8 548 123 3.18 6 945 047 2.24
New Zealand 1 838 603 0.68 5 770 212 1.86
Republic of Ireland 5 287 064 1.96 4 734 845 1.53
Switzerland 3 184 649 1.18 4 425 953 1.43
Finland 3 736 715 1.39 4 055 992 1.31
Russia 1 199 522 0.45 2 544 415 0.82
Kenya 1 759 528 0.65 2 187 420 0.71
Norway 1 481 691 0.55 1 602 197 0.52
Japan 1 333 878 0.50 1 354 792 0.44
Tanzania 973 470 0.36 1 301 083 0.42
China 488 214 0.18 1 249 820 0.40
Nigeria 642 418 0.24 1 240 161 0.40
Mauritius 1 011 245 0.38 1 077 454 0.35
Poland 635 844 0.24 1 009 626 0.33
United Arab Emirates 726 250 0.27 899 838 0.29
Latvia 934 741 0.35 755 750 0.24
Australia 449 249 0.17 750 909 0.24
Other countries 7 410 647 2.75 10 795 126 3.49

Total 269 166 579 100.00 309 450 512 100.00

Table 2.11: Packaged and bulk natural wine exports ranked per receiving country in litres [105].

Unfortunately the same information on South African wine imports do not seem to be available,
(only the volumes imported are available, but not the countries from where they are imported).
These volumes are given in Table 2.12 in terms of the bottled and bulk natural, fortified and
sparkling wines imported during 2006 and 2007.

The volume of wine imported during 2006 (19 071 365 litres) decreased to 14 101 397 litres in
2007. This is due to the significant decrease in the import of natural white bulk wine. The level
of import of fortified wines decreased by almost a third, whereas the import levels of sparkling
wines almost tripled in its volume from 2006 to 2007.

2.3. From the vine to wine 21

2006 2007
Bottled Bulk Total Bottled Bulk Total

Natural white wine 119 207 18 379 934 18 499 141 143 914 12 879 226 13 023 140
Natural red wine 266 234 266 234 297 838 297 838
Fortified wine 32 807 32 807 24 447 24 447
Sparkling wine 273 183 273 183 755 972 755 972

Total 691 431 18 379 934 19 071 365 1 222 171 12 879 226 14 101 397

Table 2.12: Imports to South Africa, bottled and bulk [105].

2.3 From the vine to wine

This section deals with the production of wine from wine grapes and what is needed both in
the vineyard and in the cellar to make good wine. This process is consists of two fields of study.
The first consists of the cultivation of grapes in the vineyard and is referred to as viticulture.
Viticulture and some of the aspects concerned are discussed in §2.3.1. The second field of study
is called oenology (sometimes spelled in the American version enology) and refers to the art and
science of making wine. Oenology is discussed in §2.3.2.

2.3.1 Viticulture (grape growing)

Viticulture is the part of horticulture which deals solely with the growing of the grape vine
[134]. It is practised consciously by the viticulturist and often instinctively by grape-growers or
vine-growers [100].

The market requirements for wine determines optimal viticulture practices and it is therefore
important that the market segment in which the wine will compete is specified from the start
so that the practices may be adapted to suit the desired result [38].

The sequence of vineyard development processes from initial planning through to picking starts
with the selection of the vineyard site, choice of the rootstock, vine variety and clone. This is
followed by soil testing and soil preparation, choice of vine density and trellis system8. Once all
of these aspects have been decided upon vine planting may start, followed by training and prun-
ing of the vines. Vine pests, vine diseases and weeds should be controlled throughout vineyard
development. The last phase includes sampling the fruits and finally harvesting the ripened
fruits [100]. Duties of the viticulturist during the last mentioned process may include: monitor-
ing and controlling pests and diseases, fertilizing, irrigating, canopy management, monitoring
fruit development and characteristics, deciding when to harvest, and vine pruning during the
winter months [144].

With these tasks in mind, viticulture practices may be divided roughly into two classes. The first
is terroir decisions which may be defined as the ‘total natural environment of any viticultural
site’ [100]. The second is good practices concerning viticulture [38]. These two classes may once
again be subdivided into different topics as illustrated in Figure 2.5 and are briefly discussed in
this section.

8The trellis system is the support structures for the vine framework required for a given training system.

22 Chapter 2. The South African wine industry

Viticulture Practice

Good practicesTerroir

Slope

Influence on

temperature

Relative position

to sun

Airflow

Choice of cultivar

Climate

Temperature

Rain (or irrigation)

Humidity

Wind

Hail

Frost

Radiation

Evaporation

Soil

Good drainage

Soil depth

Soil texture

Soil potential

Water retention

Clay capacity

Long-term practice

Product choice

Market choice

Terrain

Choice of plant

material

Preparation of thew

ground

Distances of planting

Development of the

vines

Canopy system

Vineyard layout

Business size and level

of vertical integration

Capital planning

Short-term practice

Irrigation practice

Foliage management

Nutrition practice

Cultivation practice

Disease and pest

management

Staff management

Medium-term practice

Market and product focus

Irrigation system

Pruning and trellising

system

Nutrition system

Cultivation system

Garrison and

technological support

Contractual relations

and alliances

Financial planning

Figure 2.5: A schematic illustration of viticulture practices in South Africa [38].

Terroir

Terroir may be subdivided into three categories namely climate, soil and slope [38].

Climate The climate may very well be the most important determining environmental factor
for viticulture practice. Environmental aspects such as temperature, rain (or irrigation),
humidity, wind, hail, frost, radiation (direct radiation is warmer than diagonal radiation)
and evaporation all play a role in the selection of the proper viticultural site [38]. Temper-
ature is certainly one of the most important elements of climate, since cold-temperature
injury from winter cold along with diseases encouraged by hot, humid weather are major
limiting factors to grape production. There are also other environmental factors that in-
fluence the growth and outcome of the vineyard, the volume and quality of the harvest,
and the quality of the wine that is produced. These factors include frequent rainfall during
the growth season and spring frosts [38, 134].

The best suited climate for a vineyard is suggested to be a Mediterranean climate, situated
between 30 and 50 degrees of latitude north and south [38]. Wine production in South
Africa mainly takes place at a latitude of 27 to 34 degrees south placing it in the desired
climate region [154].

Another important factor for grape production is the length of the growing season which
is determined by the first and last frosts of the year. A minimum frost-free period of 150
days is required for the earliest ripening cultivars [134].

Soil Grapevines perform best when they have healthy, well-developed root systems and a wide
range of soils suitable for grapevines exist. It has also been shown that it is the physical
characteristics of soil that effect the characteristic of the wine, not the chemical character-
istics. Physical characteristics include good aeration, loose texture and moderate fertility,
a good surface and internal drainage capability [134]. Proper soil drainage is a necessity
for successful vine culture. Root growth in poorly drained soils is usually limited to the

2.3. From the vine to wine 23

top two feet or less compared to the well-drained soils where roots may penetrate six feet
or more. This restriction of the root system may cause vine growth and fruit yields to de-
crease, resulting in plant survival being limited to only a few years [134]. Too much damp
and nourishing reserves in the soil may also stimulate excessive growth of the grapevine
that is unfavourable for the quality of the wine [38].

Deeper soil has higher sustainability and enhances the ability to guarantee stable growing
conditions. The soil should also be of medium and open texture and have medium potential
that will not induce excessive growth and cause a distorted balance between growth and
the accumulation of essential components in the grapes. Water retention is determined
by the depth, texture and structure of the soil as well as the quantity of organic material
and rocks present. The ideal water retention is medium to high (15–25 mm/meter). In
dry land conditions, soil with a clay capacity of 10–30 % may improve water retention
[38].

Slope Positioning a vineyard relative to the sun or on hills and valleys plays an important role
in the vineyard outcome. The most significant influence of a hill is on the temperature
of the area. The slope of a hill causes a 0.6◦C decline in temperature with an increase
in height of 100m [38]. Hills also provide warmer temperatures during the night and no
extreme temperatures during the day. Southern and south eastern facing hills are cooler
than northern and north western facing hills. Hills also provide better airflow with cooler
air coming down the hill. The gradient of the viticultural site may also have an effect on
which cultivar is best suited for the land [38].

Good viticultural practices

According to a study by the Department of Logistics at the University of Stellenbosch, good
viticultural practices may once again be subdivided into three categories, namely short, medium
and long-term decisions and management considerations. Each of these three categories is
described briefly in this section.

Short-term decisions and management considerations Decisions should be made on the
type of irrigation practice that will be followed. This is an important decision and even
though the decided irrigation practice will be followed for at least the following two years
it will still influence the irrigation system used in the long run. The foliage-management
also has an impact on the growth and the strength of the vines. As nutrition practice,
fertilizers should only be applied in agreement with soil analyses, since excessive fertil-
ization causes water pollution and induces excessive growth and leaf density. This is an
unfavourable situation for the vineyard in the long run. With cultivation practice me-
chanical cultivation should be limited to a minimum. A system of minimum cultivation
by the use of cover crops is advised. For disease and pest management chemical control
should be eliminated as far as possible in management practices and control measures.
To successfully coordinate staff management, staff should be handled in such a way as
to ensure good working conditions and relations in the long run. In order to ensure no
deviations in the long run harvesting management and quality control should be done
effectively and continuously. These short-term decisions should be recorded for future use
[38].

Medium-term decisions and management considerations The first consideration is that
of market and product focus which includes all decisions influenced by what is popular at

24 Chapter 2. The South African wine industry

the time and how these production needs will be met. The irrigation system relies on
the resource, cultivar, pruning practices and canopy system, it should also suit the soil
type and climate. The right pruning and trellising system must be used, since it has a
direct influence on the harvest and is also a means of manipulating the vineyard. The sys-
tem should accommodate the vivacity of the vines to avoid forming canopies that are too
dense, rather allowing maximum airflow in order to reduce the risk of disease occurrence.
A proper nutrition system should be derived to ensure moderate use of fertilizers. This
is of the utmost importance, since it should guarantee moderately growing vineyards. In
order to produce the optimal grape and wine quality each individual situation requires
the right fertilizing practice. A cultivation system consists of the manipulation of soil in
existing vineyards to create and keep the most favourable physical conditions of the soil
for the roots of the vines. There should be a proper garrison and technological support
system to ensure that everyone in the industry is trained to understand and work suc-
cessfully in the whole process. This aspect of decision and management considerations
should also ensure that the right technological support is available throughout the process.
Contractual relations and alliances require that decisions are made on the possibility of
producing on contract basis as well as based on the possibility of forming alliances. An-
other important aspect is financial planning. This planning should typically be done to
see what expenses are expected to occur during the following ten years, keeping in mind
factors such as equipment that must be replaced [38].

Long-term decisions and management considerations With product choice, there should
be a focus area and the end product of the process (typically the wine produced, e.g. Sauvi-
gnon blanc) must be specified. The market choice should be specified from the beginning.
Selection of the viticultural site or terrain and decisions regarding soil preparation actions
and the suitability of the soil for a specific cultivar should be based on proper profile
studies. Deciding on the right choice of plant material is crucial to the well being of the
vineyard. The type of soil dictates the choice of rootstock and the right type of clone
must also be selected, since different clones can improve the complexity of a specific cul-
tivar. Certified material should be used whenever available. Certain rootstock are more
resistant to pests and diseases in particular environments than others; therefore the most
pest and disease resistant rootstock should be used. The preparation of the soil should
only be done once the type of soil has been identified through profile studies. Soil that is
deeply cultivated has a better resistance against unfavourable weather. The growth of the
vines and thus the quality of the wine is also influenced by the distances of planting. The
rows should be a standardised 2.2m apart (based on the potential of the soil) and the dis-
tances between the vines should be between one and two metres. The development of the
vines should be done in a way that ensures consistent vigour and quality in the vineyard.
Enough leaf-roof for optimal ripeness is ensured by a large enough canopy system which
should also suit the potential of the soil and the cultivar. The vineyard layout is influenced
by the choice of the direction which is determined by the climate. The direction should
also be chosen to prevent soil erosion, allow maximum airflow and reduce the occurrence
of disease. However, the most important decision involves the business size and level of
vertical integration as this will influence the success and potential of the business in the
long run. Capital planning is yet another area of focus in which the producer must decide
on the percentage of available land that will be prepared and used during production. At
this stage he should also consider the possibility of his existing practices being expanded
in the future [38].

2.3. From the vine to wine 25

The quality of a wine is affected greatly by the quality of the grapes used. The viticulturist
therefore often has an important relationship with the winemaker. Viticultural preparation
also includes steps to determine whether grapes are fully ripened and that the requirements of
the winemaker are met. These requirements include aspects such as flavour compounds, colour
compounds, sugar levels and acidity [39], and is examined by means of repeated tasting and
tests. Once these requirements are met, the grapes may be harvested and transported to the
cellar by means of a truck or tractor depending on the yield. The grapes are then graded —
this refers to the process of determining the type and quality of grapes arriving at the cellar.
Grading techniques may include the visual inspection of grapes, batch sampling or any other
means [39].

It is a respected statement that good wine begins with good grapes. It is therefore essential that
the grapes be analysed at the vineyard as well as on arrival at the cellar. The quality, origin
and certain characteristics should be carefully documented, since the quality of the grapes may
differ on arrival at the cellar from the quality of the grapes as previously documented in the
vineyard, this is due to aspects such as sun exposure. The process and science of making the
wine from the grapes at the cellar is described in §2.3.2.

2.3.2 Oenology (wine making)

The word oenology (and enology) is derived from the Greek oinos (wine) and logos (logic). Wine
logic is still an accurate description of this science as it is based on the application of analysis,
equipment, materials and technology in designed methodologies to achieve predetermined results
[134]. An oenologist is a person who studied oenology and has wine making as practical part of
their activities, whereas a winemaker may have no formal qualifications [98].

Wines are generally categorized by experts in five classes: Table wines, sparkling wines, dessert
wines, aperitif wines and pop wines. These wines differ in the grape variety used and also in
the vinification method [145]. The overwhelming majority of the wine produced in the world
falls into the table wine category. The vinification methods used for white and red table wines
are therefore outlined in this section.

The production of white wine

There is no precise recipe for the making of a bottle of white wine and the winemaker is left
with a large number of choices depending on the type of grape used, the behaviour of the wine
during the different stages of production and its desired outcome. A flowchart of the various
procedures involved in the production of white wine, as will be described in this section, is
shown in Figure 2.6. The figure represents a generic method of white wine making only, and
may differ from one winemaker to the next.

The composition and soundness of the grapes used for making wine is of major importance
and dictates the quality of the resulting wine. The degree of ripeness of the grapes at harvest
depends on the type of wine to be made with normal maturity being between 18◦ and 22.5◦

Balling9 for dry white wine. However, other varieties such as Chardonnay, may benefit from
more mature grapes [98].

When making dessert wines, oxidative practices are used, but with the making of table wines
the modern approach is to use reductive oenology. This practice is greatly centred on preventing

9Brix is used to describe the sugar content in grapes and wine, also commonly used is Balling.

26 Chapter 2. The South African wine industry

White grapes

arrive at cellar

Documentation

of grape quality

Tipping bin

Crusher/

Destemmer

Drained

Pressed

Skins and stems

Free-run juice

Combined or

kept separate

Pomace

Chilled, settled, racked (decanted) to give

clear juice, perhaps centrifuged or filtered

Fermented to dryness with cooling or

stopped while still sweet.

SO
2

Tartaric AcidEnzymes

Yeast

Disposal or distillation

after fermentation
Wine racked off

yeast deposit

Lees

Cold-stabilised and fined to prevent deposition

of potassium bitartrate, protein, etc.

SO
2

Ascorbic acid

(optional)

Racked and

coarse-filtered

Sterile filtered

Bottled

SO
2

Sweetening

may be added
Ascorbic acid

(optional)

Stems

(compost)

Figure 2.6: A flowchart for making white table wine [39, 98].

2.3. From the vine to wine 27

contact of the must and wine with air in order to avoid oxidation together with the effect of
temperature control [98].

In optimal conditions, grapes harvested should be cool (between 8◦ and 16◦C). In warmer areas,
this may be achieved by machine harvesting at night. If this is not possible, must cooling may be
applied. Sulphur dioxide and ascorbic acid may be added to the grapes directly after harvesting
[98].

On arriving at the cellar the grape quality is properly analysed and documented, and the batch
is deposited into an assigned tipping bin accordingly. The grapes are destemmed and crushed10,
preferably in a roller crusher which destems before crushing [98]. Crushing occurs in order to
break grape skins and release the juice. The thick liquid that forms as result from the crusher-
destemmer, called must, is neither grape juice nor wine but a mixture of grape juice, stem
fragments, grape skins, seeds and pulp [100]. Tartaric acid may be added, if required, to ensure
that the pH of the resulting juice is within a range of 3.0 to 3.4. Certain enzymes11 may also
be added at this stage to hasten the yield of the drained juice and should be added as soon as
possible after crushing to allow the longest period of time for them to act [98].

In order to ensure that the must is of the correct temperature, a mash cooler may be used, which
pertains to a heat exchange device and cools the incoming pulp or grapes before fermentation.
It is considered essential to maintain as low a temperature as possible during the early stages of
the process, since South Africa has a relatively hot climate. A considerable loss in flavour may
occur with higher temperatures in the beginning phase of the wine making process, especially
with white wine. It may not always be possible to chill the grapes on arrival at the cellar or
during destemming processes, in which case it should be done as soon as possible after. The
type of mash cooler used depends on the cellar environment [39].

The winemaker may soak the grape skins in the juice if he wishes to extract flavours and aromas
trapped in the skins [5]. Certain varieties benefit more from skin contact and the length of the
contact depends on the temperature. Depending on the variety, skin contact may be for up to
18 hours at 5 to 10◦C. Skin contact is of greatest value with quality grapes from cool regions
[98]. Any colour grape may be used to make white wine as the skin is separated from the juice
during fermentation, when dark grapes are used however, the skins should be separated from
the juice as gently and soon as possible. The majority of white wines are nevertheless made
from grapes with yellow or green skins [100].

The must is now drained, preferably under carbon dioxide, at a temperature not exceeding
15◦C (to separate the liquid from the solids) and the skins are pressed [98]. Sulphur dioxide
may again be added at the pressing stage. The pressing may be achieved using a hydraulic,
pneumatic or horizontal press [5]. The sweet pomace12 that is left in the press after pressing
has occurred should be disposed of and removed from the winery immediately as it attracts
insects and other pests [134].

At this stage, the juice may be clarified (and settled using pectic enzymes) to an extent depend-

10With certain production methods, such as Champagne production in France, the grapes may be pressed
without being crushed. This method is seldomly used in South Africa.

11The activity of these enzymes are strongly temperature-dependant. At 10◦C they have between 15 and 25
percent of their activity, with optimum activity at a temperature of 45 to 50◦C. At 60◦C their activity rapidly
starts do decrease until they become completely inactive at 80◦C. Consequently, a conflict exists between the
desire for cool temperatures for grape-handling operations and the need for efficient activity of the enzymes.

12In white wine production the pomace is the sweet, pale brownish-green mass of grape skins, stems, seeds
and pulp left in the press after pressing, but still before any fermentation has taken place, whereas in red wine
production the pomace is a similar mass of grape debris coloured blackish red left once the free-run wine has
been drained after primary fermentation [100].

28 Chapter 2. The South African wine industry

ing on the preference of the winemaker. It may also be filtered in order to remove suspended
solids. These operations should occur at a temperature not exceeding 15◦C. The juice is now
inoculated with a selected pure yeast culture. Diammonium phosphate may also be added
as supplementary inorganic nitrogen to restrain the possible ensuing formation of hydrogen
sulphide during fermentation and also to assist in obtaining complete fermentation of the sugar.

The next step is the temperature controlled fermentation which occurs in a fermentation vessel
at temperatures cooler than room temperature [100] from 10 to 18 degrees Celsius [96]. These
vessels are usually made of stainless steel (for high-volume everyday wines) since it holds the
advantage that both cleaning and temperature control are much easier than with other vessel
materials [100]. A fermentation vessel should be filled to about 70 % of its capacity. This
allows room for foaming to occur without damaging the fermentation lock. Oak barrels are still
used for some premium style wines (mostly red, or Chardonnay and Sauvignon Blanc [98]) and
concrete or fibreglass may also be used [5]. The yeast now converts sugars into ethanol (alcohol)
and this process is referred to as alcoholic fermentation [100]. The reduction in sugar content
during alcoholic fermentation is approximately linear and preferably between 0.7 and 1.4◦ Brix
per day [98]. Bentonite may also be added during fermentation in order to avoid bentonite
fining as a separate subsequent operation [98].

There exists a secondary fermentation, referred to as malolactic fermentation, which is usually
associated with red wines only, but in modern wine making it may also be applied to a select few
white wine styles. In certain white wines it is definitely not wanted and is therefore discussed
in §2.3.2 where the production of red wine is considered.

After fermentation, the wine as allowed to settle, is then racked (decanted) under carbon dioxide
off gross lees (the old English word for the sediment that settles at the bottom of a container
[100]) and is protected against invasion of lactic bacteria [5]. At racking, sulphur dioxide is
added to induce a preferred pH of between 3.1 and 3.4; ascorbic acid may also be added [98].
Racking may be delayed for weeks with some varieties, such as Chardonnay, during which time
malolactic fermentation may occur. Only a small percentage of white wine comes into contact
with wood — therefore barrel fermentation and ageing is sometimes present in the production
of certain white wines, especially wines made from the Chardonnay grape.

Cool temperature and minimized exposure to air as well as the minimum handling of wine are
of renowned importance in white wine making [98]. A hazy translucent appearance is common
in young white wines (2–4 months old) mainly due to proteins and other organic residues. New
wines may also contain excessive potassium and tartrate ions which eventually crystallizes as
potassium bitartrate (cream of tartar). Once the various batches of wine are blended to form
a uniform bulk, or coupage as it is known in French, the wines may be fined and stabilised.
Finings such as gelatin, kieselsol or bentonite clay mixtures are recommended for clarification
or fining of the haze [134]. After the finings have been added, the wine tanks are filled, sealed
and allowed to rest for 4–6 hours at normal room temperature after which cold stabilisation
may commence. It may be cold stabilised by chilling to between -4◦C and 2◦C for up to three
weeks [134, 98]. Potassium bitartrate crystals may be added if rapid stabilisation is required
[98].

The chilled and stabilised wine is then racked for a second time to remove the crystalline tartrate
deposit under inert gas. It is of utmost importance that the wine should not be exposed to air
in its cold state since the solubility of dissolved oxygen is much greater in cold than in warm
wine. This should be noted especially during the pumping of the wine. The pH of the wine
should now be analysed, as well as the free sulphur dioxide, ascorbic acid and sugar (to suit the
specific style of the wine) after which it is ready for bottling.

2.3. From the vine to wine 29

The production of red wine

Red wine making is even less predictable than the making of white wine and is still considered
something of an art. This is in part due to the greater number of variables on which the com-
position and quality of red wine depends. These are aspects such as the time and temperature
of the juice on skins during fermentation, various methods of colour extraction, the extent and
type of wood ageing and more handling of the wine [98]. A typical red wine making method is
shown in Figure 2.7 in the form of a flowchart.

The grape maturity at harvest depends on the style of wine intended and the fruit flavour
present in the grapes. The riper the grapes, the heavier the wine is in body and (generally) in
flavour, as well as the higher in alcohol. The grapes used for red wine making usually range
from 18 to 25.2◦ Balling [98].

Once the mature red (black) grapes have been harvested, the quality and further details of the
grapes are documented and the preferably cool grapes are loaded into the tipping bin. They
are then destemmed and crushed, after which the stems are discarded. The grape bunches
may be wholly or partially crushed during crushing [96]. Stems may also be included in the
fermentation if the winemaker wishes to do so, but it is not usual [98]. The destemmed and
crushed must is then pumped to a fermentation vessel where tartaric acid, a small quantity
sulphur dioxide and a selected yeast culture may be added. During the alcoholic fermentation,
yeast converts sugars into alcohol. The formed alcohol assists with the extraction of pigments
and tannins from the skins, which contribute to the flavour. Leaving the partially fermented
wine on the skins to draw out more tannin, colour and flavour is referred to as maceration [5].
Without maceration, wine made from dark-skinned grapes is merely pink [100]. The combined
process of fermentation and maceration may take anything between 24 hours and three weeks
depending on the colour of the final product required [96]. During the fermentation, the process
of colour extraction on the skins may be carried out in several ways. The floating skins (the
cap) may be punched down at regular intervals during the fermentation so that they mix with
the fermenting juice. There are also various systems by which the juice is taken from under
the cap of skins and irrigated over the skins in an intermittent manner. Skins may also be
submerged with head boards so that the skins are in constant contact with the juice and there
exist specifically designed red wine fermenters to assist in this process. Colour may also be
extracted with the use of heat [98]. During fermentation, winemakers may add oak chips or
shavings to create an oak complexity. Oxidation and harsh flavour may result if this process
is not approached very carefully. It is important to note that these additions only impart oak
complexity and are never a satisfactory replacement for oak-cask maturation [98].

Once the winemaker is satisfied with the colour, flavour and tannin extraction, the free-run wine
may be drained from the fermented must and the rest of the must pressed. As with white wine
making, the pressed wine may be blended with the drained wine or kept separate, depending on
the style of wine required. At this stage, the wine may be racked off yeast deposits. The wine
usually undergoes malolactic fermentation, also referred to as secondary fermentation since it
almost never precedes alcoholic fermentation. Malolactic fermentation consists of the conversion
of malic acid, naturally present in new wine, into the weaker lactic acid and carbon dioxide [100].
This happens naturally, but may also be artificially induced via the injection of lactic bacteria
[5]. During this stage the wine may be given a light fining of bentonite or egg white to settle the
suspended material and, if necessary, the acidity may be adjusted with the addition of tartaric
acid to between pH 3.3 and 3.6 [98].

The wine is then matured in either oak barriques, historically of a 225 litre capacity, or larger
steel tanks depending on the required style of the wine. Wood is porous and therefore exposes

30 Chapter 2. The South African wine industry

Red grapes

arrive at cellar

Documentation

of grape quality

Tipping bin

Crusher/

Destemmer

Whole grapes in anaerobic atmosphere

for 2-3 weeks (macération carbonique)
Heated, pressed

Cooled, yeasted

Stems

(compostt)

SO
2

Must fermented

with skins

Tartaric acid Yeast

Drained
Free-run juice

Skin pressed Combined or

kept separate

Fermentation completed

without skins

Pressings

Disposal or

distillation

Marc

Malo-lactic fermentation

occurs

Wine racked off yeast

deposit

Maturation

Wine is blended

Stabilisation

Filtration

Bottled

SO
2

Lees

Wine is blended

Rest period

Filtration

Bottled

Wood matured

Not wood matured

Figure 2.7: A flowchart for making dry red table wine [39, 98].

2.4. Chapter overview 31

the wine to some oxygen [100]. During maturation the wine extracts tannin, flavour and colour
from the wood. Barrel maturation also encourages clarification and stabilization of the wine in
the most natural way [100]. The extra dimensions of flavour the wood provides depend on the
origin of the oak, the size and age of the barriques, the number of times they have been used
and the length of time the wine spends in them. Over time the wine is transferred between vats
or barriques to rack off its lees and to allow limited aeration [5]. The wine may need two or
three rackings before it can be filtered.

After ageing the wine is blended and tasted again, analysed and may be stabilised, then filtered
and lightly sulphited if necessary. This process includes the removal of unwanted suspended
substances not visible to the human eye, such as proteins, by chemical means to stabilize the
wine and improve clarity. The fining process may also occur naturally during a lengthy ageing
in the barrel. The wine may now be bottled; bottle-ageing under cool temperatures improves
the quality.

2.4 Chapter overview

The goal of this chapter was to provide the reader with a basic understanding of wine and of
the South African wine industry. In §2.1, the development of the South African wine industry
organisational structure as well as its current state were discussed. Some statistics on wine
production in South Africa as well as the import and export of wine were given in §2.2, and in
§2.3 viticultural practices and an overview of wine making methods were discussed.

32 Chapter 2. The South African wine industry

CHAPTER 3

Methodological background

Contents
3.1 Introduction to the scheduling problem . 34

3.1.1 Machine environment . 34

3.1.2 Processing restrictions and constraints 36

3.1.3 Performance measures and optimality criteria 37

3.1.4 Representation of task sets and the corresponding schedules 38

3.2 A concise survey of literature . 42
3.2.1 The job shop scheduling problem . 43

3.2.2 Decision support in the wine industry 45

3.3 Solving scheduling problems via mathematical programming 46
3.3.1 Mixed integer programming in the context of scheduling 46

3.3.2 The branch-and-bound method . 48

3.4 Tabu search methodology . 50
3.5 Chapter overview . 53

Scheduling is concerned with the allocation of scarce resources (such as equipment, labour
and space) to jobs, activities, tasks or customers over time and is characterized by a virtually
unlimited number of problem types. The objective in scheduling is to optimize one or more
(possibly conflicting) performance measures [21, 80].

The study of scheduling dates back to the start of the twentieth century with the work of Henry
Gantt1 and other pioneers. The scheduling problems of the 1950s, considered when researchers
were faced with the problem of managing various activities occurring in workshops, were very
simple. From there onwards, these problems steadily grew in complexity and during the 1970s
many scheduling problems were shown to be NP-hard [80]. A number of efficient algorithms have
been developed to provide optimal solutions to simple problems, whilst heuristics are typically
used for the most complex scheduling problems.

The notation that is commonly used in classical scheduling problems, and also throughout this
thesis, is reviewed in §3.1. This section also contains an overview of the three-field α|β|γ notation
used to classify classical scheduling problems as well as an overview of typical representations
of schedules, given in §3.1.4. A concise survey of literature is presented in §3.2, containing both
references to literature on the scheduling problem and other applications of optimization and

1Henry Laurence Gantt was an industrial who developed the now famous Gantt chart in the 1910s [93].

33

34 Chapter 3. Methodological background

decision support in the wine industry. The optimization methods applied to solve the scheduling
problems in this thesis are discussed in §§3.3 and 3.4, the exact and meta-heuristic methods
respectively.

3.1 Introduction to the scheduling problem

Scheduling problems may generally be characterized by three sets: a set J = {J1, . . . , Jn} of
n jobs, a set P = {P1, . . . , Pm} of m processors (machines) and an optional set of s additional
resources denoted by R = {R1, . . . , Rs}. The subscript j generally refers to a job and the
subscript i to a processor [14, 16, 80].

The process of scheduling generally entails an assignment of processors from P and optional
resources from R to jobs from J over a set period of time which may be divided into smaller
time intervals [14, 21].

A job Jj ∈ J may be characterized by its processing times, release date, due date, deadline and
weight. These five characteristics are all considered as static data, since they do not depend on
the schedule. On the other hand, data that are not fixed as such, are referred to as dynamic
data [94]. The processing time, denoted by pij , refers to the time required by job Jj to be
processed on machine Pi. The subscript i of pij may be omitted if the job Jj may be processed
on any machine[80]. The release date, rj , of job j is the time instance at which the job arrives
in the system. It is therefore the earliest time instance at which the processing of a job can
start. The due date, dj represents the time job j is expected to be complete, as determined
by a production schedule. If a job is completed after the due date, it incurs a penalty cost.
However, the deadline, d̄j , of job j is the hard, real-time limit by which the product must be
completed and which may not be exceeded. The importance of a job j is reflected by its weight,
wj [14, 16, 80].

A schedule is feasible if each processor handles at most one job at a time, if no job occurs on
more than one processor at a specific time and, in addition, if a number of problem-specific
characteristics are met. A schedule is said to be optimal when a given optimality criterion is
minimized.

A scheduling problem may be described by a triplet α|β|γ, where the field α describes the
machine environment and contains a single entry. The processing characteristics and constraints
are described in the field β and may contain no entry or multiple entries. The field γ describes
the objective to be minimized and usually contains a single entry [93]. These three fields are
discussed in some detail in §§3.1.1–3.1.3.

3.1.1 Machine environment

The first field, α, describing the machine environment may take on the values 1, Pm, Qm, Rm,
Jm, FJc, Fm, FFc or Om.

If α = 1, then there is only a single processor in the system and each job therefore consists of a
single operation. This is the simplest case of all possible machine environments and is a special
case of all other more complicated machine environments [21, 80, 93].

When α ∈ {Pm, Qm, Rm}, parallel processors are used. In this case each job may be processed
on any of the processors P1, . . . , Pm. If α = Pm, then there are m identical processors in parallel.
Each job j requires only one operation and may be processed on any of the m parallel processors.

3.1. Introduction to the scheduling problem 35

If α = Qm, there are m uniform processors, that is m processors in parallel, but operating at
different speeds. Unrelated processors are present when α = Rm, in which case the m parallel
processors can each process the jobs at a different speed, i.e. the speeds are job-dependent
[21, 80, 93].

A job Jj may be further divided into a set of kj tasks, Tj1, . . . , Tjkj
, where two consecutive

tasks in the sequence are to be performed on different processors. Such an environment may be
referred to as multi-operational. The set of tasks is written as

T = {T11, . . . , T1k1 , T21, . . . , T2k2 , . . . , Tn1, . . . , Tnkn}

with the vector of processing times,

pjk = [pjk (1) , pjk (2) , . . . , pjk (m)]T ,

representing the time required by the different processors to perform a task. Here pjk (i)2 is
the time required by processor Pi to process task Tjk, for all k = 1, . . . , kj , j = 1, . . . , n and
i = 1, . . .m. Furthermore, a set of processors µjk ⊆ {P1, . . . , Pm} is associated with each task,
Tjk. Task Tjk may be processed on any of the processors specified in µjk [21]. In most cases, all
µjk are one element sets (in such a case the processors are referred to as dedicated processor)
or all µjk are equal to P, the full set of processors (in which case the processors are referred
to as parallel processors). A multi-purpose processor is typically used in flexible manufacturing
where processors are equipped with different tools, which means that a task can be processed
on any machine with the appropriate tool. Instances also exist where all processors in the set
µjk are utilized by task Tjk simultaneously during the entire processing period. This type of
scheduling problem is referred to as a multiprocessor task scheduling problem [21]. The multi-
operation models are denoted by α ∈ {Jm, FJc, Fm, FFc, Om}. A brief overview of each of these
multi-operation models may now be given.

In a job shop with m dedicated processors, indicated by α = Jm, each job has its own prede-
termined route that it must follow during production, i.e. a special precedence relation of the
form Tj1 ≺ Tj2 ≺ . . . ≺ Tjkj

exists for all j = 1, . . . , n. Such a precedence constraint in the set T
means that the processing of Tj1 must be completed before the processing of Tj2 can be started,
and so forth. A job shop with µjk = µj(k+1) is referred to as a job shop with machine repetition.
Recirculation is the term used to describe the situation where a job may visit a processor more
than once in a job shop. The flexible job shop, denoted by α = FJc, is a combination of the
job shop and the parallel machine environment3. Rather than having m processors, there are
c work centres, each with a number of identical processors that function in parallel. Each job
still has its own predetermined route that it must follow through the shop during production,
and job j requires processing at each work centre on any of the processors. In this case, if a job
may visit a work centre more than once on its route through the shop, it is once again referred
to as recirculation [21, 93].

If α = Fm, the situation with m processors in series arises, called a flow shop. The criteria
for a flow shop are that each job has to be processed on each of the m processors and that all
jobs must follow the same route (i.e. first on P1 then on P2, etc.). A flow shop may therefore
be expressed as a special case of the job shop in which kj = m for j = 1, . . . , n (the number
of tasks required for each job is equal to the number of processors) and µjk = {Pk} for each

2It is sometimes necessary to work with a set of variables rather than vectors, in such a case pjk (i) may be
denoted as pijk.

3Flexible job shop problems are sometimes referred to as job shop scheduling problems with multi-purpose
machines[21]

36 Chapter 3. Methodological background

k = 1, . . . ,m and j = 1, . . . , n (the task Tkj for each job is processed only on processor Pk).
Once a job has been completed on one processor, it queues at the next processor. If these
queues operate according to the First In First Out (FIFO) principle, the flow shop is referred
to as a permutation flow shop and the field β includes the entry prmu. Similar to the flexible
job shop, the flexible flow shop (α = FFc) is a combination of the flow shop and the parallel
processor environments4. However, in such a case there are c flow shop stages in series, instead
of m processors in series, each with a number of identical processors in parallel at each stage.
Each job requires processing once at every stage, first at stage 1, then at stage 2, and so forth.
A stage serves as a collection of parallel processors on which processing of a job is required on
any one processor [21, 80, 93].

An open shop, denoted by α = Om, comprises m processors where each job has to be processed
on each of the m processors. Some of the processing times may be set to zero. There are
no restrictions with regard to the routing of each job through the machine environment and
therefore the open shop may be seen as a flow shop without precedence relations between tasks
[93].

3.1.2 Processing restrictions and constraints

The second field, β, is used to describe the processing restrictions and constraints, and may
consist of a variety of entries. Possible entries in the field β are described in this section [16, 93].

A schedule is referred to as preemptive (indicated by the presence of the parameter pmtn in the
field β) if the processing of a job may be interrupted at any point in time and a different job put
on the processor instead. The amount of processing received by such an interrupted job is not
lost. When preemption of all tasks is disallowed, the schedule is referred to as non-preemptive
(in which case the entry, pmtn, is omitted from the field β).

Any specified additional resources are indicated by the presence of the entry res in the field β.

Precedence constraints require that one or more tasks may have to be completed before another
task is allowed to be processed. If the order of execution of at least two tasks in T is restricted
by such a constraint, the tasks in the set T are called dependent. Without the presence of such
a constraint, the tasks may be referred to as independent. Precedence constraints are implied
when the entry prec is included in the field β. Several special forms of precedence constraints
exist. For example, a constraint that requires each job to have at most one successor, is referred
to as an intree and when each job has at most one predecessor, the constraints are referred to as
an outtree, which may be denoted by intree and outtree in the field β respectively. Uniconnected
activity networks are denoted by β =uan and a chain, which occurs if each task has at most
one predecessor and at most one successor, is indicated by writing β =chains. If no such entry
is present in the field β, independent tasks are implied. Precedence relations of a set of tasks
may be represented by an acyclic5 directed graph [21].

To indicate that processing of a job Jj is not allowed to start its processing before its release
date, the symbol rj is included in the field β, thereby allowing release dates to be specified for
each job. If the symbol is omitted, the processing of job Jj may start at any time [21, 80].

Some entries appearing in the field β are self-explanatory. For example, the entry (pj = p)
implies that all processing times are equal and when

(
p ≤ pj ≤ p̄

)
is included, no processing

4Flexible flow shop problems are sometimes referred to as flow shop scheduling problems with multi-purpose
machines [21].

5Acyclic is a term used to describe graphs which contain no cycles.

3.1. Introduction to the scheduling problem 37

time pj is allowed to be less than p or greater than p̄. If no entry regarding such processing
times appears, the tasks have arbitrary processing times. If d̄ is present in the field β, deadlines
are imposed on the performance of a task set, but if the d̄ is omitted, no deadlines are assumed
in the system. Also, if (dj = d) is in included, it means that all due dates are equal (although
due dates are usually not explicitly specified in the field β). The maximum number of tasks in
a job in the case of job shops may be limited by including the entry (kj ≤ `).
If the symbol, Mj , appears in the field β when the machine environment is that of Pm, not all
m processors are capable of processing a job j. Therefore, the set of processors defined by Mj

denotes the set of machines that can process job j.

When recrc is present in the field β, recirculation may occur in a job shop or flexible job shop.
When prmu is present, then the queues in front of each processor in a flow shop, operate
according to the FIFO principle. It is therefore implied that the permutation (or order) in
which jobs are processed on the first processor, is maintained throughout the system.

The last example of field β entries, is the no-wait (nwt) entry. This entry is applicable to
flow shops and when present, processing of a job must immediately start on the consecutive
processor once a job has been completed on the one processor. Therefore the starting time of a
job at the first processor has to be delayed in order to ensure that the job can go through the
flow shop without having to wait for any processor.

3.1.3 Performance measures and optimality criteria

The last field indicates an optimality criterion, serving as a means to measure the performance
of a schedule. The scheduling problem entails finding a feasible schedule which minimizes
the specified objective function. In order to define some of the most generally used objective
functions, some terminology is required. If a variable, say Xj , is used to describe a certain
property of the derived schedule, the associated cost function is then defined by fj (Xj). Such
a variable may be the completion time of job j and is denoted by Cj . The completion time
of a job indicates the time required in order to complete the job6. It is important to note the
difference between the processing time of a job and its completion time. The processing time
refers to the amount of time required in order to process the job on a specific machine, whereas
the completion time denotes the time instance when a job is completed, therefore including the
time required to process its predecessors and any unassigned time intervals preceding the job.
An objective function may also be a function of the due dates. The lateness of a job Jj is
defined as

Lj = Cj − dj
and is a positive value when the job is completed late or a negative value when job Jj is
completed early. The tardiness of a job Jj is defined as

Tj = max {0, Lj} ,

resulting in a positive value when the job is completed early and a value of zero when the job
is completed late. The unit penalty of job Jj is defined as

Uj =
{

0 if Cj ≤ dj
1 otherwise,

6In the case of a non-flexible multi-operation model, such as the job shop scheduling problem, the completion
time of job Jj refers to the sum of the completion times of the individual tasks Tjk. Therefore, in such a

multi-operation model, Cj =
∑kj

k=1 Cjk.

38 Chapter 3. Methodological background

indicating whether or not a job has been completed before its due date. Objective functions are
most often expressed as one of two types of functions. First there are the bottleneck objectives,

fmax (X) = max {fj (Xj) | j = 1, . . . , n} ,

indicating that the objective is to minimize the largest (maximum) value occurring in a range
of cost functions, denoted by fj (Xj). The other is the sum objectives,

∑
f (X) =

n∑

j=1

fj (Xj) ,

which aims to minimize the sum of the individual cost functions, denoted by fj (Xj).

The most common objective function to be minimized is the makespan defined as Cmax =
fmax (C). The objective here is to minimize the longest completion time7. High utilization
of processors is achieved if a minimum makespan is used [93]. The maximum lateness of a
scheduling problem is defined as Lmax = fmax (L) and measures the worst violation of the due
dates, i.e. attempting to minimize the largest value of Lj . The total weighted completion time,∑
wjCj =

∑
f (wjCj), gives an indication of the total holding or inventory costs incurred by

the schedule. The completion time is often referred to as the flow time in which case the total
weighted completion time is referred to as the weighted total flow time. The total weighted
tardiness may be defined as

∑
wjTj =

∑
f (wjTj), whilst the weighted number of tardy jobs is

given as
∑
wjUj =

∑
f (wjUj) .

When an objective function is nondecreasing with respect to all C1, . . . , Cn, it is referred to as
regular performance measures. Therefore all the objective functions defined so far are regular.
When an objective function involves variables such as earliness Ej = max {0, dj − Cj}, absolute
deviation Dj = |Cj − Dj |, or squared deviation Sj = (Cj − dj)2, it is not a regular objective
function [21].

If it is not possible to schedule jobs (or tasks) earlier without violating some constraint, the
schedule is called active. Whereas, a schedule is referred to as semiactive if no job (or task) can
be processed earlier without changing the processing order or violating the constraints [21].

In order to illustrate the α|β|γ notation, two examples are now given. The following examples,
illustrating the α|β|γ notation, are continued as a series of further examples in order to illustrate
the possible representation of a feasible schedule.

Example 3.1 The scheduling problem P3|prec; pj = 2|Cmax refers to scheduling jobs on three
identical parallel processors for which the processing of any task requires 2 units of time. An
optimal schedule will be the one that minimizes the makespan.

Example 3.2 The scheduling problem J4||Cmax refers to the problem of minimizing the com-
pletion time on a four processor job shop. Processing times should still be specified.

3.1.4 Representation of task sets and the corresponding schedules

The job or task set may be defined in a variety of manners, depending on the required set of
activities to be processed. Precedence constraints may be specified by means of a graphical

7If the feasible schedule is represented as a graph, the makespan is equal to the length of a longest path in
the graph.

3.1. Introduction to the scheduling problem 39

representation by which an acyclic directed graph G = (V,A) with V = {1, . . . , n} representing
the corresponding jobs and (j, k) ∈ A if and only if Jj ≺ Jk [21]. Such a graph is referred to as a
task-on-node representation, but there is also a so-called task-on-arc representation where a task
is defined as an arc and dummy arcs are included [16]. The most popular way of then graphically
displaying the schedule, is by means of a Gantt chart. A Gantt chart may be described as a bar
chart on which time is represented on the one axis and other qualities (such as job processing)
on the other axis [14].

Example 3.3 (Example 3.1 continued) For the scheduling problem defined in Example 3.1,
the jobs are subject to the precedence constraints as listed in Table 3.18.

Job j Predecessors

1 -
2 -
3 J1

4 J1, J2

5 J4

6 J4

7 -
8 J5

9 J6, J7

Table 3.1: The predecessors for each of the nine jobs of Example 3.3 as required by the prece-
dence constraints. It is unnecessary to indicate the processing time for each job, since it has
been specified that all jobs have a processing time of two.

The precedence constraints may also be illustrated using a precedence constraints graph [93].
The task-on-node approach is the more general approach, which is also adopted throughout the
remainder of this thesis. For such a graph, vertices correspond to tasks and arcs correspond to
precedence constraints. The precedence constraints listed in Table 3.1 are expressed as a task-
on-node graph in in Figure 3.1(a). Another approach is the task-on-arc representation where
arcs represent tasks and the vertexes time instances. The same precedence constraints is shown
as a task-on-arc graph in Figure 3.1(b).

Figure 3.2 shows a Gantt chart representing a feasible schedule for jobs as required by the
precedence relation of the jobs and their processing times. In this graph, the processors are on
the vertical axis, but it is also possible to have a Gantt chart represent the same schedule, but
with the jobs on the vertical axis [14].

The objective of the scheduling problem for which this schedule was determined is to mini-
mize the makespan. The respective completion times for the nine jobs may be listed as Cj =
{2, 2, 8, 4, 6, 6, 2, 8, 8}; therefore Cmax = 8.

The properties of the set of tasks of the job shop problem described in Example 3.2 may be
displayed in table form, displaying the set route of each task through the system. In this
case the processing times should also be listed. As illustrated in Example 3.3, the precedence
relations may also be expressed by means of a directed graph. Another commonly used graphical

8Since the processing time for each job in Example 3.1 as given as pj = 2, processing times are not included
in Table 3.1. If the different jobs did have different processing times on specified machines, these times would
also be included in the same table.

40 Chapter 3. Methodological background

(a) The task-on-node representation. (b) The task-on-arc representation.

Figure 3.1: The precedence relation of the nine jobs for the scheduling problem of Example 3.3,
as listed in Table 3.1, expressed as a task-on-node and a task-on-arc graph respectively.

Figure 3.2: A Gantt chart representation of a solution to a scheduling problem with processing
sequences as shown in Figure 3.1.

representation of a job shop schedule, proposed in 1964 by Roy and Sussman, is the disjunctive
graph representation [18]. The disjunctive graph is a directed graph G = (V,A ∪D). It is
an arc-weighted graph where V denotes the set of vertices corresponding to the tasks of jobs
(all Tjk ∈ T) as well as two dummy vertices denoting the start (Tstart) and end (Tend) of the
schedule. Both dummy tasks have a processing time of zero. The set A of conjunctive arcs9

reflects the precedence constraints and initially joins every two consecutive tasks of the same
job. A conjunctive arc also joins the first task Tj1 of job Jj to its predecessor Tstart and the
last task Tjkj

of job Jj to its successor Tend. Every conjunctive arc (jk, `m) is labelled with
the processing time pjk corresponding to Tjk. The set D consists of disjunctive arcs with two
opposite directions10. Such a disjunctive arc joins two mutually unordered tasks which require
the same machine for their processing. For the uncompleted version of the disjunctive graph
there are two oppositely directed arcs (`m, jk) and (jk, `m), together referred to as a disjunctive
arc pair, for each pair of tasks {T`m, Tjk} that require the same processor Pi and no label. The
conjunctive arcs between tasks represent the precedence constraints on tasks of the same job.
The constraint that each processor can handle at most one task at a specific time interval is
represented by the disjunctive arcs. Let Ei be the set of all pairs of tasks to be processed on the
same processor, Pi. Then a disjunctive arc pair, {(`m, jk) , (jk, `m)}, is referred to as settled if
exactly one arc of the pair has been added to a set Di ⊂ Ei. A completed disjunctive graph11

occurs when all disjunctive arc pairs are settled and if such a graph is acyclic, it corresponds

9When an edge in a graph has a direction, it is referred to as an arc.
10These arcs are in effect edges since a path may lead in either direction of the arc, but since this is a directed

graph such arcs are marked with arrows pointing in both directions in order to avoid confusion.
11A completed graph in this sense differs from the notion of a complete graph in Graph Theory (a graph that

contains all possible edges).

3.1. Introduction to the scheduling problem 41

to a feasible schedule. A feasible schedule may therefore be defined by the set D∗ = ∪mi=1Di,
where D∗ ⊆ E = ∪mi=1Ei such that

I. (`m, jk) ∈ D∗ if and only if (jk, `m) ∈ E\D∗ and

II. the graph G (D∗) = (V,A ∪D∗) is acyclic.

The makespan, Cmax, of a feasible schedule is also the length of a longest path from the vertex
Tstart to the vertex Tend in a completed disjunctive graph [14, 18].

Example 3.4 (Example 3.2 continued) In Table 3.2, the predetermined processing sequences
for the tasks of three jobs for the four-machine job shop from Example 3.2 are listed. The ta-
ble also indicates the processors associated with each of these tasks as well as their individual
processing times on the corresponding processors.

Tj1 Tj2 Tj3 Tj4
j i pj1 (i) i pj2 (i) i pj3 (i) i pj4 (i)

1 1 1 4 4 2 2 3 1
2 3 1 1 4 - - - -
3 4 3 2 2 3 1 - -

Table 3.2: The processors (Pi) assigned to each of the tasks Tjk including the respective pro-
cessing times (pjk (i)) for each task of the four machine job shop problem of Example 3.4.

The constraints on the tasks, i.e. the processing sequence, may be represented by means of an
uncompleted disjunctive graph. As with previous notation, when focussing on a single vertex, j
denotes the particular job Jj, ` refers to a specific task of job Jj and i the machine Pi on which
processing is required. A single vertex is illustrated in Figure 3.3.

Figure 3.3: A single vertex of the disjunctive graph representation, used to illustrate processing
sequences and feasible schedules, where j refers to job Jj , ` to a task of job Jj and i to processor
Pi required to completed the associated task.

The uncompleted disjunctive graph which serves as a means to illustrate the information con-
tained in Table 3.2, is given in Figure 3.4. The start and end vertices are referred to as dummy
vertices. Furthermore, the conjunctive arcs (solid arcs) represent the precedence constraints
among tasks of the same job and the dashed arcs (with arrows at both ends) indicate the dis-
junctive arc pairs used to illustrate the constraints among tasks to be performed on the same
processor. It is important to note that this is a representation of the processing sequences
amongst tasks and their processing requirements, and not of a feasible schedule. In order to
form a completed disjunctive graph, representing a feasible schedule for the problem, all dis-
junctive arc pairs should be settled in such a way that graph G (D∗) is acyclic. A completion of
the disjunctive graph of Figure 3.4 is given in Figure 3.5. The graph denotes a schedule with
a makespan of Cmax = 10 units of time. The makespan may be calculated by determining the
longest path from the start to end vertices of the graph, indicated in Figure 3.5 by means of
thick solid arcs.

42 Chapter 3. Methodological background

1,1 2,1 3,1 4,1

1,2 2,2

1,3 2,3 3,3

1

2

4

4

2

3

3

31

Start End

1

1

1

1

2

2

3

4

4

Figure 3.4: The uncompleted disjunctive graph for the processing times and processing se-
quences for the job shop problem from Example 3.4, as displayed in Table 3.2.

1,1 2,1 3,1 4,1

1,2 2,2

1,3 2,3 3,3

1

2

4

4

2

3

3

31

Start End

1

1

1

1

2

2

3

4

4

3

1

1

1
1

2

Figure 3.5: The completed disjunctive graph representing a feasible schedule that satisfies the
constraints displayed in Figure 3.4 with a longest path from the start to end vertex indicated
by the thicker solid arcs.

3.2 A concise survey of literature

Since the 1960s, scheduling problems have been the focus of a significant number of studies
in the literature and a wide variety of techniques have been applied to solve problems of this
nature. One of the most popular classifications of scheduling problems is without doubt the job
shop scheduling problem which has become well known for being particularly difficult to solve
[61]. In 1976 it was shown that the job shop scheduling problem with more than one machine is
an NP-complete problem [14, 47]. Unfortunately, there exist far less literature focusing on the
flexible job shop than on the job shop scheduling problem. This is most likely due to the fact that
flexible job shop problems were first identified by Peter Brucker only in 1990 who proposed a
polynomial-time algorithm to solve the assignment and scheduling problems in flexible job shops
with two jobs [31]. The flexible job shop problem, as an extension of the job shop scheduling
problem, may further be divided into different fields by referring to the different constraints that
may be present in a specific problem. Therefore a brief literature review of job shops with some
focus on the flexible job shop is conducted in §3.2.1. Furthermore, optimization methodology
has been employed in different sectors of the wine industry in a variety of countries, and some of
these projects are discussed in §3.2.2. Tables 3.3 and 3.4 contain references to publications on
scheduling problems suggested by Bester [14], considering exact methods and heuristic methods,
respectively. In order to keep the literature survey compact and to the point, focussing more
on publications which inspired the ideas behind this project, only some of these publications
are further discussed in §3.2.1.

3.2. A concise survey of literature 43

Method Author(s)

Solvable in Polynomial time Johnson [67] and Williamson et al. [147]

Mathematical Formulations

Linear Programming
Balas [10], B lazėwics et al. [17], Dyer & Wolsey
[40], Köppe & Weismantel [72], Serafini [109]
and Wagner [136]

Lagrangian Relaxation Fisher [45]
Cutting Plane Applegate & Cook [4]

Branch-and-bound

Applegate & Cook [4], Ashour & Hiremath [6],
Brooks & White [24], Brucker et al. [23], Car-
lier [26], Carlier & Pinson [27, 28], Charlton &
Death [29], Florian et al. [46], Grawbowski et al.
[53], Greenberg [56], Lageweg et al. and Martin
& Shmoys [82]

Dynamic Programming

Kubiak & van de Velde [75]

Table 3.3: A summary of the optimization algorithms for solving the scheduling problems found
in literature over the past 50 years [14].

3.2.1 The job shop scheduling problem

Lee and Aslanni [79] compared two approaches towards solving a single machine sequence-
dependent setup time and dual criteria job shop scheduling problem. The first approach is a
mixed integer linear programming model and the second approach is based on genetic program-
ming. Their conclusion was that if the major concern of the operations scheduler is the quality
of the output and if the number of jobs to be sequenced is relatively small, then mathematical
programming is an appropriate methodology. However, if achieving a ‘good’ solution (as op-
posed to an optimal solution) is acceptable, then a genetic algorithm may be used, especially if
the number of jobs to be sequenced is relatively large (since the number of jobs do not influence
the performance of the genetic algorithm). On the other hand, the mathematical programming
model is greatly affected and becomes very complex (even unmanageable) when the number of
jobs is more than ten [79]. Genetic algorithms have been a very popular tool for generating
job shop schedules. Jensen [66] showed through experiments that by using a genetic algorithm
it is possible to find robust and flexible schedules with a low makespan (when the goal is to
minimize the makespan), with the genetic algorithm outperforming other methods compared.

In 1989, Laarhoven, Aarts and Lenstra [130] proposed an approximation algorithm for finding
the minimum makespan in a job shop, based on simulated annealing. The suggested algorithm
contains a probabilistic element (the acceptance of cost-increasing transitions with a non-zero
probability), rendering the approach significantly better than the classical iterative improvement
search approach on which it is based, especially when applied to large problems. Along with
similar implementations proposed by Nowicki and Smutnicki [90], Balas and Vazacopoulos [10],
and Pezzela and Merelli [92], the simulated annealing approach of Laarhoven, Aarts and Lenstra

44 Chapter 3. Methodological background

Method Author(s)

Solvable in Polynomial time Jansen et al. [64, 65] and Sevastianov [110, 111]

Constructive Methods

Priority Dispatch Rules
Giffler & Thompson [50], Lawrence [78] and
Pinedo [93]

Simulation Baker [8], Chen & Chen [30] and Gere [48]

Bottleneck Heuristics

Adams et al. [2], Applegate & Cook [4], Balas
et al. [9], Balas & Vazacopoulos [10], Dausère-
Pérès [35], Demirkol et al. [37], Mason [83],
Pezzella & Mereli [92], Ramudhin & Marier [97]
and Singer [113]

Lagrangian Relaxation Chen & Luh [32]

Iterative Methods

Neural Networks Jain & Meeran [61] and Yang & Wang [157]

Local Search
Crawford et al. [34], Pirlot [95], Storer et al.
[122], Vaessens [132] and Watson [138]

Genetic Algorithms

Aarts et al. [1], Brizuela & Sanomiya [20], Della
Croce et al. [36], Kobayashi et al. [71], Storer et
al. [122], Varela et al. [133], Wang & Zheng [137]
and Yamanda & Nakano [155]

GRASP Binato [15]

Tabu Search
Al-Turki et al. [3], Jain et al. [62, 63], Nowicki
& Smutnicki [90], Pezella & Mereli [92], Storer
et al. [122], Sun et al. [123] and Tailliard [124]

Reactive Tabu Search Batiti [11] and Batiti & Tecchiolli [12]

Simulated Annealing

Aarts et al. [1], Mittenthal et al. [87], Storer et
al. [122], Steinhöfel et al. [120], van Laarhoven &
Aarts [129], Wangh & Zengh [137] and Yamanda
& Nakano [156]

Beam Search Sabuncuoglu & Bayiz [106]
Rolling Horizon Shafaei & Brunn [112] and Singer [113]

Table 3.4: A summary of the heuristic algorithms for solving the scheduling problems found in
literature over the past 50 years [14].

[130] are considered as some of the best reported approximation algorithms for the job-shop
problem with the objective of minimizing the makespan [54]. Of these, Pessela and Merelli
reported that their algorithm provides better results within a reasonable amount of computer
time than the results from the proposed methods of the other authors. They proposed a
local search method based on a tabu search technique, using the shifting bottleneck procedure
to generate the initial solution and to refine current solutions. Then, in 2005, Grabowski
and Wodecki [54] developed a new, local search procedure based on the tabu search approach
incorporating lower bounds to evaluate moves and perturbations to guide the search to the
more promising areas of solution space. Their results were compared to those found via the

3.2. A concise survey of literature 45

tabu search method developed by Pezzela and Merelli [92] and were found to deliver better
solutions within shorter computer processing times [54].

Some heuristic (approximation algorithms) and exact solution methods have been derived for
the flexible job shop scheduling problem in recent years. A branch-and-bound method for the
flexible job shop scheduling problem was was developed in 1992 by Jurisch [69] in his PhD
dissertation. A hierarchical algorithm for the flexible job shop scheduling problem based on
a tabu search approach was published by Brandimarte [19] in 1993. In 1994, Hurink, Jurisch
and Thole [59] proposed a tabu search method to solve a slightly generalized flexible job shop
problem with machine dependent processing times of operations, achieving excellent results
for benchmark problems. In 2002, a linguistic-based meta-heuristic modelling and solution
method for flexible job shop scheduling problems was proposed by Baykasoǧlu [13]. The results
obtained showed that the proposed algorithm is able to solve this complex problem effectively,
albeit approximately, within a reasonable time frame. Machine independent capability units,
referred to as Resource Elements (RE), are used to represent product processing requirements
and machine processing capabilities. Based on this concept, along with a known rule-based
heuristic, a simulated annealing algorithm was developed to solve the flexible job shop scheduling
problem [13]. This approach simplifies the modelling process and enables usage of existing job
shop scheduling algorithms for its solution. In 2007 the flexible job shop scheduling problem
with sequence-dependent setup times was solved by Saidi-Mehrabad and Fattahi [107], using
tabu search. They also developed a mixed integer programming model including a large number
of the characteristics of the cellar scheduling problem. This mathematical programming model
is considered further in §3.3 where the exact branch-and-bound solution method is discussed as
a means of solving the model exactly.

3.2.2 Decision support in the wine industry

Decision support systems in the wine industry date back as far as 1988 when Gertioso [49] de-
signed a decision support system for French viticultural cooperatives. She proposed a vineyard
restructure and, to define the restructurating strategy, the vineyard was modelled to determine
the influence of the strategy according to several economic views on the future. In 2000, sim-
ulation of the actions of certain winery workers was considered by Hansen [57]. The finished
products (wine) are stored in very large stainless steel tanks. These tanks are connected by a
complex set of pipes, valves and drops, and the cognitive model of Hansen focussed on storage
and on possible routings between tanks. A decision support system dealing with the minimiza-
tion of utility waste from the vinification processes was considered in 2005 by Musee, Lorenzen
and Aldrich [88].

The interesting operations research and logistics problems occurring at wineries have also led
to the founding of the Wine Supply Chain Council (WSCC) which had its fourth successful
meeting in Australia in January 2009. This international wine industry research network was
established in July 2006 and attempts to collaborate on issues in global wine supply chains.
Members of the WSCC have been very successful in applying decision support technologies to
assist their local wineries. Amongst these members, Simon Dunstall of the CSIRO has been
working with Australian Orlando Wyndham Group since 2003 in order to achieve the shared
supply network goal of maximizing the value that is realized from material and intellectual assets
in the supply network [41]. The massive grape supply network consists of 520 growers, 3 123
blocks, 35 grape varieties, 33 areas, 104 wines, 186 harvester operators and 91 transport entities
(also used by other wine companies). He approached the problem via a rule-based system
comprising 250 rules for intake planning. Furthermore, Chilean member Sergio Maturana has

46 Chapter 3. Methodological background

been involved in a project where some crucial factors of the wine making process, such as the
receiving and pressing capacities of a cellar, were studied by means of simulating the receiving
of grapes at the cellar [7]. Maturana, together with WSCC member Alejandro MacCawley, has
also been involved in designing a practical tool for scheduling wine grape harvesting operations
in Chile which adopts an optimization approach, taking into account both operational costs and
grape quality [44]. A mixed integer linear programming model was formulated and solved to
support harvest scheduling, labour allocation and routing decisions. A quality loss function was
developed by conducting a survey amongst enologists in 2003 in order to evaluate the possible
degradation of grapes harvested before or later than the optimal harvesting date. The tool
developed by Maturana and MacCawley was used to solve the problem daily, implementing a
rolling time horizon, and it was found that the schedule proposed by their model provides a
good basis for decision makers to derive a final schedule.

3.3 Solving scheduling problems via mathematical programming

The aim in this section is to provide the reader with the necessary knowledge of the methods
used in this thesis to solve one of the scheduling problems experienced at Wamakersvallei Winery
— the wine cellar upon which the case study in later chapters is based, in an exact manner.
Exact scheduling methods may be used to obtain optimal schedules (when they exist) and
the subdiscipline of mathematical programming, started with the development of the simplex
machine by George Dantzig in 1947, is a very popular tool for solving optimization problems [84].
The general mathematical programming problem may be portrayed by an algebraic function
which is to be maximized or minimized, called the objective function, and a set of one or more
algebraic inequalities that are to be satisfied, called the constraints of the problem. This section
serves as a very brief introduction to mathematical programming with the focus mainly on
mixed integer programming which is applied to solve one of the scheduling problems occurring
at Wamakersvallei later in this thesis.

3.3.1 Mixed integer programming in the context of scheduling

A linear programming model refers to the mathematical programming model where both the
objective function and the set of constraints involve linear functions only. The constraints of
a given problem define the set of all feasible combinations of decision variables and the set of
such feasible combinations is referred to as the feasible solution space [121].

In a linear programming problem the objective is to

minimize f (x)
subject to Ax ≥ b,

x ≥ 0,

whereA an M×N matrix, x is an N -vector representing the decision variables, b is an M -vector
of constant right hand sides and f (x) is the objective function to be minimized [58]. In the case
where some of the decision variables are required to be integer, the problem is referred to as a
mixed integer programming problem. In order to illustrate the formulation of a mixed integer
linear program when solving scheduling problems, an instance of a general flexible job shop with
sequence-dependent setup times and a no-wait characteristic is considered below [107].

3.3. Solving scheduling problems via mathematical programming 47

This generalized flexible job shop problem consists of n jobs with every job Jj having kj tasks
to be performed on m processors with the objective of minimizing the makespan of the resulting
schedule. Sequence-dependent setup times refer to the fact that the setup time required for a
machine depends on which two jobs are processed consecutively on the machine. A variable
sij` denotes the setup time required in order to have machine Pi ready to process any task in
job J` directly after processing a task of job Jj . For the purpose of illustrating this solution
method, the processing time of task Tjk on processor Pi is denoted by pijk. Since a task may
be performed on any one of a set of machines, the variable

µijk =
{

1 if task Tjk may be performed on machine Pi
0 otherwise

is introduced. No release dates are used, but rather the starting time, tjk, indicating the time
that has elapsed up until the point where processing of task Tjk starts. The finishing time
of task Tjk, fjk, then indicates the overall time at which the task has been completed on the
assigned machine. The variable

aijk =
{

1 if task Tjk is assigned to machine Pi
0 otherwise

is used to indicate an assignment of a machine to a task. The starting time of the processing
of task Tjk is denoted by tjk and the finishing time by fjk. The makespan of the schedule is
referred to as Cmax and is the objective function to be minimized.

The first inequality,

tjk + aijkpijk ≤ fjk, i = 1, . . . ,m, j = 1, . . . , n, k = 1, . . . , kj ,

ensures that the processing time of task Tjk is limited to the allowed pijk units of time available
on the machine it is assigned to. The constraint set

fjk ≤ tj(k+1), j = 1, . . . , n, k = 1, . . . , kj − 1,

is included to enforce the no-wait characteristic of this problem. The makespan is included by
means of the inequalities,

fjkj
≤ Cmax, j = 1, . . . , n,

thereby setting Cmax as the largest final task finishing time. In order to ensure that a task Tjk
is only assigned to a processor Pi if µijk = 1, the constraint set

aijk ≤ µijk, i = 1, . . . ,m, j = 0, . . . , n, k = 1, . . . , kj ,

is included. The decision variable xijk`h is equal to 1 if task T`h follows task Tij directly on
processor Pi, or 0 otherwise, and may be defined by including the constraint sets

n∑

j=1

kj∑

k=1

xijk`h = ai`h, i = 1, . . . ,m, ` = 1, . . . , n, h = 1, . . . , k`,

n∑

`=1

k∑̀

h=1

xijk`h = aijk, i = 1, . . . ,m, j = 1, . . . , n, k = 1, . . . , kj ,

xijkjk = 0, i = 1, . . . ,m, j = 0, . . . , n, k = 1, . . . , kj ,

48 Chapter 3. Methodological background

in the formulation. The inequalities

tjk + pijk + sij` ≤ t`h + (1− xijk`h)M, h = 1, . . . , k`, i = 1, . . . ,m
j = 0, . . . , n, k = 1, . . . , kj , ` = 1, . . . , n, and

fjk + sij` ≤ tj(k+1) +
(
1− xi`hj(k+1)

)
M, i = 1, . . . ,m, j = 1, . . . , n

` = 1, . . . , n, k = 1, . . . , kj − 1, h = 1, . . . , k`,

are prescribed in order to include the sequence-dependent setup times in the schedule. The
value of M is taken as 10 000 and may be replaced by any number large enough to preserve
the goal of this inequality. In order to achieve a feasible schedule, each task Tjk may only be
assigned to a machine once. This rule is enforced by the inequalities

m∑

i=1

aijk = 1, j = 0, . . . , n, k = 1, . . . , kj .

Finally, the trivial constraints are

tjk ≥ 0, j = 0, . . . , n, k = 1, . . . , kj ,
fjk ≥ 0, j = 0, . . . , n, k = 1, . . . , kj ,
aijk ∈ {0, 1} , i = 1, . . . ,m, j = 0, . . . , n, k = 1, . . . , kj ,

xijk`h ∈ {0, 1} , i = 1, . . . ,m, j = 0, . . . , n, ` = 1, . . . , n,
k = 1, . . . , kj , h = 1, . . . , k`.

Some of the variables in this formulation are defined as integer, such as aijk, and other may be
integer or real, such as tjk, therefore the problem formulated above is an instance of a mixed
integer programming model.

3.3.2 The branch-and-bound method

The best known approaches in dealing with integer programming problems are cutting plane
techniques, implicit enumeration methods and branch-and-bound techniques [93]. IPs are most
often solved by using the branch-and-bound technique [152]. In this thesis, the focus will be
more on solving scheduling problems with the use of meta-heuristics, and more specifically a
tabu search approach. In order to solve the IP model of the active cellar scheduling problem
experienced at Wamakersvallei, the linear programming software, Lingo 11.0, is employed12.
Lingo 11.0 solves IPs via the branch-and-bound technique. If, in the solution to the LP
relaxation of a pure IP (as opposed to a mixed IP), all variables are integers, then this solution
is also an optimal solution to the IP. However, when applying the branch-and-bound technique
to a mixed IP, the branching only takes place on variables that are required to be integer and the
subproblem solution only requires integer values assigned to the variables that are required to
be integer. Branching refers to a partitioning of the solution space and each resulting subspace
of the solution is then considered separately [93]. Bounding, on the other hand, refers to the
development of lower bounds for parts of the solution space (in the case of a minimization
problem. If such a lower bound on the objective function value in one part of the solution
space is larger than a solution already obtained in a different part of the solution space, the
corresponding part of the former solution space may be disregarded [93]. The branch-and-bound

12‘LINGO is a comprehensive tool designed to make building and solving linear, non-linear and integer opti-
mization models faster, easier and more efficient’ [81].

3.3. Solving scheduling problems via mathematical programming 49

technique is now considered specifically when it is used to solve mixed integer programming
problems.

The branch-and-bound method starts by solving the LP relaxation of the IP problem under
consideration. If all the decision variables in the optimal solution of the LP relaxation are
assigned integer values, an optimal solution to the IP has been found. Otherwise, any variable
that is required to have an integer value, but currently has a non-integer value in the LP
relaxation solution is selected. Say, for example, that variable xi is selected with a current
(non-integer) value of r. Since xi is not allowed to have the value of r, either x ≤ brc or x ≥ dre
should hold. Two subproblems are formed by adding the two constraints on the value of xi
to the LP relaxation, one constraint to each subproblem. The subproblems are solved and the
process is repeated if there are variables requiring integer values that are assigned non-integer
values in the subproblem solutions. The working of the branch-and-bound method is illustrated
by means of an example below.

Example 3.5 Consider the mixed integer programming model in which the objective is to

Minimize z = 90x1 + 60x2 + 50x3 + 40x4

subject to the constraints

7x1 + 5x2 + 4x3 + 3x4 ≥ 42
x1 + x2 + x3 + x4 ≤ 8

x1, x2, x3, x4 ≤ 3
x1, x2, x3, x4 ≥ 0

x1, x2, x3 ∈ N0

This is a mixed integer programming model due to fact that some of the variables (x1, x2 and
x3) are specified to assume integer values and some do not have to satisfy this restriction (x4).
The branch-and-bound tree for this example is shown in Figure 3.6. In the tree, each node
refers to a subproblem with the constraint on its incident arc included in the LP problem of its
parent node. In the root node, node 0, the LP relaxation of the mixed IP problem is solved with
an optimal solution found as x =

(
21

3 , 3, 2
2
3 , 0
)

with an associated objective function value of
z = 5231

3 . Although this is a feasible solution to the LP relaxation problem, it is not a feasible
solution to the mixed IP problem under consideration since x1 and x3 do not assume integer
values. It is therefore necessary to branch on one of the non-integer variables. Branching on x1

takes place and because the value of x1 is currently 21
3 , the domain of x1 is split into 0 ≤ x1 ≤ 2

and x = 3 (since x1 is not allowed to exceed 3). The constraint x1 ≤ 2 is considered in node 1
of Figure 3.5. When the new constraint is included in the LP relaxation problem, it results in
an infeasible solution to the LP relaxation (and hence also to the IP).

The second node of the branch-and-bound sees the addition of the constraint x1 = 3 added to
the original LP relaxation. The solution x =

(
3, 23

5 , 2, 0
)

is found with an associated objective
function value of z = 526. This solution is still not a feasible IP solution, since the variable
x2 does not assume an integer value. Branching therefore takes place on variable x2 resulting
in nodes 3 and 4. At node 3, branching is again required, this time on variable x3 resulting in
nodes 4 and 5. The solution to the subproblem at node 4 is x = (3, 2, 2, 1) with an associated
objective function value of z = 530. This solution is a feasible IP solution and since this is
the first IP solution found, the best lower bound uncovered thus for during the process is set
to 530. Since this is the best solution found, it becomes the incumbent solution. Returning to
node 5, the subproblem is solved and delivers a feasible LP relaxation solution. However, the

50 Chapter 3. Methodological background

FEASIBLE

x2 = 3

x1 ≤ 2 x1 = 3

x3 ≤ 2 x3 = 3

x =
(
21

3
, 3, 22

3
, 0
)

z = 5231
3

0

1 2

3

4 5

6

STOP

INFEASIBLE z = 526

x = (3, 3, 0, 2)

z = 530

x =
(
3, 23

5
, 2, 0

)

FEASIBLE

x =
(
3, 11

2
, 3, 1

2

)

z = 530

x =
(
3, 2, 23

4
, 0
)

z = 5271
2

x = (3, 2, 2, 1)

z = 530

x2 ≤ 2

Figure 3.6: The branching tree for the branch-and-bound procedure in Example 3.5.

resulting objective function value is z = 530 and since the lower bound is currently set as 530,
this subproblem is not explored further. Returning to node 6, another optimal solution to the IP
problem is found. However, this solution is no better than the incumbent solution. Therefore the
incumbent solution x = (3, 2, 2, 1) is an optimal solution to the mixed IP problem considered.

3.4 Tabu search methodology

The modern form of tabu search derives from its originator, Fred Glover. As mentioned in §3.2,
the method of tabu search has achieved great success as a tool to solve scheduling problems;
this is also the case for a large variety of combinatorial optimization problems such as, amongst
others, character recognition problems, neural network pattern recognition problems and the
well known travelling salesman problem [51].

Tabu search is classified as a meta-heuristic which is derived from the Greek prefix meta, mean-
ing ‘beyond’ (here in the sense of higher level) and the word heuristikein which means ‘to find’
or ‘to discover’ — in this case to find the optimal solution to an optimization problem under
investigation. Even so, a meta-heuristic should be described as a ‘seeking method’ rather than
a ‘finding method’, mainly because it does not guarantee finding a global optimum (even if it
exists). In the Collins Concise Dictionary, tabu or taboo is defined as “forbidden”, “disapproved
of” or “marked off as sacred and forbidden” [33].

3.4. Tabu search methodology 51

The goal of this section is to provide the reader with a basic understanding of the methodology
of a tabu search before it is applied to the scheduling problems at Wamakersvallei Winery in
later chapters. Therefore, the focus is on tabu search as a means of solving scheduling problems.

To apply a tabu search to a specific problem, one starts with an initial (possibly infeasible)
solution. With the use of certain constraints and principles (also called tabu restrictions), all of
which are specified in the problem investigated, as well as the underlying solution representation,
one then moves to a new adjacent solution in the problem solution space. This methodology
lies at the heart of the approach in a tabu search. According to Glover [51], the primary goal
of these tabu restrictions is ‘to permit the method to go beyond points of local optimality while
still making high quality moves at each step’.

Tabu Search methods operate by identifying neigbourhoods in which adjacent solutions can
be reached from the current solution. Let S be the finite set of all feasible solutions [52].
Then each solution s ∈ S has an associated set of neighbours, N(s) ⊆ S, with N(s) being
referred to as the neighbourhood of s. Each solution s′ ∈ N(s) may be reached directly from
s by performing an operation referred to as a move. Depending on the problem application or
solution representation, such a move may be the addition or removal of an object to or from a
solution, or the interchange of two objects in a solution, for example. If a solution s is better
than any other solution in its neighbourhood N(s), then s is a local optimum with respect to
this neighbourhood. A move value is associated with each move, which normally represents a
change on the objective function value as a result of the move [52].

There are numerous ways of generating moves and also a variety of candidate list strategies.
The swap is one of the most frequently used moves in combinatorial optimization problems and
consists of swapping two values and then deeming any such swap as tabu. It is common to
combine solution neighbourhoods which is referred to as compound moves. A special type of
approach for generating compound moves involves applying a range of swaps. The outcome of
assigning a value to a different position (thereby an element is assuming a new state, i.e. being
assigned a new value) is that the element is ejecting another element from its current position.
A chain of events is thus created, referred to as an ejection chain strategy. Ejection chain
strategies are particularly useful in scheduling, routing, clustering, and partitioning problems
[52].

A memory structure is implemented to keep track of previous solutions or moves by the means
of a so-called tabu list. The goal of this tabu list is to avoid oscillations around local minima.
Tabu restrictions are not inviolable under all circumstances. When a tabu move would result in
a solution better than any solution considered thus far during the search, its tabu classification
may be changed. The condition that allows this change in tabu status is referred to as an
aspiration criterion [52]. After a move has been made (i.e. transferring from one solution to
another), the inverse of the move is placed in a tabu list and considered tabu, or forbidden, for a
certain number of future iterations of the search, unless the aspiration criterion is satisfied. This
is an attempt to avoid becoming trapped at a locally optimal solution. The memory structures
employed by a tabu search may be classified by four principal dimensions: recency, frequency,
quality and influence. The most important of these dimensions are recency and frequency.
Recency refers to how recently a specific move has been made, i.e. the position it has in the
current tabu list for the specific problem under consideration. The frequency of a move, on
the other hand, refers to how frequently it is made, i.e. the number of times it appears in the
current tabu list for the specific problem. The third dimension, quality, refers to the ability
to rate the attractiveness of alternative choices during the search and the fourth dimension,
influence, considers the impact of the choices made during the search. Therefore, in a sense,
quality may be regarded as a special form of influence. A general approach during a tabu search

52 Chapter 3. Methodological background

is outlined in Algorithm 3.1 and the process of applying a tabu search to a small scheduling
problem is illustrated in the following example [93].

Algorithm 3.1: The general framework of a tabu search
Choose an initial solution x ∈ S;1

best ← c (s);2

Tabu list ← φ;3

while not stop criteria do4

Cand(s)←5

{s′ ∈N (s) | the move from s to s′ is not tabu OR s′ satisfies the aspiration criterion};
Generate a solution s̄ ∈ Cand(s);6

Update the tabu list;7

s← s̄;8

if c (s) < best then9

s∗ ← s;10

best ← c (s);11

end12

end13

Example 3.6 Consider the instance of a single-machine, total weighted tardiness problem,
1||∑wjTj, where the processing times, due dates and weight for each of the four jobs are
indicated in Table 3.5.

jobs J1 J2 J3 J4

pj 10 10 13 4
dj 4 2 1 12
wj 14 12 1 12

Table 3.5: The characteristics of the single machine scheduling problem in Example 3.6. For
each job Jj , the processing time pj , the due date dj , and the weight wj , are listed (all times are
expressed in days).

The neighbourhood of a schedule s ∈ S is defined as a schedule that can be obtained through
pairwise interchanges of jobs in the schedule s. The tabu list for this application of tabu search is
of size two; a pair of jobs (j, `) is placed in the tabu list after being swapped and may therefore not
be swapped again within the next two iterations. The first schedule is chosen as s1 = {2, 1, 4, 3}.
The starting time of job J2 is therefore taken as day 0, after which job J1 may be started on
day 10, i.e. 0 + p2, job J4 may be started on day 20 and job J3 may be started on day 24. The
total weighted tardiness of schedule s1 may be calculated as

4∑

j=1

wjTj = 12 (10− 2) + 14 (20− 4) + 12 (24− 12) + 1 (37− 1) = 500.

The aspiration criterion is therefore 500. Furthermore, N(s1) = { {1, 2, 4, 3},{2, 4, 1, 3},{2, 1, 3, 4} }.
The weighted tardiness values for each of these schedules are 480, 436 and 652, respectively.
Since the tabu list is still empty, the best schedule is selected as the schedule with the low-
est weighted tardiness value (436), s2 = {2, 4, 1, 3}. Since the objective function value 436 is
smaller than the current aspiration criterion on the value, the new aspiration criterion is the

3.5. Chapter overview 53

value 436. The tabu list is updated to include as its first entry, the pair (1, 4). The neighbourhood
N(s2) is shown in Table 3.6.

N(s2)

s′j {4, 2, 1, 3} {2, 1, 4, 3} {2, 4, 3, 1}∑3
j=1wjTj 460 500 608

Table 3.6: The neighbourhood of schedule s2 in Example 3.6, along with the weighted tardiness
values associated with the moves.

The best non-tabu schedule, is the first. This move results in a schedule with a weighted tardiness
value better than that of the current schedule (which is therefore a local minimum). Schedule
s3 is {4, 2, 1, 3} and the tabu list is now {{2, 4} , {1, 4}}. The neighbourhood of schedule s3 is
shown in Table 3.7 along with the corresponding values of the objective function.

N(s3)

s′j {2, 4, 1, 3} {4, 1, 2, 3} {4, 2, 3, 1}∑3
j=1wjTj 436 440 632

Table 3.7: The neighbourhood of schedule s3 in Example 3.6, along with the weighted tardiness
values associated with the moves.

The best schedule {2, 4, 1, 3} (move (2, 4)) with the weighted tardiness value associated with the
move as 436, is tabu. Therefore, s4 = {4, 1, 2, 3} with the tabu list updated to {{1, 2} , {2, 4}}.
The schedules s′j ∈N(s4) and the corresponding objective functions are presented in Table 3.8.

N(s4)

s′j {1, 4, 2, 3} {4, 2, 1, 3} {4, 1, 3, 2}∑3
j=1wjTj 408 460 586

Table 3.8: The neighbourhood of schedule s4 in Example 3.6, along with the weighted tardiness
values associated with the moves.

The schedule {1, 4, 2, 3} delivers the best objective function and is not tabu. Therefore s5 =
{1, 4, 2, 3} and the tabu list is updated to {{1, 4} , {1, 2}}. The aspiration criterion is updated
to the value 408 (replacing the previous best of value 436). Schedule s5 is, in fact, a global
minimum, i.e. an optimal schedule, but the tabu search continues until the stopping criterion is
satisfied.

3.5 Chapter overview

The goal in this chapter was to provide the reader with the necessary knowledge to under-
stand the formulation and solution methods considered when solving the scheduling problems
experienced at Wamakersvallei Winery later in this thesis.

In §3.1 the notation commonly used in classical scheduling problems, and also throughout this
thesis, was reviewed. This section also contained an overview of the three-field α|β|γ notation

54 Chapter 3. Methodological background

used to classify classical scheduling problems, as well as an overview of typical representations
of schedules in §3.1.4.

A concise survey of literature was presented in §3.2, containing both references to the operational
research literature on the scheduling problem and other applications of optimization and decision
support in the wine industry.

Finally, the exact and meta-heuristic optimization methods applied to solve the scheduling
problems in this thesis were described in §3.3 and §3.4, respectively. Both were illustrated by
means of a small scheduling example.

CHAPTER 4

Formal problem statement

Contents
4.1 Wamakersvallei Winery . 55

4.1.1 Cellar location and layout . 55

4.1.2 Cellar machinery and location . 57

4.1.3 The staff at Wamakersvallei . 61

4.1.4 The product . 62

4.2 From the vineyards to the press . 65
4.2.1 Harvesting the grapes . 65

4.2.2 Scheduling the arrival of the grapes . 67

4.2.3 On arrival at the winery . 68

4.3 Production flow and layout inside the cellar . 70
4.3.1 Production flow of white grapes . 71

4.3.2 Production flow of red grapes . 72

4.4 EzyWine . 73
4.5 Chapter overview . 74

The objective of this chapter is to provide the reader with the necessary information to fully
understand the origin of the scheduling problems experienced at Wamakersvallei Winery. A
clear understanding of the products, objectives and main production processes is necessary to
develop appropriate scheduling models for Wamakersvallei Winery.

4.1 Wamakersvallei Winery

Some important aspects of Wamakersvallei Winery, such as its physical location and current
cellar layout, the machinery used, products delivered and staff employed are introduced in this
section.

4.1.1 Cellar location and layout

Wamakervallei Winery is situated in the town of Wellington which is located 72km from Cape
Town. Wellington was established in 1840 and lies in a valley on the banks of the Kromme

55

56 Chapter 4. Formal problem statement

Figure 4.1: The view of the Wamakersvallei Winery building as seen from the parking area. In
the picture the main entrance that leads toward the tasting area is visible.

River at the foot of the Groenberg with the Hawequa Mountains on its eastern border [141].
The Wellington Wine Route is one of the newest additions to the Cape wine routes even though
the area has a viticultural heritage dating back to the French Hugenots of the late 1600’s.
The Wellington area is also the primary producer of rootstock for a number of South African
vineyards [25]. In the map of the Cape winelands (Figure 4.2), Wellington is situated at the
top middle of the map.

The history of Wamakersvallei Wine cellar dates back to 1941, when this central cellar was
founded by a group of grape-growers in the area for the pressing of their grapes [140]. Wa-
makersvallei (directly translated as valley of the wagon builders) owes its name to the pioneers
who stopped in Wellington to have their wagons serviced before venturing into northern parts
of South Africa [148]. With more than half a century of experience Wamakersvallei has firmly
established itself as a New World wine producer.

The Wamakersvallei building is located on Distillery Road. As seen in the floor plan (Figure
4.3), the facility may be divided into nine main areas: The administration and wine sales area,
Stores A to F and the outside areas (including the tipping area and weighbridge room).

The administration area indicated in the floor plan, consists of offices for the administrative
staff and some other employees as well as a tasting area. The wine sales is also indicated in
the floor plan. The wine cellar itself is divided into seven main functional areas consisting of
several types of tanks and other wine making machinery referred to as Stores A, B, C Front, C
Back, D, E and F.

4.1. Wamakersvallei Winery 57

Figure 4.2: A map of the Cape winelands, with Wellington at the top, middle.

4.1.2 Cellar machinery and location

The process of making red and white wine was described in §2.3.2. The majority of wine
produced at Wamakersvallei is either white or red drinking wine; therefore the focus of this
study is only on these wines. In this section, machinery and the different types of tanks that
are used during the wine making process, as well as their different capacities and locations inside
the cellar, are discussed.

Cellar machinery and the general processes

The sequence of the processes involved in making white and red wine are shown in Figures 2.6
and 2.7 respectively. For both processes the grapes enter the cellar at the tipping bins; tipping
bin number three is shown in Figure 4.4(a). Inside the tipping bin a corkscrew shaped feed
auger1 is situated on top of a mechanical crusher/destemmer. The grape clusters are fed into
this machine where they are systematically destemmed and transferred to the crusher as shown
in Figures 4.4(b) and 4.4(c). The main component of the mechanical destemming machine is
shown in Figure 4.4(d). The small circular slots in the large cylinders rotate to remove the
larger chunks of stems with another multi-paddle like instrument fitted inside the cylinder to
move the grapes around [146].

After crushing and destemming, various operations are performed on the grapes. These oper-
ations differ in action and sequence, depending on the desired wine and grape colour. Some
of these tanks and associated equipment may now briefly be discussed — a more in-depth
description of the sequence and difference in actions is deferred to §4.3.

1An auger is a device designed for moving material (or liquid) by means of a rotating helical flighting. The
material is moved along the axis of rotation [146].

58 Chapter 4. Formal problem statement

TIPPING AREA

WEIGH BRIDGE ROOM

BLUE

STORE

ADMINISTRATION

SALES

STORE

STORE C

FRONT

STORE C

BACK

MACHINE &

COMPRESSOR

ROOM

STORE A

STORE B

STORE D

W
O
R
K
S
H
O
P

STORE F
STORE

E

Figure 4.3: A floor plan of the cellar layout at Wamakersvallei, showing its seven functional
areas [135].

A press is a machine which may be used to separate juice (or wine) and grape skins and can
also press the juice from the skins. One half of the press consists of a sieve and the other half
is impenetrable. While the crushed grapes are transported into the press, the juice is released
through the sieve. The skins are pressed by an impenetrable balloon inside the press and the
moisture is forced through the sieve. Once the grape skins have been successfully pressed, their
remains are completely dry, usually reduced to a powdery substance. Typically, the free run-
juice (from here onwards referred to as A juice) is of a higher quality than the juice that has
been pressed (hereafter referred to as B juice). However, B juice is used to increase production
per ton; B juice can represent between 15 and 30 percent of the total juice volume from the
grapes [135, 146]. B juice is considered as the resulting juice from a pressure varying between
0.4 and 1.2 Bars.

Situated beneath the presses are buffer tanks which collect the juice as it is released from the
press. In order to have the choice of either combining A and B juice or keeping it separate,
there are more buffer tanks than presses so that A juice can go to one buffer tank and B juice
to another. The pipes connecting the presses and tanks are not permanent; they may be moved
around as needed.

4.1. Wamakersvallei Winery 59

(a) Tipping bin three as viewed from the front of
the building.

(b) Grapes being dropped into the tipping bin.

(c) Grapes being loaded into the tipping bin
and moved into the crusher/destemmer using
the worm.

(d) The central component of the mechanical
destemming machine and the multi-paddle in-
strument on its right.

Figure 4.4: Equipment used to receive the grapes at the cellar as well as to crush and destem
the grape bunches.

Similar to these presses, the Wamakersvallei cellar also has separators. These machines may
also be used to separate grape skins and juice after which grape skins may still be sent to the
press if B juice is required, which is usually the case. A separator is therefore similar in function
to a press, except that an impenetrable balloon is not used in a separator.

A settling tank is used to settle the murky white juice after the grapes have been pressed. The
murky particles of the wine settles at the bottom of the tank and the clear juice is then drawn
from above. The winemaker may also decide to rather connect a flotation device to a tank
resulting in the exact opposite process whereby murky wine particles are caused to float to the
top of the juice, rather than settling at the bottom. The clear juice may then be drawn from
the bottom of the tank. These tanks may also be used for storage and fermentation of white or
rosé wines.

With the red grapes, primary fermentation of the juice occurs together with the grape skins and
this mixture is therefore fermented in a specific red wine fermentation tank. When the grape
juice and skins are contained in a tank, the skins float to the top and create what is referred

60 Chapter 4. Formal problem statement

to as a skin cap. Constant contact between the skins and juice is required in order to extract
flavour and colour from the skins. In order to ensure this contact, the fermenting juice needs to
be taken from the bottom of the tank and poured over the skin cap using a mechanical pump
which forms part of the fermentation tank. Once the primary fermentation process has been
completed, there are two taps at different heights of the tank in order to ensure that the best
quality of juice is released from the tanks. The skins are then released through another opening
at the bottom of the tank with the use of a comb on the inside of the tank and is then released
into worms which transport the skins to a press. These tanks are again used for the second
fermentation and may also be used for storage. Such a tank cannot be filled to the top when
used for fermentation since space is required for the chemical process of converting the sugar
into alcohol; the tank is filled to more or less three quarters of its capacity. The pressure created
by this reaction is high enough to cause dents in the stainless steel tanks if a lid should be closed.
Hereafter the theoretical maximum amount of fluid that can be contained in the tank at one
time is referred to as its physical capacity even though, practically, this amount should never
be reached. The actual amount of grape skins and wine that is allowed in a tank is referred
to as the actual capacity. These red wine fermentation tanks are referred to as RT-tanks and
DF-tanks. The abbreviations, RT and DF, simply serve as a means of referring to the tanks
by their location and is derived from the two different suppliers of the tanks; both types are
stainless steel red wine fermentation tanks. The capacities and locations of the different tanks
are discussed in the following section.

Cellar machinery and location inside the cellar

The crushers/destemmers are located inside each of the three tipping bins in the tipping area
as shown in Figure 4.3.

Store A contains ten tanks suitable for storage and fermentation during the wine making process.
The wall between Store A and the wine tasting area is constructed of glass; hence tasters have
a view of the inside of Store A. It is therefore kept as clean as possible and is used mainly as
storage area and only for fermentation purposes if the situation calls for it. Also in Store A are
some of the 360 wooden barrels used for the wood maturation of the red wines. An average of
thirty barrels are bought per year to replace some of the third fill barrels and each of the barrels
has a capacity of 225 litres.

Store B contains 59 tanks. There are sixteen settling tanks which are used to settle the murky
white juice after the grapes have been pressed and have a combined capacity of 741 kilolitres.
Store B also contains forty-three fermentation tanks (with a combined capacity of 1 428 kilo-
litres) used for the fermentation and storage of white and rosé wines.

Store C is divided into two areas, Store C Front and Store C Back. The eight presses of the cellar
are situated in Store C Front of which presses one, two, three and six are used for white grapes
only; the remaining presses are used for the pressing of red grapes. There are also thirteen
buffer tanks with capacities varying between 8 and 26 kilolitres. In Store C Front there are also
a further ten tanks which are used for cold stabilisation (and may also be used as buffer tanks
during harvesting when the cellar is ideally running at full capacity and cold stabilisation only
occurs at the end of the wine making process). The remaining sixteen RT fermentation tanks
are eight 80-ton RT-tanks and eight 50-ton RT-tanks. When referring to a tank as an eighty
ton tank, the tank has an actual capacity of 80 tons of juice and skins that are allowed, since
room is left to allow fermentation. The physical capacities of all the tanks are listed in Table
A.1. Store C Back contains sixteen tanks used for both storage and fermentation and has a
combined physical capacity of 1 541 kilolitres.

4.1. Wamakersvallei Winery 61

At the start of this project Store D contained old concrete storage tanks dating back to the
start of Wamakersvallei Winery. However, in 2008 these tanks were replaced with new stainless
steel storage tanks. The storage tanks are being used as of the 2009 harvest. There are ten
130 kilolitre storage tanks and also a further ten 129 kilolitre tanks, comprised of three smaller
tanks (75, 34 and 20 kilolitre tanks) stacked on top of one another, and four 112 kilolitre tanks,
each consisting of a 75 and a 37 kilolitre tank. The stacked tanks may either be connected and
considered as one large tank or separated into the smaller tanks. One of these tanks are shown
in Figure 4.5, note the three different openings for the (possible) separate use of the three tanks.
In order to move these tanks into the cellar, the roof had to be removed and various moving
and lifting equipment was required.

(a) One of the triple stacked stainless steel tanks
to replace the old concrete tanks in Store D.

(b) In order to move the new tanks into the cellar,
the roof had to be removed and various lifting and
moving equipment was required.

Figure 4.5: The new stainless steel fermentation tanks replacing the old concrete tanks of Store
D in 2008.

There are seven separators in Store E as well as two 11 710 litre capacity buffers. Because of
the two very large buffer tanks, the winemakers attempt to limit the grapes received at the
separators to a maximum of two cultivars at any one time. Once such a buffer tank reaches its
maximum capacity, the transportation of juice to a press may begin. Store E also contains the
ten 80-ton DF-tanks.

Store F contains fifty-five fermentation tanks with a combined physical capacity of 3 678 kilo-
litres; these tanks are used for both fermentation and storage.

A summary of the different stores and their functions, as well as their total physical capacities,
are listed in Table 4.1, while a complete list of the physical capacities of all relevant tanks
appears in Appendix A.

4.1.3 The staff at Wamakersvallei

During the course of this thesis, many changes have been made in accordance to the Wamak-
ersvallei staff. Wamakersvallei Winery has seven directors of which Ernest Brink is the chairman,
Jannie Bosman the vice-chairman and Johan Truter [126] the managing director [135]. In 2007,
the two winemakers were Christiaan Visser [135] and Hugo Truter [125], who is also the Cellar
Master, and the viticulturist was Koos van der Merwe [127]. However, both Christiaan Visser
and Koos van der Merwe left Wamakersvallei at the end of 2008. A new winemaker, Pieter-Niel
Rossouw, and a viticulturist, Marko Roux [101], have since joined the Wamakersvallei workforce.

62 Chapter 4. Formal problem statement

Store Use Total capacity (liters)

A mainly storage 266 657
may be used for fermentation

B settling 2 170 208
fermentation of white and rosé
storage of white and rosé

C Front buffer tanks for presses 1 176 855
cold stabilisation tanks
fermentation of red wine

C Back fermentation 1 541 834
storage

D fermentation 3 150 000
storage

E fermentation (mostly red wine) 2 062 208
separators and buffers
storage

F fermentation 3 678 286
storage

Table 4.1: The functions and theoretical total capacities (in litres) of the different Stores of the
cellar, i.e. the total amount of fluid able to fit into all the tanks in a store at any one moment,
as well as the different functions of the vessels contained in a store [135].

There are also another seventeen permanent employees consisting of a public relations officer, a
quality co-ordinator, an accountant, a storeman who also attends to wine sales, a maintenance
officer, an export co-cordinator, a cellar supervisor, two administration officers and eight general
cellar workers (of which one is also the tea lady).

4.1.4 The product

Wamakersvallei Winery produces a wide variety of wines under five different labels: La Cave,
Bains Way, Wamakersvallei, 33◦ South and Phambili. The different varieties, vintages and
prices (expressed in South African Rand) of the wines that are currently available for purchase
at the Wamakersvallei Winery wine sales are listed in Tables 4.2 and 4.3. Other than wines,
they also produce and sell bottled grape juice. In §§4.1.4–4.1.4, the different labels and wines
are discussed and in Figure 4.6 two of the Wamakersvallei Winery products are shown.

La Cave

The La Cave label appears on the premium wines for which only red wines are produced. All
the La Cave wines are made from a single vineyard with a yield of less than 10 tons per hectare
and have won numerous awards. For these wines, respectively, the grapes are all fermented
on the skins at 26◦C after which the free-run portion is placed in new 225 litre oak barrels.
Full malolactic fermentation is completed in the barrels and the wines are racked after SO2

adjustments and returned to the same barrels. The Cabernet Sauvignon and Pinotage are aged
in barrels, 80% French and 20% American origin, for 12 months. The Merlot is aged in similar
barrels but for only 10 months and the Shiraz is aged for 12 months in barrels consisting of 70%

4.1. Wamakersvallei Winery 63

(a) A bottle La Cave Pinotage
[115].

(b) Three bottles of Bains Way,
with a 2005 Viognier in front
[115].

Figure 4.6: Wine bottles displaying two of the Wamakersvallei labels.

La Cave Bains Way
Cultivar Vintage Price per Cultivar Vintage Price per

bottle (R) bottle (R)

Merlot 2003 80 Chenin Blanc 2007 20
Shiraz 2003 80 Sauvignon Blanc 2007 23
Cabernet Sauvignon 2003 80 Chardonnay 2006 23
Pinotage 2005 80 Viognier 2006 23

Brut Sparkling Wine n.a. 35
Merlot 2005 26
Pinotage 2004 24

Table 4.2: A price list of the La Cave and Bains Way wines available at Wamakersvallei Winery
at the end of 2007, expressed in South African Rands [115].

French oak and 30% American oak2 [115].

Bains Way

The Bains Way label is named after the famous master road builder Andrew Bain who created
the gateway to the north through the Bainskloof Pass [115]. The optimum ripeness of the white
grapes are from about 22◦ Balling3 for Chenin Blanc, 21◦ Balling for Sauvignon Blanc, 23◦

Balling for Chardonnay and 25◦ Balling for Viognier. The main difference in the making of the
different white wines is the time the juice is left on the skins after it has been crushed. Chenin
Blanc juice is left on the skins for three to five hours, Sauvignon Blanc and Viognier for five to

2This information is based on descriptions of the different processes for the 2005 vintage Cabernet Sauvignon,
Shiraz and Merlot as well as the 2006 Pinotage.

3German chemist, Karl Balling, developed the Balling scale and it refers to the concentration of a sucrose
solution, as the weight percentage sucrose at 17.5◦C. The Brix scale is a more recent scale that takes into account
the effect of gravity and a reference temperature of 20◦C. Balling is often still used in the South African wine
industry, even though Brix is the international standard in the wining industry. The terms Balling and Brix are
also often used wrongly.

64 Chapter 4. Formal problem statement

Wamakersvallei 33◦ South
Cultivar Vintage Price per Cultivar Vintage Price per

bottle (R) bottle (R)

Fishermans Jerepigo n.a. 30 Rosé n.a. 20
Jagters Port n.a. 34 Semi sweet n.a. 20

Table 4.3: A price list of the Wamakersvallei dessert wines and 33◦ South wines available at
Wamakersvallei Winery at the end of 2007, expressed in South African Rands [115].

eight hours and Chardonnay for three to five hours, after which the skins are all pressed. Only
the free-run juice is used and the fermentation temperature is about 13◦C. The Brut Sparkling
wine is made from Sauvignon Blanc grapes and the process is the same as with Sauvignon Blanc
wine. The wine is only impregnated with Carbon dioxide in the end.

All of the red grapes for the Bains Way wines are harvested at as close as possible to optimal
ripeness and are then fermented dry on the skins at 28◦C. Thereafter the free-run portion is
placed in second and third fill oak barrels, i.e. oak barrels that have been used once or twice,
for nine to twelve months for Merlot, Pinotage and the Shiraz/Mourvedre blend and exactly
twelve months for Shiraz and Cabernet Sauvignon. Unless otherwise stated, all wines are made
from one cultivar, the Shiraz/Mourvedre blend consists of 80% Shiraz, 18% Mourvedre and 2%
Viognier4 [115].

Wamakersvallei

The two wines listed under the Wamakersvallei label, namely the Fishermans Jerepigo and
Jagters Port, are both dessert wines and due to the small percentage produced, they do not
form part of the focus area of this thesis.

33◦ South

The label 33◦ South is derived from the location of Wamakersvallei wine cellar which is exactly
33 degrees South of the Equator on the southern tip of Africa. Under this label, Wamakersvallei
produces a classic Semi sweet wine, a Rosé and a Shiraz/Mourvedre blend.

For the Semi sweet wine Chenin Blanc grapes are picked at a ripeness of about 21◦ Balling or
higher. After crushing, the juice is left on the skins for five to eight hours and then pressed.
Only free-run juice is used and the fermentation temperature is maintained at approximately
12◦C.

With the Rosé, the free-run juice is used to produce the cherry pink colour after which this
free-run portion is fermented at 13◦C. This Rosé is made from Pinotage grapes.

The Shiraz/Mourvedre blend consists of 60% Shiraz, 25% Mourvedre and 15% Cinsaut grapes
which are fermented dry on the skins at 28◦C; thereafter the free-run portion is placed in second
and third-fill oak barrels for 9 to 12 months. Blending takes place after 6 months and the wine
is then returned to the barrels for further maturation to ensure a homogeneous final blend.

4This information is based on a description of the different processes for the 2007 vintage white Bains
Way wines and 2006 Pinotage, Shiraz, Cabernet Sauvignon and Brut Sparkling wine as well as the 2005 Shi-
raz/Mourvedre blend and Merlot [115].

4.2. From the vineyards to the press 65

Phambili

Both white and red wines are produced for the fourth label. The first is a white wine blend
consisting of 45% Chenin Blanc, 45% Chardonnay and 10% Viognier. The grapes are picked
at a ripeness of 25◦ Balling or slightly higher. After which they are crushed and the juice is
left on the skins for five to eight hours until pressed. Only the free-run juice is used and the
fermentation temperature is maintained at approximately 13◦C.

There are two red wines under the Phambili label. The Pinotage grapes are picked once mature
and are fermented dry on the skins at 28◦ after which the free-run portion is placed in second
and third-fill oak barrels and matured for nine to twelve months.

The Cabernet Sauvignon Reserve is made from grapes of a single vineyard with a yield of less
than 10 tons per hectare. The grapes are once again fermented dry on the skins at 26◦ after
which the free-run portion goes into new 225 litre oak barrels. Full malolactic fermentation is
allowed in the barrels and the wine is then racked and after SO2 adjustments, it is returned to
the same barrels for a further 12 months. The barrels are made from 80% French Oak and 20%
American Oak.

However, it is not only the quality of the wine produced under the Phambili label, that makes
this label special. The Inkquebela Phambili Empowerment Trust, is a separate trading entity
established by 18 formerly disadvantaged workers at Wamakersvallei. The profits from the trust
activities are distributed amongst the workers and their families including long term investments
in permanent housing, education and training and future business development projects. All
the trustees of the Inkquebela Phambili Empowerment Trust are employees at Wamakersvallei
and include the cellar manager Johan Truter.

In one of the 11 national South African languages, Xhosa (a local language in the Western Cape
Province), the word Phambili means ‘moving forward’.

4.2 From the vineyards to the press

In this section an overview is provided of processes regarding the receiving of grapes from the
suppliers until the point where they enter the cellar at the tipping bins.

4.2.1 Harvesting the grapes

Grapes are divided into three classes, with Class 1 the highest quality grapes. In order to produce
grapes of the highest quality, the farmer should follow the instructions given by the viticulturist,
Marko Roux [101], who visits the farms throughout the year to ensure that viticultural aspects,
such as trellis systems, are in place.

Harvesting of the grapes at the various vineyards of the suppliers is performed as close as
possible to the time of optimal ripeness of the specific cultivar. The ripeness is determined
through tasting and the sugar, pH and acidity levels of a sample of the grapes. Sugar is
measured in degrees Balling and 24◦ Balling indicates 24% sugar in the grapes. The pH of
the grapes is an indication of the active acidity. A wine with a too high a pH level, say over
4.0, becomes unstable with respect to micro-organisms and a pH level that is too low inhibits
micro-organism growth. Acidity is a measurement of the tartaric acid present in the wine and
is given as a percentage per volume [91]. Even though total acidity and pH are related (the

66 Chapter 4. Formal problem statement

higher the pH, the lower the acidity and vica versa), they represent different ways of measuring
acidity in wine [91, 135]. Harvesting roughly stretches over a period of three months, starting
any time from middle January and continuing until middle April. Some harvesting data of past
years are listed in Appendix A.2.

A load of grapes may only contain grapes from the same vineyard block and, depending on the
decision made by the supplier, these grapes may either be harvested by hand or machine. A
harvesting machine is shown in Figure 4.7(b). Both methods have different influences on the
quality of the harvested grapes. The harvester is a large tractor that straddles the grapevine
trellises and loosens the grapes from their stems by striking the fruiting zone of the grapevine
with firm plastic or rubber rods. Such a grape load typically contains fewer stems than a grape
load that was harvested manually, but it may contain other impurities such as mouldy grapes,
leaves, canes, metal debris, rocks and even small animals [146]. Grape loads harvested by
machine also contain more juice since the grapes may split open during the process. This is not
a favourable situation, since the heat causes the juice to start fermenting prematurely due to the
presence of wild yeast. Wild yeast causes the juice to extract different (some undesired) flavours
compared to the predictable, desired effect of the added controlled yeast [126]. Therefore sun
exposure is especially harmful to grapes harvested by machine which seems to be the largest
single disadvantage associated with using harvesting machines. Another disadvantage of using
a harvesting machine, is that it is very expensive and with manual labour in South Africa being
rather inexpensive it is not always possible for a farmer to afford such a machine. The most
significant advantage of using a harvesting machine is the fact that no workers are required.
Workers who do not show up for harvesting is currently one of the most serious problems
affecting Wamakersvallei.

(a) The empty bunch after a harvester has removed
all the grapes.

(b) A harvester as seen from the side, about to load
the picked grapes into a transportation vehicle.

Figure 4.7: A typical grape harvester used to harvest grapes by loosening the grapes from their
stems by striking the fruiting zone of the grapevine.

During the harvesting period, the viticulturist receives numerous samples from the different
vineyard blocks5. The sugar, pH and acidity of the samples are measured and the viticulturist
keeps a form up to date containing all the calculated samples together with references as to
which farm and supplier the grapes are from [101]. An example of this form is shown in Figure
4.8. The form columns consist of a date, member, farm, cultivar, block number, sugar level, pH
and acidity level column.

5The samples are supposed to be received once every fortnight for each vineyard block. However, this is not
always the case with all the suppliers.

4.2. From the vineyards to the press 67

Figure 4.8: A filled in form consisting of the calculated sugar, pH and acidity levels of samples
received.

4.2.2 Scheduling the arrival of the grapes

Different grape cultivars ripen during different periods of harvesting. During these periods
the sugar, pH and acidity of the grapes are constantly monitored by the viticulturist through
samples received from the suppliers. According to the agreement between the grape farmers
and Wamakersvallei Winery, at least two samples are required before harvesting may start [127].
From theses samples, the ripeness of the grapes may be monitored and the expected class of
the grape may also be derived from such a list. Table 4.4 lists the grading of the different grape
cultivars according to its sugar level (in Balling). A list with the grapes closest to optimum
maturity is constructed and at the end of each day, the viticulturist and the two winemakers,
as well as the cellar manager, sit around a table and discuss the different options of receiving
grapes the next day. An example of such a list from the 2009 Wamakersvallei harvest is shown
in Figure 4.9. This list includes the cultivar, class and producer of each selected vineyard block
as well as the block reference number and the expected yield of the vineyard block expressed
in tonnes. This is done for every working day, since the cellar does not receive grapes over
the weekend. When scheduling the grapes, they have to keep in mind which blocks are fully
ripened and where there is available space in the cellar. They then manually construct a list of
blocks to be received the next day and notify the different suppliers via an SMS service. For
example, such an SMS may typically inform a farmer to deliver 10 tons of his class one Cabernet
Sauvignon and 50 tons of his class three Cinsaut the next day.

68 Chapter 4. Formal problem statement

White grape cultivars Red grape cultivars
Cultivars Class Sugar Cultivars Class Sugar

Chenin Blanc 1 21− 24 Cabernet Franc 1 24− 26
2 20− 24 Cabernet Sauvignon 2 23− 27
3 > 18 Shiraz 3 21− 28
6 < 18 6 < 21 and > 28

Sauvignon Blanc 1 19− 22 Petit Verdot 1 24− 27
2 18.5− 23 Pinotage 2 23− 27.5
3 > 18 3 22− 28
6 < 18 6 < 22 and > 28

Chardonnay 1 22− 25 Merlot 1 23.5− 25.5
Viognier 2 21− 25 2 23− 26.5

3 > 18 3 22− 28
6 < 18 6 < 22 and > 28

Colombar 2 18− 23 Mourvedre 1 23− 25
Hanepoot 3 > 18 Malbec 2 22− 26
SA Riesling 6 < 18 3 22− 28
Weisser Riesling 6 < 21 and > 28

Roobernet 2 23− 27
Ruby Cabernet 3 21− 28

6 < 21 and > 28

Cinsaut 2 22− 26
3 21− 28
6 < 21 and > 28

Table 4.4: Summary of the grape grading according to the sugar level when measured in degrees
Balling [127].

When a problem occurs with the harvesting of the grapes at a farm, such as when workers do
not show up or as a result of machinery failure, it influences the scheduling of the grapes at the
cellar, because by then space has already been allocated for the expected grapes. Therefore a
very quick rescheduling process takes place to ensure maximum use of the available space. In
order to provide the reader with a better understanding of the grape intakes, a summary of
the grape intakes from 2000 to 2006 is given in Table 4.5. The daily total intake of grapes also
appears in Appendix A.2.

4.2.3 On arrival at the winery

When a load of freshly harvested grapes arrives from a farmer, the first step is to have a sample
taken manually by a worker. The sugar, pH and acidity levels are then determined at the
weighing station to ensure that the grapes are ready for pressing.

The block is then given a docket number and the relevant information is stored accordingly
for future reference by means of software called EzyWine. The docket number enables the
winemakers to determine the origin of the grapes in a specific tank at any time. At the weighing
station, the transportation vehicles queue to have their loads weighed, see Figure 4.10. Since
the weight of every empty vehicle is known, the nett weight is the actual amount of grapes and

4.2. From the vineyards to the press 69

Figure 4.9: An example of the list of vineyard blocks selected by the group consisting of wine-
makers, the viticulturist and cellar manager to be harvested on the February 16th 2009. The
list consists of the cultivar, class, supplier, block number and expected vineyard yield for each
of the selected vineyard blocks.

also the weight that is entered into EzyWine. Suppliers are awarded an extra R50 for every ton
of grapes weighed before 10:00 in the morning, since this ensures that the grapes have had the
minimal amount of exposure to the sun. Suppliers who use machinery to harvest also receive

70 Chapter 4. Formal problem statement

Year
2000 2001 2002 2003 2004 2005 2006

Number of intake days 42 37 36 38 39 44 40
Highest tons per day 535 584 598 636 714 700 610
Lowest tons per day 2 3 11 7 9 5 9
Average tons per harvesting day 255 280 255 342 309 303 290
Highest tons per week 2 340 2 433 2 120 2 840 2 913 2 668 2 584
Lowest tons per week 392 331 348 622 517 740 1 018

Table 4.5: Summary of the annual grape intakes at Wamakersvallei cellar [127].

an extra 2% added to the physical weight to account for the lack of stems [126].

(a) A sample of the grapes is taken and its sugar,
pH and acidity is measured at the weighing station
which is then entered into the database for future
reference.

(b) Transportation vehicles queueing at the weigh-
ing station during harvesting.

Figure 4.10: The weighing station is also used to control the quality grapes received during
harvesting.

Vehicles then queue to load their grapes into a tipping bin where they are destemmed and
crushed. Tartaric acid may also be added at this stage to lower the pH level of fermenting must
(combination of juice and skins) to a level where many undesirable spoilage bacteria cannot
live6. It also acts as a preservative after fermentation [143]. Once the grapes are destemmed,
the stems are disposed of and the resulting must is taken up into the cellar.

4.3 Production flow and layout inside the cellar

The must can now be transported through the cellar in a variety of ways, depending on the
grapes used and also the wine that is required. A rough illustration of the building layout is
provided in Figure 4.3. The tipping area consists of the three tipping bins where the grapes are

6Grapes grown in warmer climates have lower acidity than grapes grown in cooler climates and the warmer
the climate the higher the sugar content of the grapes. Therefore, in certain wine making regions, such as Chablis
in France, sugar is added. This is prohibited in warmer regions such as South Africa and the Napa Valley of
California [91, 126].

4.3. Production flow and layout inside the cellar 71

loaded at the outside of the cellar. Usually tipping bin 1 is used for white grapes, tipping bin
3 is used for red grapes whilst tipping bin 2 may be used for either.

After being destemmed and crushed the grapes are pumped to its desired location, depending
on the grape colour and the available space. There are different pipes that connect the differ-
ent tanks and machinery; some are stainless steel pipes (the most durable, but also the most
expensive) and others are PVC pipes. The routes represented by the different pipes are colour
coded and not all pipes have access to the same machinery. A layout of the machinery and
necessary pipes are given in Figure 4.11; this layout excludes the storage tanks, rather focusing
on the machinery and tanks required for the active wine making process. The indicated layout
is an exact replica of the layout sketch used throughout production at Wamakersvallei Winery.
Another means of indicating machines and the different pipes is considered in Chapter 5. From
the diagram in Figure 4.11, it is clear that only certain pipes can reach certain machinery, this
should be borne in mind when scheduling the grape intakes.

Figure 4.11: Layout of the pipes in the cellar with only the three most important pipes indicated
clearly. The purple pipe is indicated with an additional single black line, the green pipe is
indicated with the additional dotted black line and the red pipe is indicated with two additional
black lines. This is an exact replica of the Wamakersvallei Winery graphical layout.

4.3.1 Production flow of white grapes

Once white grapes have entered the cellar, they may either be sent through the separators to
a press or directly to the press. At either machine, the juice may be left on the skins for more
or less 30 minutes before starting the process. The separator then takes 45 minutes in order to

72 Chapter 4. Formal problem statement

separate the juice and skins after which the press takes between one and a half to three hours
to retrieve the B juice. Only presses one, two, three and six, as indicated in Figure 4.11, are
available for the pressing of white grapes. During these processes it may be decided whether
the A and B juice should be kept separate or whether they should be combined.

The juice may then be transported to Store B where the clear juice is drained and racked;
this juice may then either be kept in Store B for fermentation or may be transported to Stores
C or F for fermentation. Fermentation usually lasts about 14 days and since this process is
very temperature sensitive, it is performed as close as possible to 14◦C at all times. Once
fermentation has been completed, the lees may be drained in order to obtain clearer wine and
SO2 may also be added. The other fining and filtering process also occurs at this stage before
bottling. The possible sequences of the different processes are illustrated in Figure 4.12.

White grapes are

received at the

tipping bin

Crusher/

Destemmer
Stems

(compost)

Presses 1,2,3 or 6

(Store C)

Separators

(Store E)

Presses

1,2,3 or 6

(Store C)

Buffer

(Store C

Front)

A juice Skins

B juice Buffer

(Store C

Front)

Buffer

(Store C

Front)

B juiceA juice

Settling

(Store B)

Settling

(Store B)

A and B juice

separate

or together

Fermentation

(Stores B, C or F)
Fermentation

(Stores B, C or F)

Figure 4.12: Production options for white wine at Wamakersvallei wine cellar [135].

4.3.2 Production flow of red grapes

Once the crushed and destemmed red grapes enter the cellar they are immediately allowed to
start fermenting. They are therefore taken directly to either DF-tanks or RT-tanks for about
five days at a warm 26–28◦C since the colour extraction is better at a higher temperature
[135]. The DF-tanks can only be reached using the brown line in Figure 4.11. Once the primary
fermentation has been completed, the pomace from the DF-tanks may be transported to presses

4.4. EzyWine 73

seven or eight and the pomace from the RT-tanks may be taken to presses four or five. It is once
again up to the winemaker to decide whether he wants the A and B juice to remain separate or
whether he wishes to combine the two. The wine now goes back to its original tank for further
fermentation. This secondary, malolactic fermentation is a process that happens spontaneously,
but is catalysed by adding certain bacteria. If this is not done, the process will cause the
cork to be pressed out of the bottle due to the resulting pressure from this process starting
spontaneously. After secondary fermentation, the lees may be removed and the wine racked,
i.e. moved around in the cellar, the proper fining and filtering of the wine may also take place.
This process is illustrated in Figure 4.13.

Presses 7 or 8

(Store C Front)
Presses 4 or 5

(Store C Front)

Red grapes are

received at the

tipping bin

Crusher/

Destemmer
Stems

(compost)

RT-tank

(Store C Front)

DF-tank

(Store E)

DF-tank

(Store E)

A juice Skins

B juice

RT-tank

(Store C Front)

SkinsA juice

Buffer

(Store C Front)
Buffer

(Store C Front)

B juice

DF-tank

(Store E)

RT-tank

(Store C Front)

Figure 4.13: Production options for red wine at Wamakersvallei wine cellar [135].

4.4 EzyWine

EzyWine [43] was designed in Australia and is now also available in South Africa and New
Zealand. Its South African distribution is handled by Action Technologies, a South African-
owned information technology company that specialises in business management software for
the wine industry. EzyWine was designed to streamline all winery procedures into one com-
prehensive package which may be implemented easily. Wamakersvallei is one of 69 wineries in
South Africa currently using EzyWine [43].

74 Chapter 4. Formal problem statement

The features of EzyWine include stock control, wine making assistance, marketing, purchasing
and sales. Tools to assist in further financial aspects such as payroll management, budgeting
and grower payments are also included. All these features are made accessible with a very
powerful report writer.

EzyWine is also able to interface with devices such as bar-coding, weather service information,
weighbridge scales, temperature control and e-mail browsers. Further services included in the
EzyWine package include support and training, online help and bi-annual site visits by EzyWine
technicians.

Most importantly for this project, EzyWine easily exports data to Microsoft Excel [86] spread-
sheets. It is therefore possible to export sugar level indicators of the samples received to Excel
files which may be used as input to the decision support system developed in this thesis.

It is clear that EzyWine is an extremely powerful tool for any winery. However, it may take
some time before South African wineries take full advantage of all the features included, as it
requires significant effort to fully understand and employ these features as part of the daily
cellar management. There are also many features of the EzyWine software package that may
be helpful to the decision support system developed as part of this study if the two may be
combined in some way, or allowed to interface.

4.5 Chapter overview

The goal in this chapter has been to provide the reader with the necessary information to
fully understand the origin of the scheduling problems experienced at Wamakersvallei Winery.
Therefore, the sections of this chapter contain information regarding the products, objectives
and main production processes at this winery.

In the first section of this chapter, some important aspects of Wamakersvallei were discussed,
such as its physical location, its current cellar layout, the machinery used in the winery, products
delivered by the winery and staff employed there.

Then, in §4.2, more information was provided on the work methods of the employees and the
process of ensuring grape quality (received at the cellar). Aspects such as the harvesting process,
the method of scheduling of vineyard blocks to be harvested and the required, related procedures
were described.

The different production processes and orders of production were considered in §4.3. The focus
in this section was mainly on the production of white and red wines, excluding the minority of
cases such as Rosé and dessert wines.

Finally, a concise overview of the EzyWine [43] system, used at Wamakersvallei, was presented
in §4.4.

CHAPTER 5

Mathematical formulation of the cellar
scheduling problem

Contents
5.1 Defining the workspace mathematically . 75

5.1.1 Jobs and their characteristics . 76

5.1.2 Processors and their characteristics . 76

5.1.3 Further parameters and variables . 77

5.2 Model formulation disregarding pipe assignment 80

5.2.1 The constraint sets . 81

5.2.2 Objective function . 88

5.3 Chapter overview . 91

This chapter concerns the scheduling problem occurring inside the cellar, where the aim is
to assign grape loads received at the cellar to specific processors for the production of wine,
starting at the assignment of a suitable tipping bin. The assignment should be determined in
such a manner that it complies with the different machine and process requirements and also
to the preferences of the winemakers. The problem with scheduling arises in the active cellar
where bottlenecks most often occur during harvesting; therefore the focus in the scheduling
problem discussed in this chapter is on the processing of wine inside the active cellar. In
§5.2, a mathematical programming model is derived in which assignment of the grape loads
to specific pipes is not considered. The mathematical programming model presented in this
chapter will also be considered in Chapter 6 when a meta-heuristic method is developed to
solve the scheduling problem. However, some of the more general parameters that are required
throughout this chapter, describing the jobs, workspace and some of the problem characteristics,
is first described in §5.1.

5.1 Defining the workspace mathematically

In §5.1.1 the different types of jobs and their characteristics are considered after which param-
eters concerning the different processor requirements are introduced in §5.1.2, also providing
a means of graphical representation of processor relationships in the form of a so-called cellar
graph. In §5.1.3 the last parameters to be defined are the problem specific parameters required

75

76 Chapter 5. Mathematical formulation of the cellar scheduling problem

for adhering to the rules of the active cellar, as well as the decision variables required to solve
the scheduling problem.

5.1.1 Jobs and their characteristics

Throughout the remainder of this chapter, the processing of grapes within the active cellar will
be referred to as a job and a specific job j is denoted by Jj . For each job a parameter, wj ,
indicating the weight of the load is required to compare the load size to the relevant processor
capacities.

The jobs J1, . . . , Jr refer to the processing of red grapes (used to produce red wine) received at
the cellar on the considered day, whereas Jr+1, . . . , Jw refer to the processing of white grapes.
The models introduced in this chapter are capable of generating a schedule for one working day
at a time and since fermentation of red wine takes approximately 5 to 7 days, the emptying of the
fermentation tanks and the pressing of red grapes take place on another day. Jobs Jw+1, . . . , Jn
may therefore refer to loads of red grapes currently in specific red wine fermentation tanks
which need to be emptied and the contents pressed on the day for which a schedule is sought.

A job Jj is further divided into a set of tasks, Tj1, . . . , Tjkj
, according to the different phases

of processing and the specific machine requirements. For the purpose of this thesis, there will
be six types of tasks. The first, denoted by T1, takes place at the tipping bin and concerns the
crushing and destemming of a load of grapes. The second type of task, T2, is concerned with
separating the juice from the skins of white grapes and may be performed on the separators or
presses. The skins of both white and red grapes should be pressed at some stage during the
production process — this forms the third task type, T3. The fourth task type, T4, refers to the
primary fermentation of red grapes, while task type T5 refers to the emptying of a fermentation
tank. Finally, task type T6, indicates the transportation of grapes, juice or skins between any
two machines and is relevant only to the problem formulation of §B.3. Every task type can be
performed on any one of a specified subset of processors.

5.1.2 Processors and their characteristics

Throughout this chapter, there will be a difference in definition of processors and machines.
Processors refer to any equipment used for the processing of grapes in the active cellar, whereas
machines only refer to physical machines, such as a red wine fermentation tank or a press,
and not to pipes. In order to separate the different types of processors used, the processor
set, P = {P1, . . . , Pm}, is further divided into subsets. The first subset {P1, . . . , Pm1−1} al-
ways refers to the tipping bins. Furthermore, {Pm1 , . . . , Pm2−1} denotes the set of separators
and {Pm2 , . . . , Pm3−1} the presses. Finally, the red wine fermentation tanks are denoted by
{Pm3 , . . . , Pm4−1} for the DF tanks and {Pm4 , . . . , Pm5−1} for the RT tanks. There exists no
need to number the individual machines inside their subsets in any specific order, but when in-
cluding the assignment of tasks to pipes, it is necessary to further differentiate between types of
pipes. Before these subsets can be derived, the need for this division and some further concepts
are first explained. From Figure 4.11 it is clear that a pipe connecting two machines is most
often divided into parts, allowing pipes to join and split with the use of valves. This makes it
possible to consider each section of pipe individually, together with a preceding and following
processor — be it a machine or pipe. In order to understand the numbering and combination
of such sections, the concept of a cellar graph is introduced. A cellar graph simply serves as
a graphical representation of the model at hand and is used to illustrate certain concepts and

5.1. Defining the workspace mathematically 77

rules; it does not reflect the actual layout of the cellar and other physical characteristics. When
the division of a pipe does not serve any specific goal, it is considered and illustrated in a cellar
graph as one processor. The interpreted cellar graph of the active cellar at Wamakersvallei
Winery is shown in Figure 5.1. The numbering of pipes may be omitted when pipe assignment
is not considered.

The solid (or coloured) vertices represent machines and the thick arcs (directed edges) represent
the pipes and their direction of flow. The circles allow pipes to separate and/or join. For example
P67 and P70 are joined together by the circle to form the resulting processor, P72. The lines
are used to illustrate the connection between processors where one pipe is connected to more
than one processor. For example, the green line from Figure 4.11 allows entry to all separators;
therefore in Figure 5.1, the corresponding processor P72 is connected to {P4, . . . , P10} by means
of lines not representing pipes. It is important to use such a method, since multiple pipes
connecting each of P67 and P70 to {P4, . . . , P10} (replacing the single P72) will not only look
cluttered, but will also create the impression that all of these parallel pipes are allowed to be
used simultaneously, which is not the case.

In order to formulate a model that includes the assignment of tasks to the different pipe seg-
ments, the pipes are split into two further subsets of P which are only relevant to §B.3. For
the mathematical programming model in §5.2 the last machine, Pm5−1, is the last processor,
implying that m5− 1 = m for that specific problem formulation. However, the first set of pipes
for a formulation including pipe assignment is {Pm5 , . . . , Pm6−1} and refers to the set of single
pipes. A so-called single pipe is a pipe that has a machine as predecessor and any processor
as successor. In Figure 5.1 examples of single pipes are {P45, . . . , P53} and also P54 which is
used to transport the grape skins from the separators to a select set of presses. In addition to
the actual single pipes represented in Figure 5.1, there are also dummy pipes from every press
to itself allowing the tasks of separation and pressing to follow on one another on the same
press; these dummy pipes are also considered single pipes. All other pipes may be referred to
as non-single pipes and consists of the set {Pm6 , . . . , Pm} and refers to the pipes which have
only other pipes as predecessors. Because of the circles and lines used in the cellar graph, it is
not always clear which pipes are single, since it may create the illusion that a pipe is, in fact,
following on another pipe and not the relevant set of machines (take P54 as an example). In
such cases the numbering of the pipes can serve as a guideline. For the Figure 5.1, the sets
may be defined by the parameters m1 = 4,m2 = 11,m3 = 19,m4 = 29,m5 = 45,m6 = 65 and
m = 79 with the single pipes P57, . . . , P64 representing the dummy pipes at the presses.

For each of the red fermentation tanks, the allowed capacity of the tank is denoted by ci and is
measured in tonnes. This allowed capacity for red wine fermentation tanks, form about three
quarters of its physical capacity1. Each separator also has a limited capacity of 20 tonnes and
there are both 15 and 20 tonne presses. Furthermore, the red wine fermentation tanks also
require a parameter vi which indicates its volume at the start of the considered day.

5.1.3 Further parameters and variables

The parameters µ1jk, . . . , µmjk are associated with each task Tjk, where

µijk =
{

1 if Tjk is allowed to be performed on processor Pi,
0 otherwise.

1Exceeding three quarters of the actual capacity may cause the tank to dent, or worse, break the lid open,
either way resulting in serious damage due to the gas that is omitted during fermentation.

78 Chapter 5. Mathematical formulation of the cellar scheduling problem

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

53

65 70
69

68

72

75

73

56

79

55

54

67 71

74
76

7877

45

66

{45...53}

32 40 41

42393431

30 35 38 43

29 36 37 44

11

12

13

15

18

17

16

14

Red
fermentation

tanks

Red
fermentation

tanks

Separators

Presses

Tipping
bins 1 2 3

4

6

8

10

9

7

5

24

19 20

25 26

21 22

27 28

23

33

Figure 5.1: The cellar graph representation of the active cellar at Wamakersvallei Winery where
the solid vertices represent the machines and the thick directed edges represent the pipes. For
this cellar graph m1 = 4,m2 = 11,m3 = 19,m4 = 29,m5 = 45,m6 = 65 and m = 79. The
processors P57, . . . , P64, representing the dummy pipes from a press to itself, are omitted in the
representation.

The duration of processing task Tjk on processor Pi is denoted by pijk and expressed in hours.
When red wine and white wine are processed directly after each other on the same processor,
further time is required for the cleaning of the machine. There are also machines, such as the
presses, that always require some form of cleaning after use, regardless of the colour of successive

5.1. Defining the workspace mathematically 79

grape loads2. It is therefore necessary to include setup times, where sij` refers to the setup time
required to have machine Pi ready to process any task from J` directly after processing a task
of Jj . The assumed time of arrival of Job Jj at the cellar, is given as ej .

Red wine fermentation tanks have the unique characteristic that more than one job is allowed
to be assigned to the tank in overlapping times. However, not just any two loads are allowed to
be assigned to the same tank in this manner. The first requirements are that the two relevant
jobs should involve the same cultivar and quality3. It is also important to respect the intuition
of the winemaker and the quality of the final product (or wine) that he desires. Therefore, a
parameter

qj` =
{

1 if grapes from Jj and those of J` are allowed to be mixed,
0 otherwise,

is defined, allowing the winemaker to specify when two jobs that are of the same cultivar and
quality may not be mixed. If the winemaker does not give any input with respect to this matter,
wines of the same cultivar and quality are allowed to be mixed. It is also still allowed to add a
new load of grapes to the load already in the tank if the received load is similar to that inside
the tank. This is, however, only allowed if all the loads assigned to a tank arrive over a period
of two contiguous days and not longer. Therefore a tank may be suitable for a new load either
if the tank is empty or if it is allowed to mix the new load with its current load. Another
parameter,

tqij =
{

1 if it is allowed to assign Jj to red wine fermentation tank Pi,
0 otherwise,

similar to qj`, is thus required, again allowing the winemaker to intervene.

Subject to the objective function and the constraints, the first variables to determine the feasi-
bility of a schedule are the starting and ending times of the specific tasks, denoted tjk and fjk
for each task Tjk, respectively. The assignment variable,

aijk =
{

1 if Tjk is assigned to machine Pi,
0 otherwise,

is required for each (Tjk, Pi) combination. In order to determine where the relevant setup times
are required and also to schedule tasks in such a manner that their processing times do not
overlap when assigned to the same processor, the variable

xij` =
{

1 if a task of job J` follows a task of Job Jj immediately on Pi,
0 otherwise,

is additionally defined. Furthermore, the variable M refers to a large number set as 10 000
throughout the thesis.

The objective function to be minimized is denoted by C and will be defined in the relevant
sections. The goal of each of the following approaches is to derive a feasible schedule using the
parameters and variables defined to generate a constraint set.

2This refers to the removal of the remaining grape skins from the presses, rather than the actual cleaning of
the whole machine.

3There are no exceptions to this rule. Even when a blended wine is desired, the different cultivars are kept
separate until the final stages of production, which do not occur in the active cellar.

80 Chapter 5. Mathematical formulation of the cellar scheduling problem

5.2 Model formulation disregarding pipe assignment

A mathematical programming model for a general multi-operational job shop with sequence de-
pendent setup times was given in §3.3.1. Due to additional constraints, such as the no-wait char-
acteristic, and further problem specific complications, this mathematical programming model
requires further expansion to conform to the scheduling problem at Wamakersvallei Winery.

In this approach, the assignment of tasks to the pipes is omitted, since Wamakersvallei (as well
as the majority of other wineries) make use of temporary pipes that can be moved around the
cellar making it possible to connect any two machines for the purpose of transporting juice4.
The tasks for red and white wines, their task types and the processors required are listed in
Tables 5.1 and 5.2.

Red wine First Job Second job

Task type T1 T4 T5 T3

Tasks Tj1 Tj2 Tj′1 Tj′2
Processor Tipping Fermentation Fermentation Presses

bins tanks tanks
Time (hours) 0.15 tot 0.25 120 to 168 4 to 6 3

Table 5.1: The different tasks required in order to process a load of red grapes. The correspond-
ing task types, processor requirements and approximate durations for the specific processes are
also shown. The first job concerns the day of grape delivery, whereas the second job refers to
the processing after primary fermentation.

White wine

Task type T1 T2 T3

Tasks Tj1 Tj2 Tj3
Processor Tipping Separators Presses

bins or Presses
Time (hours) 0.15 tot 0.25 0 to 4 2.5

Table 5.2: The different tasks required in order to process a load of white grapes, as well as the
corresponding task types, processor requirements and production times. The great difference in
duration for the separation of grapes occurs since it can be a by product of the press therefore
not taking any additional time or it may spend up to 4 hours in a separator.

The durations presented in Tables 5.1 and 5.2 are based on times indicated by one of the
winemakers at Wamakersvallei [135] and is more thoroughly explained in Chapter 4. It is still
important to note that the production times do not include any setup times. For example, it
takes approximately 30 minutes to fill up a press. For red wine the grapes are pressed on a cycle
of 2.5 hours (2 hours for white wine) and after pressing the dry pressed grape skins have to
be removed, which takes between 45 minutes and 1 hour and is considered as setup time. The
significant variation in duration of separation of white grapes is due to the fact that it is possible
to separate the grapes and skins in a press, where separation (or more accurately draining of
the juice) takes place, while the press is being filled. Therefore the actual task of separation on
the press requires no more time than required for the pressing of the grapes. When assigned
to separators, certain white grape varieties often require skin contact and may be left on the

4A worm is used for the transportation of grape skins and can therefore not be replaced by a temporary pipe.

5.2. Model formulation disregarding pipe assignment 81

skins for up to 2 hours. It takes an additional 30 to 45 minutes to fill the separator, 45 minutes
to drain the juice and 30 minutes to remove the skins. In this case, the 30 minutes is not
considered as setup time, since the grape skins still require further processing.

5.2.1 The constraint sets

The constraint

tj1 ≥ ej , j = 1, . . . , n

ensures that no job starts before its actual arrival at the cellar. In order to ensure that the
starting time tjk and ending time fjk of all tasks allow enough time for production, pijk, on the
assigned machine Pi, the inequality

tjk + aijkpijk ≤ fjk, i = 1, . . . ,m, j = 1, . . . , n, k = 1, . . . , kj , (5.1)

is included. The value of tjk + aijkpijk should ideally be equal to fjk, in which case the starting
time together with the production time is equal to the time at which production ends5. It is
unfortunately not possible to enforce this with the current notation, since not all assignments
aijk will be equal to 1; therefore the equality tjk + pijk = fjk will hold for some processor Pi
with pijk 6= 0, as well as the equality tjk = fjk for all other aijk = 0. Hence it is important that
fjk or tjk forms part of the objective function to be minimized in order to obtain the equality
tjk + pijk = fjk for the assigned processor Pi. It is, however, imperative that once a task Tjk
has been completed, including (possibly) waiting in a buffer tank, processing of the following
task, Tj(k+1), should start without delay. This is referred to as the no-wait characteristic of the
schedule and is implemented by an equality constraint of the form

fjk = tj(k+1), j = 1, . . . , n, k = 1, . . . , kj − 1.

The additional time required to transport the grapes or juice from one machine to another is
so small (approximately 30 seconds [135]) that it is negligible when compared to the processing
times of the jobs ranging from 2 hours to 7 days6. However, if this level of detail is required, the
starting time of a new task, tj(k+1), may be set equal to the ending time of predecessor together
with the additional time required for transportation, i.e. fjk + 30s.

Not all tasks are allowed to be processed on all machines. Therefore the inequality

aijk ≤ µijk, i = 1, . . . ,m, j = 0, . . . , n, k = 1, . . . , kj ,

is incorporated in order to limit the assignment of each task to only machines that are prede-
termined as allowable. If the parameter µijk for a task Tjk is equal to 1 (therefore allowed), the
assignment variable aijk is still allowed to be equal to 0 if the actual assignment to the machine
is not made.

There are tasks that may be assigned to more than one machine simultaneously. This occurs,
for example, when a load of white grapes larger than 20 tonnes requires separation and then

5It is possible to hold the grapes in any processor other than the tipping bins for a while longer since they all
make use of buffer tanks to receive the juice. The processor remains unavailable to new loads during this time.

6These times are valid when focusing on the active cellar. Fermentation of white wine, which does not occur
in the active cellar, may take up to 14 days.

82 Chapter 5. Mathematical formulation of the cellar scheduling problem

need to be assigned to a set of separators with a capacity of only 20 tonnes each. However, the
constraint

m∑

i=1

aij1 = 1, j = 1, . . . , n

limits the assignment of the relevant tasks to exactly one processor (these processors are the
tipping bins and red wine fermentation tanks). In the event that red grape loads exceed the
maximum available tank capacity, the grape load is split up to form more than one job as input
to the mathematical programming model7.

Task Tj2 of any white grape job Jj may be assigned to either a press or a separator. An additional
variable, y(j−r), is required for every white grape job Jj in order to allow the assignment of task,
Tj2, to either a press or a separator, and not both. The variable y(j−r) is then 1 if task Tj2
is performed on a separator and 0 otherwise. Since the separators may each handle up to 20
tonnes at a time, the number of separators required for the processing of a task, Tj2, is

⌈wj

20

⌉
.

The inequality

m2−1∑

i=m1

aij2ci ≥ wjy(j−r), j = r + 1, . . . , w,

combines the two requirements by ensuring that an assignment is made to a separator only if the
assignment is not made to a press by including yj−r and also assigning the task to the correct
number of separators as determined by the job weight. Another characteristic of separators
is that since they are connected to the presses by a single worm, only one separator may be
emptied at a time. Only the last hour of separation concerns the emptying of the tank. The
inequality |fj2−f`2| ≥ 1 should therefore hold for all white grape jobs, Jj and J`, with tasks Tj2
and T`2 assigned to the separators. Unfortunately, including absolute values in the constraint set
results in a non-linear model, which should be avoided when possible. For this reason another
decision variable, z(j−r)(`−r) is rather created for every (Jj , J`) pair where j, ` = r + 1, . . . , w.
Incorporation the inequalities

fj2 − f`2 ≥ 1−
(
3− z(j−r)(`−r) − y(j−r) − y(`−r)

)
M, j = r + 1, . . . , w − 1, (5.2)

` = j + 1, . . . , w

and

f`2 − fj2 ≥ 1−
(
z(j−r)(`−r) + 2− y(j−r) − y(`−r)

)
M, j = r + 1, . . . , w − 1, (5.3)

` = j + 1, . . . , w

will enforce the rule that the ending time of any two tasks Tj2 and T`2 should always differ by
at least 1 if they are both assigned to the separators8.

The presses have different capacities and hence the inequality

m3−1∑

i=m2

aij2ci ≥ wj
(
1− y(j−r)

)
, j = r + 1, . . . , w,

7A non-linear constraint set is required when the splitting of red grape jobs is allowed in the programming
model. This is due to the additional characteristic that a part of the split job is allowed to mix with another job
and there should still be kept track of current volumes.

8The decision variable z(j−r)(`−r) is included to ensure that only one of Equations (5.3) and (5.4) is considered,
Equation (5.3) if z(j−r)(`−r) = 0 and Equation (5.4) if z(j−r)(`−r) = 1.

5.2. Model formulation disregarding pipe assignment 83

is included to ensure that task Tj2 of any white grape job should only be assigned to the presses if
it is not already assigned to a separator and that it should be limited by the available capacities.
It is not necessary to limit the assignment from above. If a job is assigned to more presses than
necessary, the assignment will be reduced if it influences the objective function discussed in
§5.2.2. However, when a task Tj2 is assigned to a separator, y(j−r) = 1, the above inequality
does not ensure that aij2 = 0 for all presses. It is therefore required that a constraint of the
form

aij2 ≤ 1− y(j−r), i = m2, . . . ,m3 − 1, j = r + 1, . . . , w,

is also included. When the task, Tj2, is assigned to a press for separation, it remains in that
same press for pressing. This requirement may be expressed by the inequality

aij2 ≤ aij3, i = m2, . . . ,m3 − 1, j = r + 1, . . . , w, (5.4)

which ensures that separation is only allowed on a machine if pressing is also performed on the
same machine. It is, however, allowed that only pressing is performed on press Pi (aij3 = 1)
and that separation is carried out on a separator (aij2 = 0 for the same Pi); in this case the
capacities of the presses should be adhered to by including a constraint set of the form

m3−1∑

i=m2

aij3ci ≥ wj , j = r + 1, . . . , w.

The same inequality is also included for task Tj2 of all jobs (j = w + 1, . . . , n) because the red
grape skins also require pressing after primary fermentation.

Another set of processors requiring specialized constraints, are the red wine fermentation tanks
used for primary fermentation. Other than most of the other processors used in the active cellar,
these tanks typically already contain a current volume of red grapes received on a previous day.
In order to ensure that the weight of the job assigned to such a tank does not exceed its available
space, it is required that

vi +
r∑

j=1

aij2wj ≤ ci, i = m3, . . . ,m. (5.5)

Two aspects of this inequality form a very important part of the independent characteristics of
the set of processors. The first is the summation over the jobs of red grapes, which is due to
the characteristic that more than one load is allowed to be assigned to the same fermentation
tank. The assignment of two jobs Jj and J` to the same fermentation tank is limited by means
of a constraint set of the form

aij2 + ai`2 ≤ qj` + 1, i = m3, . . . ,m, j = 1, . . . , r, (5.6)
` = 1, . . . , r and ` 6= j.

The second aspect is the fact that the current volume of the tank is included in the inequality.
This indicates that it is possible to add a new load of grapes to a tank already containing grapes
from the previous day (only). A constraint set of the form

aij2 ≤ tqij , i = m3, . . . ,m, j = 1, . . . , r (5.7)

enforces this relationship by limiting the assignment of grape loads to non-empty tanks adhering
to job-specific requirements. This parameter is also used to manipulate the assignment of a task

84 Chapter 5. Mathematical formulation of the cellar scheduling problem

of type T5 to the tank in which it has completed primary fermentation. The equality constraints
of the form

aij1 = tqij , i = m3, . . . ,m, j = w + 1, . . . , n (5.8)

are included in order to set a time at which the emptying of this vessel should start. This time
consequently determines the period during which a press should be assigned to the following
task of the job. Another characteristic is that no two tanks from the same set of red wine tanks
may be emptied at the same time9, because there is only one worm connecting each group of
tanks to the presses, and temporary pipes cannot be used to transport the grape skins. If two
tanks of the same subset are to be emptied in one day, it is of no significant importance which
is emptied first. Therefore, inequalities of the form

fj1 ≤ t`1 +

(
2−

m4−1∑

i=m3

aij1 −
m4−1∑

i=m3

ai`1

)
M, j = w + 1, . . . , n, ` = j + 1, . . . , n

for the DF tanks and

fj1 ≤ t`1 +

(
2−

m∑

i=m4

aij1 −
m∑

i=m4

ai`1

)
M, j = w + 1, . . . , n, ` = j + 1, . . . , n

for the RT tanks limit a task Tj1 to be performed before the task T`1 if they are assigned to the
same set of red wine tanks.

In order to include the relevant setup times required between two successive jobs following on
the same processor, inequality constraints of the form

fjk + sij` ≤ t`h + (3− xij` − aijk − ai`h)M, h = 1, . . . , k` − 1, i = 1, . . . ,m, j = 0, . . . , n,
k = 1, . . . , kj − 1, ` = 1, . . . , n, and ` 6= j

are included. Not only do these constraints allow time for the setup of machine Pi, should T`h
follow Tjk directly on machine Pi, but they also impose the constraint that no two jobs should
be performed simultaneously on one machine. For all processors other than the presses, the
variables xij` are required to satisfy

n∑

j=0

xij` =
k∑̀

h=1

ai`h, i = 1, . . . ,m2 − 1,m3 . . . ,m, ` = 1, . . . , n

and

n∑

`=0

xij` =
kj∑

k=1

aijk, i = 1, . . . ,m2 − 1,m3 . . . ,m, j = 0, . . . , n.

Since a job involving white grapes is allowed to be processed on the presses for two consecutive
tasks, the constraint set for determining the values xij` for presses, differs slightly. The decision
variable xijj should never be allowed to equal one; hence the second task of a white wine job
is not included in the summation when determining xij` for a press. The inequality constraints
for each of the presses may be expressed as

9One tank from the DF subset and one from the RT subset may be emptied simultaneously.

5.2. Model formulation disregarding pipe assignment 85

n∑

j=0

xij` =

k`(with h6=3,

if r+1≤`≤w)∑

h=1

ai`h, i = m2, . . . ,m3 − 1, ` = 1, . . . , n

and

n∑

`=0

xij` =

kj(with k 6=3,

if r+1≤j≤w)∑

k=1

aijk, i = m2, . . . ,m3 − 1, j = 0, . . . , n.

It is furthermore required that xijj = 0 for all i = 1, . . . ,m and j = 0, . . . , n. Further trivial
constraints include

tjk ≥ 0, j = 0, . . . , n, k = 1, . . . , kj

and

fjk ≥ 0, j = 0, . . . , n, k = 1, . . . , kj ,

ensuring that the starting and ending times of all tasks are positive numbers. The starting
and ending times may also be limited to business hours by including inequalities ensuring that
the relevant tjk and fjk values are smaller than the desired number of hours contained in one
working day. The variables aijk, xij`, y and z should be binary variables, requiring constraints
of the form

aijk ∈ {0, 1} , i = 1, . . . ,m, j = 0, . . . , n, k = 1, . . . , kj ,
xij` ∈ {0, 1} , i = 1, . . . ,m, j = 0, . . . , n, ` = 1, . . . , n,

y(j−r) ∈ {0, 1} , j = r + 1, . . . , w,
z(j−r)(`−r) ∈ {0, 1} , j = r + 1, . . . , w, ` = j + 1, . . . , w.

The cellar scheduling problem at Wamakersvallei Winery comprises a relatively large number of
processors and therefore also a large number of constraints and variables. A smaller (fictional)
active cellar is used to illustrate the different characteristics, such as the allocation of processor
and setup times, and also the adjustment of input parameters in order to suit the wishes of
the winemakers. This example is continued later on in order to justify the chosen objective
function.

Example 5.1 In order to illustrate the working of the mathematical programming model dis-
regarding pipe assignments, a smaller, fictitious cellar is considered. The cellar graph for this
active cellar is shown in Figure 5.2 and is constructed in such a manner that specific charac-
teristics from the active cellar at Wamakersvallei Winery are present.

Further characteristics of the workspace such as the capacities of the relevant machines and also
the different starting volumes are presented in Table 5.3. Included in Table 5.3 are the current
contents of each of the non-empty red fermentation tanks in order to determine which tanks are
still allowed to be assigned to further jobs. When assignment to a tank is still possible, it is
marked as an open tank in Table 5.3.

The mathematical programming model is applied in order to schedule one day of processing
where the different grape loads that require processing are two loads of Cabernet Sauvignon of

86 Chapter 5. Mathematical formulation of the cellar scheduling problem

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

3

9

7

fermentation
tanks

Red

fermentation2
tanks

Red

bins
Tipping

10

11

Presses

12

654

1

Separators

15

14

13

8

Figure 5.2: The cellar graph for the active cellar used in Example 5.1 to illustrate the working
of the mathematical programming model.

Pi vi ci Cultivar Class Open

P4 20
P5 20
P6 20
P7 20
P8 20
P9 15
P10 55 80 Merlot 1 No
P11 45 80 Pinotage 2 Yes
P12 0 80 Yes
P13 40 50 Pinotage 1 No
P14 40 50 Shiraz 1 No
P15 50 50 Shiraz 1 No

Table 5.3: The allowed capacities ci of the machines (P4, . . . , P15) as well as the relevant volumes
vi together with the classification of the contents of each red fermentation tank (when applicable)
for Example 5.1.

class 1, weighing 40 and 25 tonnes respectively, followed by a third load consisting of 20 tonnes
of class 2 Pinotage. Three loads of white grapes are also expected, namely a class 1 batch of
Chardonnay weighing 40 tonnes and one of 30 tonnes, as well as a 20 tonne load of class 1
Sauvignon Blanc. Suppose the winemaker has requested that both loads of Chardonnay should
lie on their skins for 1 hour in the separators. Assume further that, in addition to these grape
loads to be received, there is a load of Merlot currently in red wine fermentation tank P10 which
requires pressing. The subsequent jobs are listed in Table 5.4. Also contained in the Table is
the allowable grape and tank combinations. This derivation of allowable red wine fermentation
tanks rely heavily on whether or not the tank is still open to receive further grapes as shown in
Table 5.3. For example, from this table it may be deduced that tq10,6 = 1 since the Merlot of

5.2. Model formulation disregarding pipe assignment 87

job J6 is allowed to be processed on P10, and that tq13,j = 0 for all jobs Jj since the tank is not
open. Job J3 is allowed to be added to the contents of P11 since the Pinotage in P11 matches the
new load and was received only one day before the current scheduling day. The dummy job J0

should always be allowed on all machines that are open for production on the day of scheduling,
since the dummy job is used in determining the various xij` values for all active machines and
serves as the first and last tasks to be processed on a machine.

Jj Cultivar wj (tonnes) Allowed red fermentation tanks

J0 Dummy job 0 P10, . . . , P15

J1 Cabernet Sauvignon 40 P12

J2 Cabernet Sauvignon 25 P12

J3 Pinotage 15 P11 and P12

J4 Chardonnay 40
J5 Chardonnay 30
J6 Sauvignon Blanc 20
J7 Merlot 50 P10

Table 5.4: The jobs to be scheduled and the allowed red fermentation tanks for the loads of red
grapes of Example 5.1.

For the parameter set of qj`, the only non-zero parameter is q1,2 (or q2,1) since J1 and J2 are
the only two jobs where mixing is allowed. The durations of the different tasks on the various
machines are listed in Table 5.5. All µijk values may be derived from Table 5.5 — these values
are listed in Table B.1.

Job j Task k Allowed Pi Corresponding pijk

0 1 P 0
1 1 P1, P2, P3 0.2

2 P10, . . . , P15 144
2 1 P1, P2, P3 0.25

2 P10, . . . , P15 144
3 1 P1, P2, P3 0.2

2 P10, . . . , P15 120
4 1 P1, P2, P3 0.25

2 P4, P5, P6 3.0
3 P7, P8, P9 2.5

5 1 P1, P2, P3 0.2
2 P4, P5, P6 3.0
3 P7, P8, P9 2.5

6 1 P1, P2, P3 0.2
2 P4, P5, P6 1.75

P7, P8, P9 0
3 P7, P8, P9 2.5

7 1 P10, . . . , P15 5
2 P7, P8, P9 3

Table 5.5: The duration of processing pijk for task Tjk on an allowed set of processors (all
processors for which µijk = 1) in Example 5.1.

88 Chapter 5. Mathematical formulation of the cellar scheduling problem

Setup times for this example are incurred when a load of white grapes follows a load of red grapes
in the tipping bins (1.5 hours) or when a load of red follows on a load of white (0.5 hours).
Furthermore, a setup time is required on the presses when two separate white grape jobs follow
one another (1 hour), when a load of red grape skins from a fermentation tank follow a load of
white grapes (1.5 hours) or when a load of white grapes follows on a load of red (2 hours). All
non-zero setup times are shown in Table B.2.

Furthermore, assume that the arrival times of the jobs are given as e = {5, 0, 3, 2, 0.5, 0, 2}.
Even though the last job does not really arrive at the cellar, it is assigned an earliest starting
time. Now that the environment for the example has been described and all relevant parameters
have been defined, various objective functions should be considered before the example problem
may be solved.

5.2.2 Objective function

In Chapter 3 possible objective functions for scheduling problems were considered. The most
commonly used objective function is the makespan and is applied to minimize the longest
completion time of any job. Since the handling of red grapes ends at the start of primary
fermentation, the starting time of such tasks is minimized by including an inequality set of the
form

tjkj
≤ C, j = 1, . . . r.

All other jobs require processing up to the point where the last task leaves the active cellar.
Therefore, inequality constraints of the form

fjkj
≤ C, j = r + 1, . . . n

are incorporated when the makespan serves as the objective function to be minimized and is
then subject to the constraints described in §5.2.1.

Example 5.2 (Example 5.1 continued) Lingo 11.0 [81] may be applied in order to solve
the scheduling problem described in Example 5.1 with the makespan serving as the objective
function to be minimized. The Gantt chart representation of the resulting schedule is shown in
Figure 5.3. In addition to the normally assigned tasks (indicated by the solid coloured areas),
setup times are also indicated by white rectangles. Furthermore, the striped areas represent time
that was unnecessarily allocated to the specific task as a result of Equation (5.1). The ending
time is not defined as the starting time plus allowed processing time, but is rather bounded from
below by it. For example, the schedule states that t71 = 2 and f71 = 11.2, but the time required
for processing of T71 on P10 is, in fact, presented as 5 hours in Table 5.5. Therefore, during
the first 4.2 hours the task T71 is still assigned to P10, but the actual processing only needs to
start after 4.2 hours. Even though this is not ideal, the solution is completely feasible, since it is
possible for the grapes to await processing in most processors. For the specific example of T71,
the early assignment makes no difference whatsoever, since the red wine is already in P10 even
before t = 0. The makespan determined by this schedule refers to the ending time of T7,2 and is
14.2 hours.

When the adapted makespan is used as objective function to solve the example problem of
Example 5.1, it seems that time is often allocated unnecessarily. Take for example T1,1 where
an additional 9 hours is assigned. This occurs due to the fact that only the ending times of

5.2. Model formulation disregarding pipe assignment 89

T6,2 and T6,3 T5,3

s8,4,7

s9,5,7T5,3

15

s7,5,4s7,6,5

T4,2

T2,1 T3,1

T4,1

T1,1

T5,2

T5,2

T4,2

P12

P11

P10

P9

P8

P7

P6

P5

P4

P3

P1

1 2 3 4 5 6 7 8 9 10 11 12

T7,2

T7,2

T7,2

T4,3

13 14

P2

T7,1

T1,2 and T2,2

T3,2

Time (in hours)

P
ro

ce
ss

or
s

T6,1

T4,3

T5,1

s3,5,1

s7,4,7

Figure 5.3: Gantt chart representing a solution to the scheduling problem of Example 5.1 when
the makespan is used as objective function. The coloured areas indicate time assigned to the
processing of a task, the striped areas are unnecessarily assigned and the white rectangles
indicate setup times.

jobs ending at the presses are considered. The unnecessary assignment of T1,1 has no influence
on the objective function since its successor task, T1,2, is not included when determining the
makespan. However, simply including such tasks in this objective function will only worsen the
effect, since the makespan will most definitely be the ending time of one of the fermentation
processes. Resulting in a makespan of 5 to 7 days, serving as the upper bound on Equation
(5.1). In this case, even less focus is on the earliest ending time of the presses, which is the
busiest part of the active cellar. However, this schedule determines the earliest possible ending
time, which is all that is required in the end.

Another commonly used objective function is the total weighted completion time, as defined in
Chapter 3. This usually gives an indication of the total holding or inventory costs incurred by
the schedule. This objective function (using equal weights) may be adopted by incorporating
the constraint

r∑

j=1

tjkj
+

n∑

j=r+1

fjkj
≤ C

into the existing constraints described in §5.2.1 requiring that C be minimized. If a certain job
requires immediate processing, it is possible to assign weights to the different jobs so that the
completion time of the job contributes more to the objective function.

90 Chapter 5. Mathematical formulation of the cellar scheduling problem

Example 5.3 (Example 5.1 continued) The example problem described in Example 5.1 may
be solved with Lingo 11.0 adopting the total completion time (with equal weights) as objective
function. The Gantt chart representation of the resulting schedule is shown in Figure 5.4. The
solid coloured bars indicate the required processing time of the specified task on the relevant
processor, while striped areas indicate time allocated unnecessarily. Finally, setup times are
indicated by white rectangles. This schedule also results in an optimal makespan of 14.2, but
with unnessecarily assigned time limited to only Tj,1. Furthermore, this schedule avoids setup
times at the tipping bins, as opposed to the schedule determined by the makespan as objective
function.

T4,3

s8,6,4

T4,2

T3,1

T4,3

T2,1

T5,1

T6,1

s9,5,4

P12

P11

P10

P9

P8

P7

P6

P5

P4

P3

P1

1 2 3 4 5 6 7 8 9 10 11 12 13 14

P2

T7,1

s7,5,4

T4,2

T4,2T5,2

T5,2

T4,1

T1,1

T7,2

T1,2 and T2,2

T3,2

Time (in hours)

T5,2

T7,2

T7,2

T5,3

T5,3

P
ro

ce
ss

or
s

T6,2 and T6,3

s7,4,7

s8,4,7

Figure 5.4: Gantt chart representing a solution to the scheduling problem of Example 5.1
when the total completion time is used as objective function. The coloured areas indicate time
assigned to the processing of a task, the striped areas are unnecessarily assigned and the white
rectangles indicate setup times.

Both the objective functions resulted in a schedule with a makespan of 14.2 hours. However,
the distribution of the assignments when using the total completion time as objective function
resulted in a more balanced schedule. Furthermore, the solution expressed in Figure 5.3 required
1 minute and 5 seconds of running time when solved with Lingo 11.0, whereas the second
schedule, expressed in Figure 5.4, required only 30 seconds. The Lingo 11.0 model is included
in Appendix B.2 with the objective function taken as the total weighted completion time. The
makespan is referred to as the completion time from hereon, not to be confused with the ending
time of a task.

5.3. Chapter overview 91

5.3 Chapter overview

The purpose of this chapter is to supply the necessary mathematical framework in order to
devise a mathematical programming model with which to find an exact solution to the cellar
scheduling problem. In §5.1 the cellar workspace is defined mathematically according to the
job and processor characteristics. Further parameters required to create the mathematical
programming model are also defined.

The model formulation is then fully explained in §5.2 and two objective functions are consid-
ered. To illustrate the working of the mathematical programming model, a fictitious cellar is
considered and the optimal solution to the cellar scheduling problem is found according to the
two objective functions considered.

92 Chapter 5. Mathematical formulation of the cellar scheduling problem

CHAPTER 6

Tabu Search solution of the cellar scheduling
problem

Contents
6.1 The initial solution . 95

6.1.1 Assignment of jobs to the tipping bins 95

6.1.2 Further assignment of Type I jobs . 96

6.1.3 Further assignment of Type II jobs . 99

6.1.4 Further assignment of Type III jobs . 100

6.2 Evaluating a solution . 102

6.2.1 The cellar packing algorithm . 102

6.2.2 Evaluating an assignment to the red fermentation tanks 107

6.3 Generating candidate moves and selecting the best move 109

6.3.1 The general ejection chain move and further communal move aspects . . 110

6.3.2 Move Type A: Tipping bins . 115

6.3.3 Move Type B: separators . 116

6.3.4 Move Type C: presses . 117

6.3.5 Move Type D: separator or press assignment of Tj2 118

6.3.6 Move Type E: red fermentation tanks 119

6.4 Solving the cellar scheduling problem with a tabu search 121

6.5 Chapter overview . 127

The aim of this study is to create a good schedule for the harvesting of grapes based on the
expected volume, quality and optimal ripeness of grapes, also keeping in mind available cellar
space. Therefore, the eventual goal of the cellar scheduling problem is not to create an actual
schedule for activities within the cellar, but rather to use it as a means of evaluating the
possible harvesting schedule, thereby including the aspect of available cellar space and time
in the evaluation of a suggested harvesting schedule. Certain constraints in the cellar dictate
when vineyard blocks are scheduled for harvesting. These constraints include the availability of
machines and their capacities. Solving the cellar scheduling problem in Chapter 5, using Lingo
11.0, requires at least 30 seconds of processing time and may take up to 15 minutes. A large
number of possible scenarios are considered which implies that a significant number of possible
solutions may be visited. If the evaluation of a solution of a simple example problem requires

93

94 Chapter 6. Tabu Search solution of the cellar scheduling problem

Generated scenario

(fully discussed in Chapter 8)

Evaluate solution candidate(s)

Stopping Criterion

feasible solution was found) or stop after a
Stop if a score of 1 is received (implying that a

Use the cellar packing algorithm (§6.2) to evaluate

pre-specified fixed number of iterations (§6.4).

CONTINUE

the Tabu list and Aspiration Criteria
Change the current solution and update

Initialize a starting solution

the assignment and order of the initial
solution (§6.1).

Initialize the order variable, o, indicating

Create candidate list of moves

generate a suitable list of feasible candidate
solutions as described in §6.3.

Choose the type of move to apply and

Select the best candidate

not on the Tabu list, unless a solution is an improvement according to the aspiration criteria (§6.3).

First consider the candidate with the highest score. If a tie occurs, consider the shortest completion time,
after which the solution with the shortest assigned setup times is considered. Only consider solutions

STOP

and return a score to the harvesting Tabu
Search (further explained in Chapter 7).

Terminate this active cellar Tabu Search

the solution. A value of 1 is returned if the solution
fits into a 8 to 5 day and 0.5 if it within 3 hours over.

Figure 6.1: An outline of the Tabu Search applied to the active cellar scheduling problem.

30 seconds when solved exactly, solving the real life harvest scheduling problem is expected to
be an extremely lengthy process. Therefore, a heuristic approach is now considered.

The application of the cellar scheduling problem to evaluate changes in the harvesting schedule,
is fully explained in Chapter 7. The goal of this chapter is to apply a Tabu Search to the
cellar scheduling problem. The output of the Tabu Search will not result in a cellar schedule
as mentioned above, but will rather be an indication of whether or not a feasible production
schedule may be found for the specific harvesting day. A solution is feasible if it adheres to the
constraint set defined in §5.2.1 and if the solution may be carried out during the business hours
of the cellar.

A detailed description of the Tabu Search methodology was given in §3.4. The Tabu Search
application to the active cellar scheduling problem is illustrated in Figure 6.1 and the different
aspects seen in this figure, are described in §§6.1–6.4. However, the approach discussed in
this chapter should be considered as the generic approach. Each cellar for which the cellar
scheduling problem will be attempted to solve using the tabu search developed in this chapter,
might require some minor changes to the tabu search method in order to achieve the best
results. The adaptation of this proposed active cellar scheduling solution method to best suit
the requirements of Wamakersvallei winery, is considered in Chapter 8.

6.1. The initial solution 95

6.1 The initial solution

Creating a sensible initial solution based on problem specific characteristics can have a significant
influence on the success of a Tabu Search. Therefore, a great deal of effort has gone into ensuring
such an initial solution for this specific Tabu Search application. Each job type has specific
requirements on the processors. In order to easily distinguish between the three job types, the
red grapes scheduled to arrive at the cellar (previously described as the first job of Table 5.1)
are from here on referred to as Type I jobs. Type II jobs refer to the white grapes arriving at
the cellar (described in Table 5.2) and Type III to the red grape juice and skins that require
pressing after primary fermentation (described in Table 5.1 as the Second job).

The ordering and assignment of the tasks to the relevant processors for the initial solution is
described in four parts. The first part is concerned with the assignment of both Type I and II
jobs to the tipping bins (not considering assignments to any other processor types). The second
part deals with the assignment of further tasks associated with the processing of Type I jobs
(as described in Table 5.1). The third part then concerns the further assignment of Type II
jobs (described in Table 5.2) and the last part the further assignment of Type III jobs (also
described in Table 5.1).

The jobs are considered in their order of estimated arrival times, ej , at the cellar. Even though
Type III jobs do not really arrive at the cellar, they are assigned an earliest starting time. Since
it may take approximately 5 hours to empty the fermentation tank and get the grapes to the
press, all jobs of this type are penalized with a further 5 hours when the ordered list, L, of jobs
is calculated.

Further variables are required in addition to variables used in §5.2. When referring to the
assigned weight, denoted by a, the maximum volume (measured in tonnes) possibly already
assigned to a machine is implied. Therefore, a job has been fully assigned if its entire weight
has been assigned. The order in which jobs are processed is indicated by the matrix denoted o.
The entry o (i, p) is j only if job Jj has been assigned to processor Pi in position p. Job J0 is
always assigned to position p = 0.

6.1.1 Assignment of jobs to the tipping bins

Jobs are assigned to the tipping bins depending on the number of Type I or Type II jobs
received. If only Type I (Type II) jobs are scheduled for intake at the cellar, then all three
tipping bins are made available to the reception of Type I (Type II) jobs. If a comparable
number of Type I and II jobs are scheduled, one tipping bin receives Type I jobs during the
first half of the ordered jobs and Type II from the second half. If there is a majority of Type
I (Type II) jobs, two of the three tipping bins are used for the processing of Type I (Type II)
jobs. The exact distributions are listed in Table 6.1.

The ordered list of jobs is traversed and jobs are assigned to the tipping bins in that order.
Algorithm 6.1 is used for this assignment and is described further with Example 6.1.

Example 6.1 Consider the same fictitious cellar as in Figure 5.2 with the processing and setup
times as listed in Tables 5.5 and B.2 respectively. Also, consider the same situation in the cellar
in terms of content and volume of the red fermentation tanks (Table 5.3) and the same set of
expected jobs (Table 5.4). In addition to these specifics, take the estimated time of arrival (in
hours) for jobs J1, . . . , J7 to be e = {5, 0, 3, 2, 0.5, 0, 2}. This results in an ordered list of jobs
of L = {J0, J2, J6, J5, J4, J3, J1, J7} with J7 being a Type III job and therefore penalized with 5

96 Chapter 6. Tabu Search solution of the cellar scheduling problem

Tipping bin distribution
State % Type I jobs % Type II jobs I I and II II

1 I = 0 II = 100 — — P1, P2, P3

2 0 < I ≤ 40 60 ≤ II < 100 P1 — P2, P3

3 40 < I ≤ 60 40 ≤ II < 60 P1 P2 P3

4 60 < I < 100 0 < II < 40 P1, P2 — P3

5 I = 100 II = 0 P1, P2, P3 — —

Table 6.1: The distribution of assigning Type I or Type II jobs between the three tipping bins.
Here % Type I (Type II) jobs refers to its percentage of the total number of Type I and Type
II jobs (thus excluding Type III jobs and the dummy job J0).

hours1. Since there is a comparable number of Type I and Type II jobs, State 3 of Table 6.1 is
applicable. Therefore, the second tipping bin (P2) may receive white grapes during the first part
of the ordered list and red during the second part. The first job of list L, J2, is considered and
assigned to P1. The second job, J6, is of Type II and since 2 < n

2 , it is assigned to tipping bin
P2. The next job, job J5, is also of Type II and is therefore assigned to the next available Type
II tipping bin, P3. After the assignment, iw is increased to 4. Therefore when the next Type II
job, L4 = J4, is considered for assignment it is also assigned to P3 since 4 > n

2 . Tipping bin
P2 is now available for Type I jobs. This process is continued as described in Algorithm 6.1 and
results in an assignment of J2 and J1 to tipping bin P1 (in that order), while tipping bin P2

receives job J6, then J3 and tipping bin P3 is assigned jobs J5 and J4.

After assigning the jobs to tipping bins, the ordered list is again traversed, starting at L1. The
relevant algorithm is chosen depending on the job type. The next job in the ordered list is then
considered. The circumstances and algorithms for the different job types are now described2.

6.1.2 Further assignment of Type I jobs

As seen in Table 5.1, Type I jobs are only assigned to a tipping bin and then to suitable
fermentation tanks. The process of assigning the jobs and keeping track of the current tank
volumes is given in pseudo-code form in Algorithm 6.2.

In this algorithm the variable starting tank is used to keep track of the current tank when
the algorithm is called3. The first time when Algorithm 6.2 is called in the traversal of list L,
the value irf is set to m3. The currently assigned weight, a, is set to 0 with every call of the
algorithm. The volume of a tank Pirf

is denoted by virf
. Changes to this value only changes the

actual volume of the tank once a new solution has been chosen as the final solution — then the
new volumes are carried over to the next day for further assignments. When a job is assigned
to a tank, the current volume is either increased until the capacity of the tank is reached or by
the actual volume of the job (line 8). This depends on the currently unassigned volume of the
job.

1In the ordered list (as well as in the order matrices), job J0 is always in position 0 of the list (or row). This
dummy job is required for later use.

2All of the algorithms described in the remainder of this section forms part of the larger traversal of the list
of ordered jobs. Therefore, uninitiated parameters are assumed to be global to the list traversal.

3This should not be confused with the the physical first red fermentation tank of the cellar denoted by Pm3

as defined in §5.1.2.

6.1. The initial solution 97

Algorithm 6.1: Initial active cellar assignment for the tipping bins
Input: A list of jobs and their specifications
Output: An updated version of the assignment matrix o in terms of the tipping bins
if States 1 or 5 occur then14

for z = 1 to n do15

j ← Lz;16

i← z mod 3 + 1;17

pi ←
⌊
z
3

⌋
+ 1;18

o (i, pi)← j;19

end20

else if State 2 occurs then21

ir ← 1; iw ← 3;22

for z = 1 to n do23

j ← Lz;24

switch Type of job j do25

case Type I26

if ir = 3 then ir ← 1;27

o (ir, pir)← j;28

ir ← ir + 1;29

pir ← pir + 1;30

case Type II31

o (iw, piw)← j;32

piw ← piw + 1;33

end34

end35

else if State 3 occurs then36

ir ← 1; iw ← 2;37

for z = 1 to n do38

j ← Lz;39

switch Type of job j do40

case Type I41

if z ≤ n
2 then if ir = 2 then ir ← 2;42

if ir = 3 then ir ← 1;43

o (ir, pir)← j;44

ir ← ir + 1;45

pir ← pir + 1;46

case Type II47

if iw = 4 then48

if z ≤ n
2 then49

iw ← 2;50

else iw ← 351

end52

o (iw, piw)← j;53

iw ← iw + 1;54

piw ← piw + 1;55

end56

end57

Continues on next page;58

98 Chapter 6. Tabu Search solution of the cellar scheduling problem

else if State 4 occurs then59

ir ← 1; iw ← 2;60

for z = 1 to n do61

j ← Lz;62

switch Type of job j do63

case Type I64

if ir = 3 then ir ← 1;65

o (ir, pir)← j;66

pir ← pir + 1 ;67

case Type II68

if ir = 4 then ir ← 2;69

o (iw, piw)← j;70

iw ← iw + 1;71

piw ← piw + 1;72

end73

end74

end75

As with the mathematical programming model, an assignment of job Jj to machine Pirf is
allowed when it is an available allowable processor. The quality of the grapes already contained
in the tank should also match the grape quality of the current job (line 4). Once all the possible
processors for the job have been considered and the job has not been fully assigned, the excess
weight is assigned to the variable u referring to all unassigned weight. A solution is only feasible
if the unassigned weight is 0.

Algorithm 6.2: Further initial active cellar assignment for Type I jobs
Input: The current job j, the current red fermentation tank irf and a list of positions p
Output: The updated version of the assignment matrix o and the total weight of

unassigned jobs u
a← 0;1

starting tank ← irf ;2

while a < wj do3

if Assignment airf ,j = 1 is allowed then4

o
(
irf , pirf

)
← j;5

pirf
← pirf

+ 1;6

a← a+
(
cirf
− virf

)
;7

virf
← virf

+ min
{
cirf
− virf

, wj − a+ cirf
− virf

}
;8

irf ← irf + 1;9

else10

irf ← irf + 1;11

end12

if irf = m+ 1 then irf ← m3;13

if (irf = starting tank) and (wj − a > 0) then14

u← u+ wj − a;15

a← wj ;16

end17

end18

6.1. The initial solution 99

Example 6.2 (Example 6.1 continued) At the start of the first iteration, irf = 10. The
first job of list L, job J2, is of Type I. From Table 5.4 it may be seen that job J1 refers to 40
Tonnes of Cabernet Sauvignon. The only available tank that is allowable for J1 is P12. Job J1

is fully assigned to P12 with its current volume, v12, increased from 0 to 40 tonnes. Algorithm
6.2 is repeated for the remainder of the Type I jobs. Job J3 is assigned to P11 and J2 is added
to J1 in P12.

6.1.3 Further assignment of Type II jobs

Algorithm 6.3 is used for the assignment of Type II jobs. When a Type II job is reached during
the traversal of the list L, assignment to a separator is first considered. Even though it is
always faster to skip processing at the separators and separate skins from juice at the presses,
the separators still play an important role in the cellar. The first is when some additional juice
and skin contact is required (this is not possible in a press). When the grape intake is at its
peak, the separator may be used to ‘store’ the grapes (while starting the separating process at

Algorithm 6.3: Further initial active cellar assignment for Type II jobs
Input: The current job j, the current separator is and press ip and a list of positions p
Output: The updated version of the assignment matrix o
if Assigning job Jj to a separator is allowed then1

a← 0;2

while a < wj do3

o (is, pis)← j;4

a← a+ cis ;5

pis ← pis + 1;6

is ← is + 1;7

if is = m2 then8

is ← m1;9

end10

end11

end12

a← 0;13

while a < wj do14

if o
(
ip, pip − 1

)
6= j then15

o
(
ip, pip

)
← j;16

a← a+ cip ;17

pip ← pip + 1;18

end19

ip ← ip + 1;20

if ip ≥ first red press then21

if a < wj and o (m2, pm2 − 1) 6= j then22

ip ← m2;23

else if a ≥ wj then24

ip ← m2;25

end26

end27

end28

100 Chapter 6. Tabu Search solution of the cellar scheduling problem

the same time) since bottlenecks always occur at the presses. Assigning a job Jj to a separator
is therefore allowable (line 1) if it is specified that job Jj must be assigned to a separator. An
additional rule used for the further assignment of Type II jobs in the initial solution, allows
additional Type II jobs to be assigned to the separators if less than 25 % of the Type II jobs
must be assigned to a separator. A further limitation in creating the initial solution is that no
more than 20 % of Type II jobs not intentionally assigned to the separators, may be assigned
to a separator. The assignment to separators is considered in lines 1–12 of the algorithm.

The set of presses in a cellar is partitioned into two smaller sets, one for the pressing of Type
II jobs and one for the pressing of Type III jobs. The number of reserved Type III presses
is determined by the number of Type III jobs as well as by the number of red fermentation
tanks that may be drained during the timespan of one day (this is further discussed in the
following section). The first press in the set of Type III presses is referred to as the first red
press. However, a Type II job is allowed to be processed on a Type III press if it is too large
to fit into the designated Type II presses. This assignment occurs in lines 13–28 of Algorithm
6.3. Example 6.2 is now continued to illustrate the further assignment of Type II jobs.

Example 6.3 (Example 6.2 continued) At the start of the first call of Algorithm 6.3, is = 4
and ip = 7. The first red press is processor P9. Since two of the three Type II jobs must be
processed on the separators (more than 25% of the Type II jobs), there is no need to assign any
Type II jobs other than J4 and J5 to the separators. The first Type II job in the list L is job J6.
Since assigning this job to a separator is not allowed, the presses are considered next. This is a
job of weight w = 20 and is fully assigned to the first available press, P7, after which the value
of ip is updated to 8. The second Type II job in the list L is job J5 with w = 30. This job should
be assigned to a separator and is assigned to P4 and P5 after which the value of the current
separator, is, is updated to 6. Since the current press is P8, this press is filled with job J5 still
leaving a further 10 tonnes to be assigned. Since P9 is considered as a red press in this example,
the remainder of J5 is assigned to P7. The last Type II job, J4, is assigned to separator P6 and
then to P4; it is also assigned to presses P7 and P8.

6.1.4 Further assignment of Type III jobs

Type III jobs move from the already assigned fermentation tank to a number of presses. As
with the case of Type II jobs, it is only allowed to assign Type III jobs to a processor outside
of the designated set if there is not sufficient capacity within in the Type III press set. The
number of processors set aside for Type III jobs is determined by dividing the number of Type
III jobs by the number of tanks that may be drained in one day and taking the floor of this
number after adding 1. With the assignment of Type III jobs, the list of suitable processors
are traversed from the last to the first — therefore the decrease in press number in line 8 of
Algorithm 6.4. This assignment method is further discussed in Example 6.4.

Example 6.4 (Example 6.3 continued) During the first iteration (and only iteration for
this example) the first red press is set as irp = 9. Since there is only one Type III job, only one
press is set aside for the use of Type III jobs. However, the pressing of J7 requires a capacity
of 50 Tonnes. Therefore the list of presses is traversed from the last to the first and J7 is only
fully assigned once it has been assigned to all presses. The final corresponding entries of the
matrix o are given in Table 6.2.

6.1. The initial solution 101

Algorithm 6.4: Further initial active cellar assignment for Type III jobs
Input: The current job j, current red press irp, list of positions p
Output: The updated version of the assignment matrix o
a← 0;1

while a < wj do2

if o
(
irp, pirp−1

)
6= j then3

o
(
irp, pirp

)
← j;4

a← a+ cirp ;5

pirp ← pirp + 1;6

end7

irp ← irp − 1;8

if irp < first Red press then9

if a < wj and o (m3 − 1, pm3−1 − 1) 6= j) then10

irp ← m3 − 1;11

else if a ≥ wj then12

irp ← first Red press;13

end14

end15

for t = m3 to m do16

if µtj = 1 then17

o (t, pt)← j;18

break;19

end20

end21

end22

In order to evaluate the solution suggested by order matrix o, the cellar packing algorithm is
used. Furthermore, a method to evaluate the assignment of jobs to the red fermentation tanks
is also created. These evaluation techniques are discussed in the following section.

Machine Job Job Job Job Job

P1 0 2 1 — —
P2 0 6 3 — —
P3 0 5 4 — —
P4 0 5 4 — —
P5 0 5 — — —
P6 0 4 — — —
P7 0 6 5 4 7
P8 0 5 4 7 —
P9 0 7 — — —
P10 0 7 — — —
P11 0 3 — — —
P12 0 1 2 — —
P13 0 — — — —
P14 0 — — — —
P15 0 — — — —

Table 6.2: The final order matrix o in Example 6.3 in table form.

102 Chapter 6. Tabu Search solution of the cellar scheduling problem

6.2 Evaluating a solution

A suggested solution should be evaluated on two levels. The first concerns the processing time
required to execute the move and whether it will fit into one business day of the cellar, i.e.
minimizing the makespan of the schedule. This is achieved by applying the cellar packing algo-
rithm, discussed in §6.2.1. However, this algorithm does not take into account the assignments
to the red fermentation times, since such an assignment has no influence on the makespan of the
suggested schedule. Therefore a further evaluation of the suggested solution is necessary, specif-
ically focusing on the assignment to the red fermentation tanks. This approach is discussed in
§6.2.2.

6.2.1 The cellar packing algorithm

The goal of the cellar packing algorithm (Algorithm 6.5) is to evaluate a candidate solution by
determining its completion time. The completion time refers to the ending time of the last task
on any processor other than a red fermentation tank. For the active cellar, all jobs that do
not finish at the fermentation tanks, finish at the presses. Therefore, the completion time is, in
fact, the ending time of the last task performed on a press for the day under consideration. The
order in which tasks are processed on machines, as well as the assignment of tasks to machines,
is determined by the Tabu Search. To find the completion time, the tasks are all packed into
feasible time intervals as explained in this section; this process is referred to as the cellar packing
algorithm.

In order to identify the order in which a job travels between processors, an additional matrix,
om, is derived from order matrix o. The entry o (i, p) refers to the job processed on Pi
after processing job Jj (with j = o (i, p− 1)) on Pi. Now the entry om (j, q) refers to the
processor on which job Jj is processed after processing on Pi (with i = om (j, q − 1))4. The
machine order matrix derived from the order matrix of Example 6.3 (given in Table 6.2), is

om =

1 2 3 4 5 6 · · ·
1 12 -1 -1 -1 -1 · · ·
1 12 -1 -1 -1 -1 · · ·
2 11 -1 -1 -1 -1 · · ·
3 4 6 7 8 -1 · · ·
3 4 5 7 8 -1 · · ·
2 7 -1 -1 -1 -1 · · ·

10 9 -1 -1 -1 -1 · · ·

.

From this matrix it may, for example, be seen that job J3 is processed first on P2 (since
om (3, 0) = 2) and then on P11 (since om (3, 1) = 11). As with the order matrix o, open entries
are assigned −1. In the following algorithm an entry o (i, p) or om (j, q) is said to exist if it
is not equal to −1 and the indexes are not out of bounds, i.e. om (1, 10) does not exist and
neither does om (2, 3). Furthermore, the starting and ending times of a job correspond with the
order matrix, o. Therefore the starting time t (i, p) (or ending time f (i, p)) refers to the start
(or end) of job Jj on processor Pi where j = o (i, p).

The simplified method of evaluating a candidate solution is captured in pseudo-code form in
Algorithm 6.5, with further required procedures listed below. In Algorithm 6.5, the variable

4Therefore, row j of the matrix refers to job Jj , the columns are an indication of order and the entries refer
to processors.

6.2. Evaluating a solution 103

plast (lines 6 and 7) is used to refer to the last position where the corresponding order matrix
entry is not yet −1.

Algorithm 6.5: Evaluating a possible solution
Input: The machine order matrix om

Output: The corresponding completion time
completion time ← 0;1

Initialize times(o, t,f ,m);2

Update with arrival times(o, e);3

Apply forward move(o,om, t,f ,m1);4

for i = 1 to m3 − 1 do5

if f (i, plast) > complete then6

completion time ← f (i, plast);7

end8

end9

When considering the layout of a Gantt chart, initializing the times may be considered as the
process of packing all the jobs in the right order next to their assigned processors. The only
constraint considered is that the processing times and setup times be adhered to. This process
is outlined in Procedure Initialize times and is further explained in Example 6.5.

Procedure Initialize times(o, t,f ,m)

for i = 1 to m do1

t (i, o)← 0;2

f (i, o)← 0;3

p← 1;4

while o (i, p) exist do5

t (i, p)← f (i, p− 1) + setup time;6

f (i, p)← t (i, p) + processing time;7

end8

p← p+ 1;9

end10

Example 6.5 (Example 6.3 continued) Consider the initial solution expressed in Table 6.2.
For each machine, the starting and ending times of the first job are initialized to 0. Thereafter
the corresponding starting time, t (i, p), and ending time, f (i, p), for each existing o (i, p) are
updated according to its processing times and the required setup times. The initial times returned
by Procedure Initialize times are shown in the Gantt chart in Figure 6.2.

The first step in updating the starting and ending times is to update these times at the tip-
ping bins according to their relevant arrival times. For this purpose, Procedure Update with
arrival times is introduced.

Starting at the first tipping bin, P1, (line 1) and continuing until the last tipping bin Pm1−1,
each job assigned to a tipping bin is considered. If the starting time, t (i, p), of job Jj (where j
refers to the entry o (i, p) in the order matrix) is already as least as large as the estimated time
of arrival, ej , then no update is necessary (line 5). However, if this is not the case, the starting
and ending times of job Jj should be updated to ej . Furthermore, the successors of job Jj on
processor Pi should also be updated with the same amount of time (referred to as the offset

104 Chapter 6. Tabu Search solution of the cellar scheduling problem

T4,1

P9

P8

P7

P6

P5

P4

P3

P1

1 2 3 4 5 6 7 8 9 10 11 12 13 14

P2

T2,1

T4,2

T5,2

T5,2

T7,1

T3,2

T1,2 and T2,2

T7,2

T5,3 T4,3 s7,4,7 T7,2

T5,3 s8,5,4 T4,3 s8,4,7

T1,1

T5,1

T6,1
s2,6,3

T4,2

T7,2

s7,6,5T6,2 and T6,3 s7,5,4

Time (in hours)

T3,1

P
ro

ce
ss

or
s

P12

P11

P10

Figure 6.2: The cellar graph for the active cellar situation in Example 6.5 illustrating the
initialization of the starting and ending times.

— line 6). This function is named updateTimes and is used throughout the algorithms in this
section. When Procedure Update with arrival times is applied to the situation in Figure
6.2, the new cellar graph in Figure 6.3 is obtained.

Procedure Update with arrival times(o, e)

i← 1;1

while i < m1 do2

for p = 1 to plast do3

j ← o (i, p);4

if t (i, p) ≤ ej then5

offset ← ej − t (i, p);6

updateTimes(i, p, offset);7

end8

end9

i← i+ 1;10

end11

6.2. Evaluating a solution 105

T4,1

P8

P7

P6

P5

P4

P3

P1

1 2 3 4 5 6 7 8 9 10 11 12 13 14

P2

T4,2

T5,2

T5,2

T7,1

T3,2

T1,2 and T2,2

T7,2

T5,3 T4,3 s7,4,7 T7,2

T5,3 s8,5,4 T4,3 s8,4,7

T6,1
s2,6,3

T4,2

T7,2

s7,6,5 s7,5,4T6,2 and T6,3

Time (in hours)

T3,1

P
ro

ce
ss

or
s

T1,1

T5,1

T2,1

P12

P11

P10

P9

Figure 6.3: The cellar graph for the active cellar from Figure 6.2, after Procedure Updates
with arrival times has been applied, with the arrival times from Example 6.1.

The next step in determining the completion time, is to apply a forward move. This refers to
the update of task times so as to ensure that the starting time of a task, Tjk, is at least as large
as the ending time of its predecessor task, Tj(k−1). The process is outlined in Procedure Apply
forward move.

The variables po and pom are indicators of position when traversing o and om respectively. In
line 4, po is set to 1 since job J0 is always in position 1 and does not require direct consideration
in this algorithm. In line 6, pom is also set to 1. This is done in order to ignore the assignment
of jobs to the tipping bins, since their times have already been determined by the application
of Procedure Update arrival times. Furthermore, the variable p (j) is used to indicate the
position in which job j is performed on the relevant machine for this pseudo-code. For example,
consider the order matrix of Table 6.2. When the machine considered is P7, p (4) = 3. Starting at
tipping bin P1, all the jobs assigned to tipping bins are considered. The outside loop (starting
in line 5) therefore determines the job, Jj , currently under consideration. The second loop
(starting in line 9) traverses the machines receiving further tasks of job Jj . The function
ifSameSetUpdate determines whether two processors, om (j, pom − 1) and om (j, pom), used to
process tasks of job Jj , are from the same set. If they are, it implies that it is one task of job Jj

106 Chapter 6. Tabu Search solution of the cellar scheduling problem

that is assigned to more than one machine. Their times will be updated in order to have such a
task performed on parallel processors, starting at the same time on both and the variable same
is returned as true. If the sets differ, no update is performed at this stage and the value of same
remains false.

Procedure Apply forward move(o,om, t,f ,m1)

i← 1;1

j ← 0;2

while i < m1 do3

po ← 1;4

while o (i, po) exists do5

pom ← 1;6

same ← false;7

j ← o (i, po);8

while om (j, pom) exists do9

same ← false;10

same ← ifSameSetUpdate(j, pom , pom − 1);11

i1 ← om (j, pom − 1);12

i2 ← om (j, pom);13

if (same = false) and (t (i2, p (j)) < f (i1, p (j))) then14

offset ←15

max{f (i1, p (j))− t (i2, p (j)) , t (i2, p (j))− f (i2, p (j)− 1) + setup time};
updateTimes(i2, p (j), offset);16

end17

pom ← pom + 1;18

end19

po ← po + 1;20

end21

i← i+ 1;22

end23

The offset determined in line 15 of the Algorithm, determines the time with which a job should
be updated. The offset can be the difference between the starting time of task Tjk and the
ending time of its predecessor Tj(k−1). It can refer to the difference between the end of task T`h
that was processed on the same processor Pi directly before Tjk and the starting time of Tjk.
The setup time, si`j , is then also added to the difference.

Applying the algorithm to the situation in Figure 6.3 results in the cellar graph presented in
Figure 6.4 with a completion time of 14.2 hours. The striped blocks still refer to time that
was assigned unnecessarily, but also to instances where a task should be moved forward in
order for the following task of the same job to follow directly. For example, T4,1 ends at 2.25
hours. However the following task, T4, 2, only starts at 3.7 hours. Therefore, the ending time
of task T4,1 should, in fact be 3.7 and the starting time 3.45 hours. These shortcomings may be
rectified by applying a similar backwards move, but since the completion time is already known,
the backwards move is not required.

6.2. Evaluating a solution 107

T4,1

Time (in hours)

T4,2

P
ro

ce
ss

or
s

T1,1

T5,2

T5,2

s9,5,4

P12

P11

P10

P9

P8

T2,1

T5,1

s2,6,3

T1,2 and T2,2

T3,2

T7,1

T3,1

T5,3

T4,2

P7

P6

P5

P4

P3

P1

1 2 3 4 5 6 7 8 9 10 11 12 13 14

P2

T6,2 and T6,3 s8,6,4

s8,4,7

T6,1

s7,4,7

T7,2

T7,2

T7,2

T4,3

T4,3T5,3 s7,6,4

Figure 6.4: The cellar graph for the active cellar, after applying the full packing algorithm to
the initial solution generated in Example 6.4, resulting in a completion time of 14.2 hours.

6.2.2 Evaluating an assignment to the red fermentation tanks

When assigning jobs to the red fermentation tanks, the order in which these jobs are assigned
is not of concern. The jobs assigned to the same tank are mixed and do not follow one another.
Furthermore, the fermentation process lasts more than a day. Therefore, processing time is not
included in the evaluation of red fermentation tank assignments. However, there are two criteria
of evaluation to consider. The first is to minimize the total weight of unassigned jobs, thereby
ensuring a superior solution is one in which as many as possible scheduled jobs are processed on
the desired day. This is the most important of the two evaluation criteria. The other criterion
involves minimizing wasted space, i.e. the sum of the volumes that are still available in each of
the assigned tanks.

Algorithm 6.9 utilizes a combination of these two criteria to form the final evaluation score, υ,
for a specific assignment. The tank order matrix, ot, employed in the algorithm is similar to
the normal order matrix, om, in that ot (j, q) refers to the tank on which job Jj is processed
after processing on processor Pi (with i = ot (j, q − 1))5. However, the tank order matrix only

5Therefore, row j of the matrix ot refers to job Jj and the entries correspond to tanks.

108 Chapter 6. Tabu Search solution of the cellar scheduling problem

concerns red fermentation tanks and jobs of Type I. The derivation of the tank order matrix is
explained fully in the next section of this chapter.

Algorithm 6.9: Evaluate a red fermentation tank assignment
Input: The tank order matrix ot

Output: Evaluation score υ
υ1 ← determineUnassignedJobs(ot);1

υ2 ← determineWastedSpace(ot);2

if υ2 ≥ 0 then3

υ ← priority(1)×υ1 + priority(2)×υ2;4

else5

υ ←M ;6

end7

Since the importance of the unassigned jobs outweighs the wasted space contribution, an im-
portance index is required. This is referred to as priority in Algorithm 6.9 and is currently
set as {5, 1} indicating that the unassigned jobs is five times as important as the wasted space
criteria.

Determining the total weight of the unassigned jobs is a simple task and as the name sug-
gests, it is simply the sum of the weights of all unassigned Type I jobs. This is the value
returned by the function determineUnassignedJobs(ot) in Algorithm 6.9. The function
determineWastedSpace(ot) determines the total space still available within the tanks con-
sidered in the assignment. The working of this function may be illustrated by means of the
following example. Consider the simple tank order matrix

ot1 =

10 11 12 · · ·
10 −1 −1 · · ·
11 −1 −1 · · ·
12 −1 −1 · · ·

for some fictitious cellar, with the rows of the matrix corresponding to jobs J0, . . . J3. The
wasted space is easily determined as

(c10 − v10 − w1) + (c11 − v11 − w2) + (c12 − v12 − w3) (6.1)

since each job is only assigned to one tank and no mixing occurs. However, consider the situation
where J1 and J2 are mixed and both are assigned to only P10 as indicated in

ot2 =

10 11 12 · · ·
10 −1 −1 · · ·
10 −1 −1 · · ·
12 −1 −1 · · ·

 .

Simply substituting (c11 − v11 − w2) with (c10 − v10 − w2) in (6.1) will not do, since the capacity
and volume of P11 is then counted twice in the expression. The wasted space should rather be
expressed as

(c10 − v10 − w1 − w2) + (c12 − v12 − w3) .

If the assignment indicated by

ot3 =

10 11 12 · · ·
10 11 12 · · ·
10 11 −1 · · ·
12 13 −1 · · ·

6.3. Generating candidate moves and selecting the best move 109

occurs, however unlikely this specific assignment might be, the wasted space is expressed as

13∑

i=10

(ci − vi)−
3∑

j=1

wj .

The total wasted space may therefore be expressed as the sum of all (ci − vi) values where
i ∈ ot, subtracting the total weight of all jobs that have been assigned.

Example 6.6 (Example 6.3 continued) When the initial solution from Example 6.3 is con-
sidered, the derived tank order matrix may be expressed as

ot =

10 11 · · ·
12 −1 · · ·
12 −1 · · ·
11 −1 · · ·

 .

The capacities and volumes are listed in Table 5.3 as c11 = 80, v11 = 45, c12 = 80, v12 = 0. Since
the weights for jobs J1, J2 and J3 are listed as 40, 25 and 15 respectively and these are the only
jobs of Type I, the unassigned weight, υ1 = 0. Furthermore, the wasted space may be calculated
as υ2 = 35. Therefore the evaluation score for this red tank assignment is derived as 35.

6.3 Generating candidate moves and selecting the best move

Each set of machines exhibits different characteristics and requirements in terms of scheduling.
These machine sets therefore require different sets of rules guiding the generation of a list of
candidate moves. Some also require different criteria for the selection of the best candidate move.
In the tabu search implementation described here, five different move types are considered. At
the start of each tabu search iteration, one of these move types is randomly selected.

The first, Move Type A, applies to the assignment and order of the tipping bins. A tipping bin
move is unique in two respects: First, each job of Types I and II are assigned to a tipping bin
exactly once, regardless of its weight. Furthermore, tabu search moves involving the tipping
bins are employed only as diversification moves. The aspiration criterion for the tabu search
refers to the best move evaluation score up to date. Therefore a separate aspiration criterion
exists for moves applied to the red fermentation tanks and moves applied to the rest of the
cellar since the two have different means of evaluation (as described in §§6.2.1 and 6.2.2). Move
Type A is applied only if the aspiration criterion has been unimproved on, i.e. the relevant best
move score has been unchanged, for a set number of iterations. Hence, Move Type A is not
considered when a move type is selected randomly at the start of the iteration.

Move Types B and C refer to tabu search moves involving separators and presses, respectively.
In both these move types, the order and number of assignments are considered. However, a
different approach to generating the list of candidate solutions is considered in Move Type C.

The assignment of task Tj2 of a Type II job Jj may be assigned to either a separator or a press.
Move Type D is concerned with the assignment of this task. A variable b is introduced where
bj equals 1 if task Tj2 is assigned to a separator rather than a press.

The last move type, Move Type E, requires a slightly different approach. This move is concerned
with the assignment of Type I jobs to the red fermentation tanks. Jobs assigned to the same

110 Chapter 6. Tabu Search solution of the cellar scheduling problem

tank are mixed and do not follow one another as with any of the previously mentioned move
types. Therefore, the relevant machine availability and starting volumes should be kept in mind.

The move types mentioned above are described in more detail in this section. First, the general
ejection chain move for this tabu list application is considered in §6.3.1. This is followed by
descriptions of the five move types in §§6.3.2–6.3.6, respectively.

6.3.1 The general ejection chain move and further communal move aspects

All the move types described above, save Move Type D, make use of ejection chain moves applied
to the order matrix, o, of the current solution. Different types of moves within the ejection
chain were considered. In most of these cases, a set of rules was considered that would bring
about a type of swap within the ejection chain move. For example, only applying horizontal
swaps (swaps occurring within rows only) when an assignment is feasible and the assignment
order is infeasible. After considering various options for the ejection chain structure, it was
found that the simplest approach delivered the best results on a set of test problems. Even
though different requirements have to be considered for each processor set, a general ejection
chain move for the cellar scheduling problem is included in Algorithm 6.10.

The most significant difference between the ejection chains for the various processor sets lie
in the procedure checkMoveFeasibility(oa, Pf , P`, L, lastCol), since different requirements
have to be met for a solution to be feasible with respect to each job type and processor set
combination.

For every new move a, the ejection chain starts with a copy, oa, of the current assignment
order matrix, o. Swaps are applied to the order matrix, oa, until at least minNrOfSwaps have
been made and the current assignment order is considered feasible. For each processor set
considered, the swaps are only applied to the specified section of the assignment order. This
section is determined by the first and last processors of the set considered, for example, Pm1 and
Pm2−1 when the separators are considered. The section considered is also limited by the last
column to move on. This last column, expressed as lastCol in Algorithm 6.10, is determined
as the maximum of all first positions (one per row considered) of the current assignment order
matrix, o, with entries of −1. For the assignment order expressed in Table 6.2 this last column
would therefore be 5. This allows the number of jobs assigned to a single processor to vary
while still discouraging a randomly generated move where all jobs are assigned to only a few
processors of a specific set.

In line 2, the starting position for the ejection chain move is chosen. This may be any cell of
oa between rows Pf and P` and between columns 0 and lastCol with an entry not equal to
−1. The cell to consider is referred to by its row, i, and the position within that row, p. The
current job, Jjc , is determined as the entry in the chosen cell6. This entry is then replaced by
the old job, Jjo , whose value is set to −1 for the first iteration. This way, the feasibility of the
move may be considered at any stage when the current job value is −1, indicating that no real
job has been displaced. It is therefore an open ejection chain move, since the last entry to be
changed is not necessarily in the original starting position.

After the replacement jo ← jc, a new current job may be considered. The loop that starts
at line 8 is repeated until a feasible move has been created. A new target cell is repeatedly
considered by means of a simple function verticalMove(i, p, Pf , P`). This function returns

6The variable jc (or jo) only refers to a value indicating a job Jjc (or Jjo). The variable jc (or jo) is allowed
to be −1 even though no job J−1 exists.

6.3. Generating candidate moves and selecting the best move 111

a new row Pf ≤ i ≤ P` that is not equal to the previously considered row. The new job Jjc
is determined by the entry in the new row i and column p of oa. If jo = −1, then the new jc
should not also have a value of −1, since such a replacement will result in no difference to the
assignment order.

Algorithm 6.10: The general ejection chain move
Input: An current order matrix o, the first and last processors to apply the move to, Pf

and P`, and the last column to consider
Output: The list of considered solutions, L, containing the considered order matrices

after each feasible ejection chain move has been successfully applied
for a = 0 to last move do1

[i, p]← generateFirstCell(oa, Pf , Pl, lastCol);2

jc ← oa (i, p);3

jo ← −1;4

oa (i, p)← jo;5

isFeasibleMove ← false;6

counter ← 0;7

while isFeasibleMove = false do8

jo ← jc;9

i ← verticalMove(i, p, Pf , P`);10

p ← rand(1, lastCol);11

if jo 6= −1 then12

while jo ∈ oa (i, :) do13

i← verticalMove(i, p, Pf , P`);14

end15

else16

while oa (i, p) = −1 do17

p← rand(1, lastCol);18

i← verticalMove(i, p, Pf , P`);19

end20

end21

jc ← oa (i, p);22

oa (i, p)← jo;23

counter ← counter + 1;24

if jc = −1 then25

if counter ≥ minNrOfSwaps then26

isFeasibleMove ← checkMoveFeasibility(oa, Pf , P`, L, lastCol);27

end28

end29

end30

L(a) ← oa;31

end32

Therefore the function verticalMove(i, p, Pf , P`) is applied together with a new randomly
generated column p, until the resulting variable jc does not also have a value of −1. On the
other hand, if jo 6= −1, the prerequisite is simply that the new row i for the placement of the
value of jo should not already contain a cell with the value of jo, i.e. a value other than −1 may
only be placed in a row if the value is not already present somewhere in that row. Finally, in
lines 22 and 23 the displacement is made, i.e. the new job value is set as the entry oa (i, p) after

112 Chapter 6. Tabu Search solution of the cellar scheduling problem

which the old job value, jo, replaces jc as the value of oa (i, p). The process is then repeated
until a feasible move is found. A move is considered feasible within the ejection chain if jc = −1,
the number of iterations is at least as large as the minimum number of swaps and the move is
determined to be feasible by the function checkMoveFeasibility(oa, Pf , P`, L, lastCol).

One of the requirements that may be expected for a move oa to be considered feasible, depending
on the move type, is that the order in which moves are processed on the different processors in
the same set, should be consistent. This requirement should be tested in all move types where
a job is allowed to be assigned to more than one processor, except for move type E. Algorithm
6.11 may be used to determine whether such an order has remained consistent.

Algorithm 6.11: Check correct order
Input: The order matrix, oa, the first processor to form part of the considered section,

Pf , and the last processor, P`, and the value of lastCol
Output: The boolean, feasible, indicating the feasibility of the considered order
feasible ← true; i← Pf ;1

while (i ≤ P`) and (feasible = true) do2

p1 ← 1;3

while (p1 ≤ lastCol - 1) and (feasible = true) do4

j1 ← oa (i, p1);5

if j1 6= −1 then6

p2 ← p1 + 1;7

while (p2 ≤ lastCol) and (feasible = true) do8

j2 ← oa (i, p2);9

if j2 6= −1 then10

if j1 = j2 then11

feasible ← false;12

break;13

end14

pairs ← checkAndAddPair(pairs, j1, j2);15

if pairs(0,0) = −1 then16

feasible ← false;17

break;18

end19

end20

p2 ← p2 + 1;21

end22

end23

p1 ← p1 + 1;24

end25

i← i+ 1;26

end27

After a move type has been selected and applied, it is sometimes possible that the remainder of
the order matrix may require updating. For example, when a move is applied to the separators,
the order of the jobs on this set of processors may have changed. However, since the separated
skins move on to the presses, the same new order has to be maintained there — otherwise the
considered order will be infeasible. Algorithm 6.13 is used to apply these updates to the order
matrices considered on the list of moves to preserve the order feasibility.

6.3. Generating candidate moves and selecting the best move 113

The function createPairs, refers to the creation of a pairs matrix similar to the one generated
in Algorithm 6.11. The only difference is that it is not necessary to test for order feasibility,
simply to create the pairs matrix. Say, for example, that a move on a separator was made. Then
the pairs matrix is created considering the order of the jobs assigned to the separators. The
updates to be made, are made in the form of altered assignments to the presses, i.e. Ps = Pm2

and Pe = Pm3−1. All the assignment pairs are considered per press and if a considered assigned
pair (j1, j2) is infeasible (when pairs(j2, j1)) = 1), the order is changed. More specifically, job
Jj2 is moved into the position of job Jj1 and the remaining jobs are moved one position to the
right until the original position of job Jj2 is reached. This process is repeated for each order
considered in the list of moves until the order of each move has been updated.

After a list of candidate solutions has been generated, the next step is to select the best solution
from this list and to update the Tabu list. Algorithm 6.14 is used to find the best solution in
the list and then to update the necessary tabu search criteria. The first step in selecting the
most favourable move, is to sort all the currently considered candidate solutions according to
the evaluation scores. This is achieved by applying the function sortMoveValues(L,υ) and
generating the array β to contain the move numbers of the best moves in order of decreasing
favourability.

Procedure checkAndAddPair(pairs, j1, j2)
feasible ← true;1

if pairs(j2, j1) = 1 then2

pairs(0,0) ← −1;3

feasible ← false;4

else if pairs(j1, j2) 6= 1 then5

pairs(j1, j2) ← 1;6

for j = jr + 1 to n do7

if pairs(j2, j) = 1 then8

if pairs(j1, j) 6= 1 then9

pairs ← CheckAndAddPair(pairs, j1, j);10

end11

end12

if pairs(j, j1) = 1 then13

if pairs(j, j2) 6= 1 then14

pairs ← CheckAndAddPair(pairs, j, j2);15

end16

end17

end18

end19

return pairs;20

Until a solution is found, the list of possible solutions is traversed in the order suggested by β.
To test whether a move is allowed, the corresponding tabu list is first considered. Each move
type has its own tabu list. Each tabu list consists of previously chosen solutions. However,
only the section of the order matrix applying to the processor set of the specific move type
is placed on the tabu list. This section refers to the rows corresponding to the current set of
processors of the current move type. A move may only be chosen if it is not equal to another
move already in the relevant tabu list or if it improves on the best move found according to
the aspiration criterion, α (line 8). The equality of two moves does not necessarily refer to a

114 Chapter 6. Tabu Search solution of the cellar scheduling problem

direct equality, two moves are considered equal if they have the same meaning inside the cellar
as a move already on the list. For example, consider two identical processors in an assignment
order matrix. If the two rows corresponding to these processors are swapped (with no change
to the order of the values in each row), it results in an order matrix implying the same solution.
These two solutions are therefore considered as equal.

Algorithm 6.13: Update influenced machine
Input: The list of considered moves, L, and the first and last processors of the processor

set on which the updates should be made
Output: The updated list of moves, L, with no conflicting orders
for a = 0 to last move do1

pairs ← createPairs();2

for i = Pf to P` do3

p1 ← 1;4

while (p1 ≤ n− 1) and (L(a)(i, p1) 6= −1) do5

j1 ← oa (i, p1);6

p2 ← p1 + 1;7

while (p2 ≤ n) and (L(a)(i, p2) 6= −1) do8

j2 ← L (a) (i, p2);9

if (j1 6= −1) and (j2 6= −1) and (pairs(j2, j1) = 1) then10

p← p1;11

j ← j2;12

newPrevious ← 0;13

previous ← j1;14

while p ≤ p2 − 1 do15

newPrevious ← L(a)(i,p+ 1);16

L(a)(i,p+ 1) ← previous;17

previous ← newPrevious;18

p← p+ 1;19

end20

L(a)(i,p1) ← j;21

p2 ← p1;22

end23

p2 ← p2 + 1;24

end25

p1 ← p1 + 1;26

end27

end28

a← a+ 1;29

end30

Once a suitable move has been selected, the relevant order matrix section of the move is added
to the corresponding tabu list. In the common tabu search application, it is rather the inverse
of a move that is added to the tabu list to stop the move from being undone. However, the
goal of the tabu list for this tabu search, is rather to prevent a solution and its similar solutions
from being revisited to often. The tabu tenure, size of the tabu list, is taken as the number of
processors in the set relevant to the move type considered. For example, the tabu list size for
move type A is taken as m1 − 1 where Pm1−1 refers to the last tipping bin.

6.3. Generating candidate moves and selecting the best move 115

Algorithm 6.14: Selecting the best candidate solution
Input: The considered list of order matrices, L, and the evaluation scores of each υ
Output: The position, φ, of the best selected move on list L
β ← sortMoveValues(L,υ);1

a← 0;2

solutionFound ← false;3

alreadyOnList ← false;4

while solutionFound = false do5

alreadyOnList ← isOnTabuList(moveType, tabuList, L(β (a)));6

if alreadyOnList = true then7

if υ(β (a)) < α then8

α← υ (β (a));9

solutionFound ← true;10

end11

else12

if υ (β (a)) < α then13

α← υ (β (a));14

end15

solutionFound ← true;16

end17

a← a+ 1;18

end19

φ← β (a− 1);20

addToTabuList(moveType, L(φ));21

6.3.2 Move Type A: Tipping bins

As previously mentioned, Move Type A is only applied as a diversification move. It is only
considered if no improvement on the evaluation score has occurred for a set number of iterations.
This move is outlined in Algorithm 6.15.

It is implemented by means of a set of ejection chains on the order matrix of the current
solution. The function ejectionChainMove(o, 0, m1 − 1, minNrOfSwaps) is called on line 2
and is applied on the processor set of the tipping bins following the guidelines set out in the
general ejection chain algorithm in Algorithm 6.10.

Algorithm 6.15: Move on tipping bins
Input: The current order matrix, o
Output: The updated order matrix, o, after the best move is selected from the

generated list, L
|L| ← 2n (m1 − 1);1

L ← ejectionChainMove(o, 0, m1 − 1, minNrOfSwaps);2

for a = 0 to last move do3

createNewOrderFromTippingBin(L(a));4

υ(a)← evaluateCandidateSolution(L(a));5

end6

φ← selectMoveOnTippingBin(L, υ);7

o ← L(φ);8

116 Chapter 6. Tabu Search solution of the cellar scheduling problem

All moves generated by the general ejection chain are already feasible since each job can be
assigned only once to the tipping bins and hence no order of job assignment should result in an
infeasibility. The procedure checkMoveFeasibility(oa, Pf , P`, L, lastCol) in Algorithm 6.10
therefore only tests whether the move considered is already in the list of moves. For each of the
five move types, the generated ejection chain list has a different size, |L|, to fit the requirements
of the move type. The size of the list is determined experimentally by means of solving a set
of test problems. This is true for all move types. For move type A, this list size is calculated
as twice the product of the number of jobs and the number of tipping bins. This is one of the
largest list sizes since the diversification move is not applied as often as the remaining move
types. The fact that the move type is seldom selected, just emphasizes the importance of having
a good selection of candidate solutions.

Each candidate solution in the returned list, L, is updated. In this case, rather than applying Al-
gorithm 6.13 twice to update the current assignment of jobs to the separators and presses, a new
order matrix is created for each of the solutions considered. The function createNewOrder-
FromTippingBin(L (a)) is used for this purpose. The new tipping bin assignment and order
is considered and full order matrices are generated according to the method used to assign the
initial solution.

Each of the new moves are then evaluated in order to eventually select the best feasible move
to apply, as outlined in Algorithm 6.14.

6.3.3 Move Type B: separators

The process of creating a list of moves involving separators and selecting the best candidate
move from this list is outlined in Algorithm 6.16.

The list of moves is generated by means of an ejection chain as described in Algorithm 6.10.
When determining the list size, δj refers to the number of assignments required to feasibly
assign job Jj to the separators. A move generated is feasible if it is not already in the move
list, L. The jobs should also have a consistent order in which they are processed, as described
in Algorithm 6.11. Once the moves have been made on the separator section within the order
matrices, rows m2, . . . ,m3 − 1 are updated to ensure that the same consistent processing order
is applied on the presses. Algorithm 6.13 is used for updating the order matrices in the list.
The most favourable order matrix in the list is selected and the current order matrix of the
tabu search is replaced.

Algorithm 6.16: Move on separators
Input: The current order matrix, o
Output: The updated order matrix, o, after the best move is selected from the

generated list, L
|L| ←∑n

j=1 δjb (j);1

L ← ejectionChainMove(o, m1, m2 − 1, minNrOfSwaps);2

L ← updateInfluencedMachine(L, m1, m2 − 1,m2, m3 − 1);3

for a = 0 to last move do4

υ(a)← evaluateSolution(L(a));5

end6

φ← selectMoveOnSeparator(L, υ);7

o ← L(φ);8

6.3. Generating candidate moves and selecting the best move 117

6.3.4 Move Type C: presses

In Algorithm 6.17 it is clear that a move of type C differs from the previous two move types
described above. Perhaps the most significant difference is the fact that two lists are generated
when performing a move of type C.

Algorithm 6.17: Move on presses
Input: The current order matrix, o
Output: The updated order matrix, o, after the best move is selected from the second

generated list, Lr

o ← createMaximumAssignmentOrder(m2,m3 − 1);1

|Le| − 1+←∑n
j=r+1 δj ;2

Le ← ejectionChainMove(o, m2,m3 − 1, minNrOfSwaps);3

Lr ← updateToRealListOfMoves(Le);4

Lr ← updateInfluencedMachine(Lr, m2,m3 − 1, m1,m2 − 1);5

for a = 0 to last move do6

υ(a) ← evaluateSolution(Lr(a));7

end8

φ← selectMoveOnPress(Lr, υ);9

o ← Lr(φ);10

Unlike the tipping bins and separators, not all the presses have the same capacity. Therefore,
each of the jobs have a maximum number of assignments and a minimum with respect to their
weights and the different weights of the processors. For example, consider a set of three presses
with capacities 20, 15 and 15 tonnes. A job of weight 20 tonnes may either be assigned to the
one 20 ton tank or if it is assigned to either of the 15 ton tanks, it should also be assigned
to the other 15 ton tank. This job then has a maximum possible assignment value of 2 and a
minimum of 1.

The current order matrix, o, is updated to a maximum assignment order in line 1 where further
feasible assignments (not necessarily in feasible order) are added until the maximum number of
assignments have been made per press.

The first list, Le, is generated by means of the ejection chain move described in Algorithm 6.10.
The size of this list is taken as the sum of all the maximum assignment values of Type II and
Type II jobs. A move generated here is considered feasible if the processing order of the jobs
are consistent on the presses and also when it is not already present in the list. However, these
assignment orders generated by the ejection chain move, are maximum assignment orders and
most are therefore likely not even near optimal.

In line 4, the real list of moves, Lr, is generated by means of the function updateToReal-
ListOfMoves(Le). This procedure uses a recursive function to keep removing assignments
until a complete list of possibilities has been generated and returns this list as Lr. It is then
this list of moves for which the separator assignments are updated to fit the processing order of
the jobs specified by assignments to the presses. Finally, Lr is evaluated, the best solution in
the list is selected and the current order matrix is updated.

118 Chapter 6. Tabu Search solution of the cellar scheduling problem

6.3.5 Move Type D: separator or press assignment of Tj2

This move type is outlined in Algorithm 6.18 for a one dimensional array, b, unlike the two
dimensional order matrix considered previously. Applying an ejection chain move will therefore
not work; hence simple swaps are considered instead.

Algorithm 6.18: Move on b of Type II jobs
Input: The current order matrix, o, and the Tj2 assignment specification, b
Output: The updated Tj2 assignment specification, b, and the corresponding order

matrix, o, after the best move is selected from the generated list, S
|S| ← 1 + (w − r)−∑w

j=r+1 b̄ (j);1

a← 0;2

while a < last move do3

feasible ← false;4

while feasible=false do5

S(a)← b;6

S(a)← Swap(S(a), r + 1, w);7

p← a− 1;8

isEqual ← false;9

feasible ← true;10

while (feasible = true) and (p ≥ 0) do11

if S(a) = S (p)← then12

feasible ← false;13

end14

p← p− 1;15

end16

end17

a← a+ 1;18

end19

for a = 0 to last move do20

L(a)← updateInfluencedMachine(o, m2, m3 − 1, m1, m2 − 1);21

υ(a)← evaluateSolution(L(a), S(a));22

end23

φ← selectMoveOnPressOrSep(S,υ);24

b ← S (φ);25

o ← L(φ);26

The move list, S, is constructed in lines 2–18. The move list size is determined as one more
than the number of Type II jobs (w− r) without the jobs that is forced to be processed on the
separators (by the request of the winemaker).

When applying the procedure Swap(S(a), r + 1, w), either one or two swaps are applied. In
this procedure a swap does not refer to exchanging the values between two entries; since b is a
binary vector, it refers to swapping the value of the chosen cell between 0 and 1.

One aspect of Algorithm 6.13 not previously mentioned, is that when the processing order on the
separators is considered, only assignments of job Jj is considered for which b(j) = 1. Therefore,
if the values of b change, an update of the processing orders on the separators and presses is
required. Once the updates have been made, the combination of the two lists, S and L, are
considered together in order to evaluate the list of moves.

6.3. Generating candidate moves and selecting the best move 119

Once the move values have been determined, the best solution may be selected as outlined in
Algorithm 6.14.

6.3.6 Move Type E: red fermentation tanks

When generating a feasible list for moves of type E, it is important to note that not every job
may be assigned to any tank, unlike the previous move types where the only possible differences
between a set of machines was their capacity.

In Chapter 5, the variable µijk was defined to be µijk = 1 if task Tjk may be performed on
processor Pi.

The procedure createTankSpecifics() in line 1 of Algorithm 6.19 is used to generate a new
assignment matrix, or, only applicable to the allowed tanks for the set of jobs considered.

Algorithm 6.19: Move on red fermentation tanks
Input: The cellar requirements and job information.
Output: The updated order matrix after the selected move has been applied to the red

fermentation tanks.
createTankSpecifics();1

or ← updateMaximumRedOrder(`);2

|Le| ← r −∑r
j=1 δ̄j ;3

Le ← ejectionChainMove(or, minNrOfSwaps);4

reassignJobs();5

Lf ← createFeasibleList(Le);6

Lr,υ ← createRealListAndEvaluate(Lf);7

φ← selectBestRedTankMove(Lr, υ);8

addToTabuList(E,Lr(φ));9

o ← updateCurrentOrderMatrix(o,Lr(φ));10

In the new assignment matrix, or, the jobs are also assigned to a maximum number of tanks.
Since the jobs may be mixed, the maximum allowed values are estimated. Let the maximum
assignment value for a job Jj be denoted by δj . If δj = x for job Jj and some value x, it indicates
that in the maximum assignment order, the job may be assigned to exactly x processors and in
the final assignment matrix it may be assigned to no more than x processors. If the weight of
the job is less than 10 tonnes, wj < 10, δj is 1. If the weight of job Jj falls within the interval,
10 ≤ wj < 80, the maximum assignment value, δj , is 2. For any job Jj with a weight greater
than 80 tonnes, δj is 3. A single vineyard block seldom yields more than 100 tonnes of grapes.

However, if only y tanks are allowed for job Jj , then the assignments are also limited by the
restriction δj ≤ y. Let δ̄j be 1 only if δj = y and 0 otherwise. Then the size of list Le is taken
as the number of type I jobs with δ̄j = 0.

The matrix entries of the new order matrix still correspond to the jobs assigned to the tank
considered, which is indicated by the row index. By eliminating all the unnecessary tanks when
applying the ejection chain move, processing time is reduced.

Furthermore, createTankSpecifics() is also used to eliminate all jobs that are assigned to
all of the allowed tanks. These jobs are reassigned in reassignJobs(). This is only possible
because the order of the assignment is not of importance.

120 Chapter 6. Tabu Search solution of the cellar scheduling problem

When the ejection chain move is performed, a move is considered feasible if all jobs are assigned
to allowable machines.

If a second criterion were to be added, ensuring that two jobs are only allowed to be assigned to
the same machine if their qualities match, feasible moves become scarce and the ejection chain
requires significant processing time. This is where the procedure createFeasibleList(Le) is
applied.

Procedure createFeasibleList(Le)

p← 0;1

for a = 0 to last move on Le do2

pc ← p;3

Lf (pc)← Le(a);4

p← p+ 1;5

while pc < p do6

ρ ← jobQualitiesMatch(Lf (pc));7

while ρ (0) 6= −1 do8

j1 ← Lf (pc)(ρ (0) ,ρ (1));9

j2 ← Lf (pc)(ρ (0) ,ρ (2));10

stop ← p;11

for i = pc to stop do12

Lf ← splitMove(Lf , i, p, ρ (0), j1, j2);13

if Lf (p)(0,1) 6= 0 then14

p← p+ 1;15

end16

end17

ρ (0)← jobQualitiesMatch(Lf (pc));18

end19

pc ← pc + 1;20

end21

end22

This procedure considers each move in the list generated by the ejection chain move, Le,
and in turn applies the function jobQualitiesMatch(Lf (pc)). This function returns ρ (0) =
{i, x1, x2} where i denotes the row (or tank), and x1 and x2 the positions of the two jobs that
are not allowed to be assigned to the same tank represented by row i. If no such assignment is
made, ρ (0) = −1. However, if there is such a clash, the current move is split into two moves,
where each move has one of the two jobs removed.

After the feasible list has been generated, the various removals of the jobs are considered.
Rather than using an algorithm similar to the one used to create such a list for moves of type
C, the heuristic createRealListAndEvaluate(Lf) is used. For each move in list Lf , different
removals are considered and a new removal is only added to the final list of moves, Lr, if it
improves the evaluation score of the previous move. If the currently considered removals remain
unimproved for a the set number, r (referring to the number of Type I jobs) of iterations, the
next move in the list Lr is considered.

The function fixTankOrder(ot, j, p2) removes the −1 replacing ot(j, p2) in line 19 by shifting
the following entries to the left. Otherwise an infeasible tank order matrix would have been
considered.

6.4. Solving the cellar scheduling problem with a tabu search 121

Procedure createRealListAndEvaluate(Lf)

p← 0;1

for a = 0 to p do2

j ← 0;3

p1 ← 0; p2 ← 0;4

ω ← evaluateMoveOnRedTanks(ot,M);5

Lr ← addMoveToRealList(Lr, p, Lf (a), ot);6

υ(p) ← ω;7

p← p+ 1;8

unimproved ← 0;9

while unimproved ≤ r do10

ω̄ ← ω;11

j ← rand(1, r);12

p1 ← returnFirstPosition(ot(j, :),−1)−1;13

while p1 = −1 do14

j ←rand(1, r);15

p1 ← returnFirstPosition(ot(j, :),−1)−1;16

end17

p2 ← rand(1, p1 − 1);18

temp ← ot(j, p2);19

ot(j, p2) ← −1;20

ω ← evaluateMoveOnRedTanks(ot, M);21

if ω = M then22

ot(j, p2) ← temp;23

ω ← ω̄;24

unimproved ← unimproved + 1;25

else if ω < ω̄ then26

ot ← fixTankOrder(ot, j, p2);27

Lr ← addMoveToRealList(Lr, p, Lf (a), ot);28

υ(p)← ω;29

p← p+ 1;30

unimproved ← 0;31

else32

ot = fixTankOrder(ot, j, p2);33

unimproved ← unimproved + 1;34

end35

end36

end37

6.4 Solving the cellar scheduling problem with a tabu search

A tabu search customized for the cellar scheduling problem is outlined in Algorithm 6.22.
The function generateMoveType(previousType, firstMoveType, lastMoveType) is used to
generate the random move type, choosing between types B, C, D or E. Once either of the
stopping criteria in lines 35 and 38 has been fulfilled, the move types that may be used in the
tabu search are updated accordingly.

122 Chapter 6. Tabu Search solution of the cellar scheduling problem

Algorithm 6.22: The cellar scheduling tabu search
Input: The created scenario for which to solve the cellar scheduling problem
Output: The best solution found
createInitialSolution(J, P, w);1

[α, ε]← evaluateFirstSolution(o);2

asp ← α;3

solutionFound ← false;4

firstMoveType ← B;5

lastMoveType ← E;6

previousType ← −1;7

unchanged ← −1;8

while (solutionFound = false) and (counter ≤ counterMaximum) do9

moveType ← generateMoveType(previousType, firstMoveType, lastMoveType);10

if asp = α then11

unchanged ← unchanged + 1;12

if unchanged ≥ 10 then13

moveType ← A;14

unchanged ← 0;15

end16

else17

asp ← α;18

unchanged ← 0;19

end20

previousType = moveType;21

switch moveType do22

case A23

moveOnTippingBins();24

case B25

moveOnSeparators();26

case C27

moveOnPresses();28

case D29

moveOnTj2Assignment();30

case E31

moveOnRedTanks();32

end33

end34

if ε ≤ εmax then35

lastMoveType ← D;36

end37

if α ≤ αmax then38

firstMoveType ← E;39

end40

if (firstMoveType = E) and (lastMoveType = D) then41

foundSolution = true;42

end43

counter ← counter + 1;44

end45

6.4. Solving the cellar scheduling problem with a tabu search 123

The variable α is used to store the shortest makespan achieved during the tabu search and
ε denotes the best red fermentation evaluation score. The tabu search may terminate once
both the makespan goal, αmax, and the red tank assignment goal, εmax, have been achieved. If
neither of the stopping criteria has been satisfied within counterMaximum iterations, the tabu
search is terminated and the current best scores, α and ε, are considered as approximately
optimal values. Once either of the stopping criteria has been reached, it is not necessary to
consider moves to further improve the best encountered solution score. Therefore, whenever
either criteria is satisfied, the list of moves is shortened in order to focus on the outstanding
stopping criteria.

The variables asp and unchanged are employed in order to record the number of iterations
during which the value of α has remained unchanged. Whenever the number of iterations
during which the value of α remains unchanged reaches 10, a move of type A replaces the move
generated by generateMoveType(previousType, firstMoveType, lastMoveType).

In order to illustrate the tabu search heuristic developed in this chapter, a small hypothetical
example problem is considered.

Example 6.7 The initial solution generated in Example 6.4 is already an optimal solution for
the specific problem set and, therefore, not the ideal example to illustrate the working of the
cellar scheduling tabu search. Consider the same cellar environment and job characteristics as
in Example 6.4, but suppose the arrival times are e = {0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0} instead of
e = {5, 0, 3, 2, 0.5, 0, 2}. Furthermore, suppose no task Tj2 separator assignment is forced, i.e. no
specific request is added that Tj2 must be processed on a separator rather than on a press. When
adopting the mathematical programming formulation in Chapter 5 with either of the objective
functions described in §5.2.2, a makespan of Cmax = 12.25 is achieved. Using the makespan as
objective function results in a running time of 5 minutes when the example problem is solved in
Lingo 11.0 or a running time of 1 minute and 3 seconds when using the total completion time
as objective function. Since the optimal makespan as well as the feasible red tank assignment
(when the optimal makespan is considered) are already known, εmax is taken as 35 (the evaluation
score calculated from the known optimal solution) and αmax as 12.25. Therefore this tabu search
will terminate once the optimal solution has been found or if the maximum number of iterations
is reached. Normally the optimal values will not be known in advance, in which case a suitable
bound will be used.

When applying the algorithms illustrated in §6.1 to generate the initial solution for the example
problem, the first assignment order matrix is

o =

0 1 2 3 −1 · · ·
0 4 −1 −1 −1 · · ·
0 5 6 −1 −1 · · ·
0 4 6 5 −1 · · ·
0 4 −1 −1 −1 · · ·
0 5 −1 −1 −1 · · ·
0 4 5 6 7 · · ·
0 4 5 7 −1 · · ·
0 7 −1 −1 −1 · · ·
0 7 −1 −1 −1 · · ·
0 3 −1 −1 −1 · · ·
0 1 2 −1 −1 · · ·

...

.

124 Chapter 6. Tabu Search solution of the cellar scheduling problem

On closer inspection it seems that this order matrix is infeasible due to the order of jobs J5

and J6, with J5 processed first on the presses (and tipping bins), but second on the separators.
However, the order of these two jobs on the separators may be ignored for now due to the assign-
ment of T52 and T62 only to the presses rather than to both the separators and the presses. This
is not clear from the order matrix self, but is determined by the vector b = [1, 0, 0, 0, 1, 0, 0, 0],
specifying which jobs are processed on the separators.

The makespan of the initial solution is 18.75 and therefore both α and asp are taken as 18.75
(lines 2 and 3, respectively, of Algorithm 6.22). Furthermore, the evaluation score, ε, returned
after the evaluation of the initial solution, is 35.

During the first iteration of the tabu search algorithm, move type D is selected. Since the
generation of the move type is based on random selection, it will not necessarily be the first
move type selected when reapplying the tabu search. When following the approach presented in
Algorithm 6.18, a list of moves,

S =

[
1 0 0 0 1 1 1 0

]
[

1 0 0 0 1 1 0 0
]

[
1 0 0 0 0 0 1 0

]
[

1 0 0 0 1 0 1 0
]

is first generated. As mentioned above, the order of assignment on the first separator, P4, is
currently infeasible if both b(5) and b(6) have a value of 1. Therefore, the only assignment order
matrix that requires updating is at move a = 0. As expressed in line 20 of Algorithm 6.18, the
order of the job assignments to the presses is preserved and the order of job assignments to the
separators is updated. The updated rows 4 to 6 of the order matrix added, is

L (0) =

0 4 5 6 −1 · · ·
0 4 −1 −1 −1 · · ·
0 5 −1 −1 −1 · · ·

 .

All other matrices L(a) are equal to the current order matrix, o.

The total amount of setup time assigned in a solution is found when sorting the list of moves
ranging from the most favourable to the least favourable. However, the setup time is not con-
sidered when the aspiration and stopping criteria are applied. For all the candidate solutions
resulting from the combination of lists S and L, total setup time is 6 hours. Furthermore,
moves 0, 1 and 3 result in a makespan of 18.75, while evaluating move 2 delivers a makespan of
15.75. When selecting the best move following the general approach outlined in Algorithm 6.14,
the moves are first sorted from most favourable to least favourable as β = [2, 0, 1, 3]. Since all
the candidate solutions exhibit equal setup times, it has no influence on the move arrangement.
Move β (0) = 2 is not already in the tabu list (currently containing only b = [1, 0, 0, 0, 1, 0, 0, 0]
of the initial solution), the best move, φ, is the combination S(2) and L(2). Furthermore, the
best makespan has been updated to α = 15.75 since υ (φ) < α. The selected move is added in
position 0 of the current tabu list and remaining moves in the list are shifted up one position.

Currently, α = 15.75 and ε = 35, indicating that an optimal assignment to the fermentation
tanks has been found, but the assignments to the remaining processors are not yet optimal.
Therefore, a new iteration is initiated during which a selection between move types B and C is
considered — moves of type E are no longer considered and the previously selected move type is
D, which is removed from consideration for this iteration only.

The move type chosen for iteration two, is move type C. The presses are influenced by this
move type; therefore rows 7 to 9 of order matrix o are considered. Following Algorithm 6.17

6.4. Solving the cellar scheduling problem with a tabu search 125

to generate and evaluate the list of moves, the first step is to update the order matrix to a
maximum assignment matrix. The maximum assignment values for jobs J4 to J7 are 3, 2, 2
and 3, respectively. Rows 7 to 9 of the updated order matrix are therefore

o =

0 4 5 6 7 · · ·
0 4 5 7 6 · · ·
0 7 4 −1 −1 · · ·

 .

Adding job J4 to the assignment row for processor P9 and job J6 to the assignment row for
processor P8 were required, since the other jobs already occurred at their maximum assignment
values.

The size of the list Le is determined as 9. Rows 7 to 9 of the assignment order matrices in Le,
are generated as

0 :

0 5 4 6 7 · · ·
0 4 6 7 −1 · · ·
0 5 4 7 −1 · · ·

 , 1 :

0 4 5 6 7 · · ·
0 4 6 7 −1 · · ·
0 4 5 7 −1 · · ·

 , 2 :

0 7 4 6 −1 · · ·
0 7 5 4 6 · · ·
0 7 5 4 −1 · · ·

 ,

3 :

0 7 4 5 6 · · ·
0 7 4 5 −1 · · ·
0 7 4 6 −1 · · ·

 , 4 :

0 5 7 4 −1 · · ·
0 5 7 4 6 · · ·
0 7 4 6 −1 · · ·

 , 5 :

0 5 7 4 −1 · · ·
0 5 6 7 4 · · ·
0 6 7 4 −1 · · ·

 ,

6 :

0 7 5 6 4 · · ·
0 7 5 4 −1 · · ·
0 7 6 4 −1 · · ·

 , 7 :

0 4 5 7 −1 · · ·
0 4 5 7 6 · · ·
0 4 7 6 −1 · · ·

 , 8 :

0 4 7 5 −1 · · ·
0 4 7 6 −1 · · ·
0 4 7 5 6 · · ·

 .

The next list of moves, Lr, contains 42 assignment order matrices all derived from Le. For
example,

0 5 4 7 −1 · · ·
0 4 6 7 6 · · ·
0 5 4 7 −1 · · ·

 .

shows rows 7 to 9 of Lr (2) derived from Le(0). List Lr requires no updating, since only one job
(J6) is actively assigned to the separators. Therefore, there exists no order on the separators.
When selecting the best move, both the makespan υ(a) and the total setup time obtained from the
order matrix are considered. These two values are listed in Table 6.3 for each of the forty-two
lists Le(a).

The shortest makespan appearing in Table 6.3, is 12.25. However, two moves results in the
shortest makespan, namely υ(8) and υ(9). On further inspection, υ(a) has a smaller total
setup time and is therefore the best solution to consider from the list Lr. Applying this move
results in the order matrix

o =

0 1 2 3 −1 · · ·
0 4 −1 −1 −1 · · ·
0 5 6 −1 −1 · · ·
0 4 6 5 −1 · · ·
0 4 −1 −1 −1 · · ·
0 5 −1 −1 −1 · · ·
0 4 5 7 −1 · · ·
0 4 6 7 −1 · · ·
0 5 7 −1 −1 · · ·
0 7 −1 −1 −1 · · ·
0 3 −1 −1 −1 · · ·
0 1 2 −1 −1 · · ·

.

126 Chapter 6. Tabu Search solution of the cellar scheduling problem

a υ(a)
∑
sijk a υ(a)

∑
sijk a υ(a)

∑
sijk

0 16.20 8.5 1 16.20 7.5 2 16.20 7.5
3 16.20 6.5 4 16.20 7.5 5 16.20 6.5
6 15.75 8.5 7 15.75 7.5 8 12.25 7.5
9 12.25 6.5 10 15.75 7.5 11 15.75 6.5
12 22.50 10.0 13 22.50 9.0 14 22.50 9.0
15 22.50 8.0 16 22.50 9.0 17 22.50 8.0
18 22.50 10.0 19 22.50 9.0 20 22.50 9.0
21 22.50 7.0 22 20.20 11.0 23 20.20 10.0
24 20.20 10.0 25 20.20 8.0 26 17.20 11.5
27 17.20 9.5 28 17.20 10.0 29 17.20 8.0
30 22.50 10.0 31 22.50 9.0 32 22.50 9.0
33 22.50 7.0 34 16.75 10.5 35 16.75 9.0
36 16.75 8.5 37 16.75 7.0 38 19.75 10.0
39 19.75 10.0 40 16.25 10.5 41 16.25 9.0

Table 6.3: The makespan, υ(a), for every move a in list Lr from Example 6.7 and the total setup
time required,

∑
sijk, is listed. The highlighted cells indicate the occurrence of the shortest

makespan, 12.25, and smallest total setup time, 6.5.

and also fulfils the stopping criteria.

For this example problem an optimal solution was found in only 2 iterations. However, the
success of the tabu search may vary from one application to the next. In order to evaluate other
possibilities and also obtain a better indication of processing times, the tabu search described
above was applied 10 000 times to the test problem in Example 6.7 with varying maximum
numbers of iterations. The outcome of this experiment are listed in Table 6.4.

Optimal solutions found
Maximum iterations Number Percentage Average processing time

200 10 000 100% 0.07
100 9 940 99% 0.06
50 9 566 96% 0.06
25 8 812 88% 0.05
10 7 148 71% 0.04

Table 6.4: The number and percentage of optimal moves found when running a Java implemen-
tation of the tabu search 10 000 times to repeatedly solve the example problem from Example
6.7 for different considered maximum iteration values, as well as the average processing time
per run of the Java implementation.

When the maximum number of allowed iterations is set to 200, an optimal solution (as deter-
mined by the exact solution of the same problem) is found for each of the 10 000 applications. As
the maximum number of allowed iterations decreases, the reliability of the heuristic decreases
in the sense that an optimal solution is found less frequently, even though the majority of the
solutions are close to optimal. For example, if the optimal makespan of 12.25 is replaced by
13.35 as the stopping criteria, αmax, it is found that 93% of the 10 000 solution makespans are
smaller than 13.35 when only allowing 10 iterations. Furthermore, the average processing time
also decreases with the decrease in the maximum number of iterations, as expected.

6.5. Chapter overview 127

The proposed tabu search may therefore be viewed as a very strong competitor to the exact
solution method described in Chapter 5. The efficiency of this tabu search approach may now
be further explored to determine whether the heuristic reliability and processor time is still a
suitable solution technique when applied to the actual cellar scheduling problem experienced at
Wamakersvallei Winery.

6.5 Chapter overview

In this Chapter, a tabu search approach towards solving the cellar scheduling problem was
developed, the goal of the tabu search being to indicate whether or not a feasible production
schedule may be found for a specific harvesting day in order to comply with thesis objective I
expressed in Chapter 1. A solution is feasible if it adheres to the constraint set defined in §5.2.1
and if the solution may be carried out during the business hours of the cellar.

In §6.1 the process of generating the initial solution for the tabu search was considered. The
focus is first on the assignment of the jobs to the tipping bins. Then the assignment of all
further tasks is considered in three sections covering jobs of Types I, II and III.

Evaluating a suggested solution is performed by two evaluation techniques discussed in §6.2.
The first technique, referred to as the cellar packing algorithm, is described in §6.2.1 and is
used to approximate the makespan of the suggested solution. In the case where two solutions
have the same makespan, the total setup time required to process jobs in the suggested order
is used to distinguish between a good solution and an even better one. Since the fermentation
process in jobs of Type I is not considered when computing the makespan, another evaluation
technique is described in §6.2.2. This technique is used to evaluate the assignment of Type I
jobs to the red fermentation tanks by producing a solution score consisting of the total wasted
space caused by the assignment and, more importantly, the total weight of all Type I jobs not
assigned to a fermentation tank.

Further tabu search specifications concerned with the generation and selection of moves were
considered in §6.3. In §6.3.1, an ejection chain move used to generate at least a part of the
list of moves for four out of the five move types was proposed. Further techniques required to
identify feasible moves were also considered. The five move types were described in some detail
in §§6.3.2–6.3.6.

The tabu search developed was finally applied to a small, hypothetical example problem in
§6.4. The tabu search was implemented in Java and the solution uncovered by the heuristic was
compared to that of the exact method from Chapter 5. It was found, based on the processing
time and the reliability of the heuristic, that it is definitely a better technique for the small
cellar scheduling problem considered compared to the exact method previously considered. For
the example problem considered, the processing time of the heuristic was approximately 1 000
times as fast as computing an exact solution, with an optimal solution found for all 10 000
repetitions of the problem considered in §6.4.

128 Chapter 6. Tabu Search solution of the cellar scheduling problem

CHAPTER 7

The harvest scheduling problem at
Wamakersvallei Winery

Contents
7.1 Defining the harvest scheduling attributes . 129

7.2 The initial harvest schedule . 131

7.3 Evaluating a harvest schedule . 133

7.3.1 Creating cellar scheduling scenarios . 133

7.3.2 Calculating the harvest evaluation score 137

7.4 Generating candidate moves and selecting the best move 141

7.5 Solving the harvest scheduling problem with the tabu search 145

7.6 Chapter overview . 145

In this chapter the scheduling problem concerned with the harvesting of vineyard blocks is
considered. The goal in this chapter is to find a generic solution method to the harvest scheduling
problem with grapes being harvested as close as possible to their optimal ripeness. Depending
on the wine cellar and job characteristics of the winery where the harvest scheduling problem
occurs, some minor changes is to be expected in order to have the developed decision support
system perform as well as possible. As an example, these changes are noted at the start of
Chapter 8 when the decision support system is developed for and adjusted to fit the scheduling
problems at Wamakersvallei Winery. The cellar restrictions outlined in Chapters 5 and 6 are
also considered in order to achieve a realistic solution. The harvest scheduling tabu search
application is discussed in §§7.2–7.5, starting with the process of generating an initial solution
in §7.2. Then, a means of evaluating harvest schedules is considered in §7.3, after which the
generation of candidate moves as well as the selection of the most suitable move is discussed
in §7.4. The final tabu search application is described in §7.5. First, some harvest scheduling
attributes are defined and expressed mathematically in §7.1.

7.1 Defining the harvest scheduling attributes

The job set, J , employed in the previous chapters concerning the active cellar scheduling refers
to the individual grape loads as they are received at the cellar and not to the vineyard blocks
as a whole. Instead, the set B = {B1, . . . , BN} is used to refer to each of the vineyard blocks

129

130 Chapter 7. The harvest scheduling problem at Wamakersvallei Winery

considered. The total number of blocks considered for the harvesting scheduling problem over
a specified period of time, N , is further divided into the batches (truck loads) received at the
cellar1. It is important to note that the value of N does not refer to the total number of vineyard
blocks from which grapes are received, but rather the smaller selection of blocks considered for
harvesting within a specific time frame of the harvest scheduling problem. Only blocks that
are within a certain ripeness interval are considered, otherwise the scheduling problem becomes
unnecessarily complex.

A harvesting schedule is generated for a specified number of days, D. The schedule is displayed
in the form of a set of vectors, referred to as H, where H(d) refers to the vineyard blocks to be
harvested on day d of the harvesting schedule. This vector does not indicate the order in which
these blocks are harvested or received at the cellar. For example, the schedule

H =

{[
Bb1 Bb2 −1 · · ·

]
,[

Bb3 −1 −1 · · ·
]
,

...[
BN−1 BN −1 · · ·

]}

indicates that the blocks currently numbered as blocks Bb1 and Bb2 should be harvested on the
first day of the harvest schedule and blocks BN−1 and BN on the last, day D.

A block class (determined as outlined in Chapter 4) is associated with each of the vineyard
blocks. These block classes range from 1 to 3, with 1 being the best. Each vineyard block, Bb,
is assumed to yield an expected grape volume, Wb, expressed in tonnes. Since a vineyard block
is most often too large to deliver to the cellar in one truckload, the blocks arrive at the cellar
in smaller batches.

The most significant attribute of a good harvesting schedule, is that all grapes should be received
at the cellar when they are as close as possible to their optimal ripeness. The ripeness sugar
intervals considered in Table 4.4 may be employed to arrange the blocks in order of urgency
to be harvested. Consider the variable ςχ,κ = [a, b], where χ indicates the sugar class of the
grapes. This sugar class does not refer to the actual expected class of the block, but rather to the
number of the sugar level interval, as expressed in Table 4.4. The cultivar is indicated by κ, with
cultivars numbered in their order of appearance in Table 4.4. Here κ ∈ {1 . . . 11} denotes the red
grape varietals, Cabernet Franc, Cabernet Sauvignon, Shiraz, Petit Verdot, Pinotage, Merlot,
Mourvedre, Malbec, Roobernet, Ruby Cabernet, and Cinsaut. The white grape varietals are
denoted by κ ∈ {12 . . . 19} indicating Chenin Blanc, Sauvignon Blanc, Chardonnay, Viognier,
Colombar, Hanepoot, SA Riesling or Weisser Riesling. The interval [a, b] refers to the given
interval of the sugar levels. For example, for Cabernet Sauvignon of Class 2, ς2,2 = [23, 27].
This variable holds for the classes χ ∈ {1, 2, 3} and any block with a sugar level outside the
interval (ς3,κ) is considered the worst block class2.

Grape samples are received on a bi-weekly3 basis from each of the vineyard blocks. A list of
recent samples and sugar levels is maintained by the viticulturist [101]. The most recent sugar
level of block Bb is referred to as ζb. The initial harvest schedule of the tabu search application
conceived to solve the harvest scheduling problem may now be described.

1The number of jobs, n, is equal to the number of jobs batches arriving at the cellar and adding the number
of red fermentation tanks to be emptied (Type III jobs).

2In Table 4.4, the worst class is listed as class 6. In this chapter, the worst class is considered class 4 (rather
than jumping to the number 6) in order to achieve a more compact representation of algorithms to follow.

3Receiving samples from every vineyard block at least once every two weeks is the desired minimum number
of samples. However, in reality the samples are not always received as consistently as desired [127].

7.2. The initial harvest schedule 131

7.2 The initial harvest schedule

As mentioned in Chapter 6, it is essential to have a good initial solution for a tabu search to
be as successful as possible. Two aspects are of concern when evaluating a harvesting schedule.
The first (and most important) is the ripeness of the grapes received. The second aspect is
concerned with the cellar capacity and processing time. From the list of most recent sample
sugar levels of vineyard blocks, a reduced list of blocks containing all blocks with sugar levels
above ς3,κ (1) for the relevant value of κ may be deduced. In the case where the required
harvesting schedule period falls outside an acceptable range, for example D = 100, the full
range of blocks may be added to the list of considered blocks. However, this is further discussed
in the next section. An example is used to illustrate the list characteristics.

Example 7.1 Consider the same fictitious cellar used in the examples of Chapters 5 and 6.
This cellar has a total of 15 vineyard blocks from which grapes are received. In Table 7.1, the
vineyard blocks for which sugar samples have been received are listed together with the expected
yield, Wb, and class of each vineyard block Bb. The sugar level, ζb, determined from the most
recent sample of each block and the value of ς3,κ (1) are listed to indicate how far the grapes are
from reaching maturity.

Bb Cultivar Wb Class ζb ς3,κ (1)

Bb1 Cabernet Sauvignon 50 1 25 21
Bb2 Cabernet Sauvignon 40 1 24 21
Bb3 Cabernet Sauvignon 25 1 26 21
Bb4 Cabernet Sauvignon 25 2 23 21
Bb5 Cabernet Sauvignon 10 2 27 21
Bb6 Merlot 50 1 20 22
Bb7 Merlot 30 1 21 22
Bb8 Pinotage 40 1 23 22
Bb9 Pinotage 20 3 24 22
Bb10 Pinotage 10 1 23 22
Bb11 Chardonnay 30 1 24 18
Bb12 Chardonnay 15 1 25 18
Bb13 Sauvignon Blanc 45 1 17 18
Bb14 Sauvignon Blanc 20 1 17 18
Bb15 Sauvignon Blanc 15 2 16 18

Table 7.1: The 15 vineyard blocks and the most recent sample sugar levels of the cellar consid-
ered in Example 7.1.

Suppose the required harvest schedule should span a period of 5 days (D = 5). Comparing the
sugar levels listed in Table 7.1 with the lower bound of the acceptable intervals also listed (when
ζb ≥ ς3,κ (1)), results in the list of ten blocks {Bb1 , Bb2 , Bb3 , Bb4 , Bb5 , Bb8 , Bb9 , Bb10 , Bb11 , Bb12}
to consider for the scheduling period. These blocks are renumbered as B1, . . . , B10 in the order
listed and, therefore, N = 10.

The blocks considered for the harvest scheduling period are now ordered in a list according to
the optimal ripeness levels. Algorithm 7.1 outlines the ordering process for each of the N blocks
considered. Not only is the χ value considered, but in cases where χ 6= 1, the value by which
a better class is missed, is also considered. When the list of blocks is sorted according to the

132 Chapter 7. The harvest scheduling problem at Wamakersvallei Winery

two vectors calculated, the vector sampleClass is used to sort the list in ascending order and
difference is used as a tiebreaker, also sorting the list in ascending order of difference. Algorithm
7.1 is further explained in the following example.

Example 7.2 (Example 7.1 continued) For the first block, B1, κ = 2 since Cabernet Sauvi-
gnon is cultivar number 2. Block B1 is considered to be in sugar class interval 1 since ζ1 = 25 and
the relevant interval is expressed as ς1,2 = [24, 26]. Then, the value of sampleClass(1) is 1 and
difference(b) = 26−25 = 1. This process is continued until sampleClass = [1, 1, 1, 2, 2, 2, 1, 2, 1, 1]
and difference = [1, 2, 0, 1,−1, 1, 3, 1, 1, 0].

When the list of blocks are arranged in ascending order primarily considering sampleClass with
difference applied as a tiebreaker, the list of blocks in scheduling order is {B3 , B10, B9, B1, B2,
B7, B5, B4, B6, B8}.

Algorithm 7.1: Generating the order of assignment for the initial harvesting schedule
Input: The set of blocks to consider, B, their sample sugar levels, ζb and all the sugar

intervals ςχ,κ.
Output: The ordered list of blocks expressed in blockOrder.
for b = 1 to N do1

κ← κb; χ← 1;2

classFound ← false;3

while classFound = false do4

if (ζb − ςχ,κ (1) ≥ 0) and (ζb − ςχ,κ (2) ≤ 0) then5

classFound ← true;6

else7

χ← χ+ 1;8

if χ ≥ 4 then9

classFound ← true;10

end11

end12

end13

if (χ > 1) and (ςχ−1,κ (1) ≥ 0) then14

d← ςχ−1,κ (1) - ζb;15

if d < 0 then16

difference(b)← ςχ−1,κ (2) -ζb;17

else difference(b)← d;18

else if χ = 1 then19

difference(b)← ςχ,κ (2) - ζb;20

end21

sampleClass(b)← χ;22

end23

blockOrder ← sortWithDoubleCriteria(sampleClass, difference);24

In order to generate the initial solution, the total weight of the expected yield of all the blocks
in the list is considered. This weight is compared to the average yield tonnage per harvesting
day of previous years, referred to as x̄ in order to estimate the number of blocks to be scheduled
for harvesting per day. For each of the first D − 1 days, the total weight of the expected yield
for the scheduled blocks should be at least as large as x̄ with all remaining blocks scheduled for

7.3. Evaluating a harvest schedule 133

harvesting on day D. However, when W̄ is defined as

W̄ =
1
D

N∑

b=1

Wb,

and W̄ > x̄, the total expected weight should be at least as large as W̄ (rather than x̄) per
day until all the blocks are assigned. The generation of the initial solution is illustrated in the
following example.

Example 7.3 (Example 7.2 continued) Suppose the average daily intake of grapes of the
last harvesting season for the hypothetical cellar, is 80 tonnes setting the value of x̄ as 80. A
harvesting schedule is generated for D = 5 days. Therefore,

W̄ =
1
5

10∑

b=1

Wb,

results in W̄ = 53 and since W̄ < x̄, the average intake over past seasons, x̄, is employed
to determine the number of blocks harvested each day. The initial harvesting schedule for this
example problem is therefore

H =

{[
B3 B10 B9 B1

]
,[

B2 B7 B5 B4

]
,[

B6 B8 −1 −1
]
,[

−1 −1 −1 −1
]
,[

−1 −1 −1 −1
]}
.

The grape intake per day is then W3 +W10 +W9 +W1 = 120 for day 1, W2 +W7 +W5 +W4 = 95
for day 2 and W6 +W8 = 50 for day 3. Days 4 and 5 are not assigned any blocks.

7.3 Evaluating a harvest schedule

As mentioned in the previous section, a good harvest schedule will not only have grapes sched-
uled for harvesting at the right time, but will also consider the restrictions imposed by processor
availability and capacity. In order to consider these restrictions, a number of likely cellar sce-
narios are generated and evaluated based on the tabu search presented in Chapter 6. The
generation of these scenarios and the evaluation thereof is presented in §7.3.1, after which the
evaluation score of a harvest schedule is discussed in §7.3.2. Both these sections contain the
generic approach to evaluating the harvesting schedule. However, when applying the developed
model to a winery, each winery will likely contain a set of changes to the evaluation method in
order to better suit the expectancies of the scheduler and also to consider the best approach for
the winery size and characteristics. The changes required in order for the developed decision
support system to best suit the Wamakersvallei cellar, is discussed in Chapter 8

7.3.1 Creating cellar scheduling scenarios

Each determined scenario will rely on three attributes. First, the number of batches, sb, a
vineyard block is split into when delivered to the cellar, then the order in which these batches
arrive at the cellar and lastly, the distribution of their arrival times.

134 Chapter 7. The harvest scheduling problem at Wamakersvallei Winery

In order to achieve an approximation to the number of batches a single vineyard block, Bb, is
split into, sb, the harvesting data for 2007 are considered. The general distribution of these
batches were studied without considering the specific grape cultivar, only considering the yield
of the vineyard block and the number of batches in which it arrives at the cellar. The frequencies
with which vineyard blocks within a specified size interval are split into different batches are
shown in Tables 7.2–7.4.

Number of splits
Datapoints 1 2 3 4 5 6 7 8 9

(0,3] 20 100.0
(3,6] 56 57.1 39.3 3.6
(6,9] 60 30.0 45.0 16.7 5.0 3.3

(9,12] 39 5.1 38.5 23.1 28.2 5.1
(12,15] 40 30.0 20.0 25.0 17.5 7.5
(15,18] 24 12.5 29.2 16.7 25.0 8.3 8.3
(18,21] 34 8.8 35.3 20.6 11.8 8.8 2.9 5.9 5.9

Table 7.2: The frequency, expressed as a percentage of the datapoints, of the occurrence of a
block split into sb batches for vineyard blocks smaller than 21 tonnes.

Number of splits
Datapoints 2 3 4 5 6 7 8 9 10 11 12

(21,31] 53 1.9 13.2 24.5 22.6 15.1 15.1 3.8 3.8
(31,41] 28 7.1 25.0 39.3 3.6 7.1 14.3 0 3.6
(41,51] 20 5.0 45.0 10.0 10.0 5.0 5.0 10.0 10.0

Table 7.3: The frequency, expressed as a percentage of the datapoints, of the occurrence of a
block split into sb batches for vineyard blocks between 21 and 51 tonnes.

Number of splits
Datapoints 6 7 8 9 10 11 12 13

(51,71] 31 6.5 9.7 29.0 12.9 25.8 9.7 3.2 3.2
(71,91] 20 5.0 15.0 20.0 35.0 25.0

Table 7.4: The frequency, expressed as a percentage of the datapoints, of the occurrence of a
block split into sb bathes for vineyard blocks between 51 and 71 tonnes.

The intervals considered in Tables 7.2–7.4 vary over a range of different sizes with the smaller
blocks divided into intervals of width three tonnes as listed in Table 7.2. The reason for choosing
intervals to be of width three tonnes, is simply due to the fact that all vineyard blocks smaller
than three tonnes are delivered in a single batch. In Table 7.3, the medium-sized blocks are
divided into intervals of width 10 tonnes and in Table 7.4, the larger blocks are divided into
intervals of width 25 tonnes.

There is also a last distribution for vineyard blocks with a yield larger than 91 tonnes. However,
this distribution is based on the average and standard deviation of the size of each of the
individual batches. In the 2007 harvesting data, there are only 24 datapoints for vineyards with
a yield greater than 91 tonnes. Furthermore, these datapoints are spread over vineyard blocks
sized up to 215 tonnes. Hence the distribution of these datapoints are too sparse to facilitate

7.3. Evaluating a harvest schedule 135

the construction of a similar frequency table and so a different approach is considered for large
vineyard blocks.

When a vineyard block has an expected yield larger than 91 tonnes, the focus shifts to the
distribution of the different sized bathes rather than the number of batches a vineyard block
is split into. These frequencies are listed in Table 7.5 and is used to determine the number of
batches a vineyard block with yield larger than 91 tonnes is split into.

Interval Frequency

(4,5] 1
(5,6] 1
(6,7] 6
(7,8] 12
(8,9] 2
(9,10] 1

Table 7.5: The frequency of a batch size occurring within the specified interval for vineyard
blocks larger than 91 tonnes, based on the 24 datapoints from the 2007 harvesting data.

When generating the batch distribution of a specific scenario, a number is generated randomly
for each vineyard block. Depending on the size of the vineyard block and the percentages
expressed in Tables 7.2–7.4, the number of batches this block will be split into is calculated
accordingly. When a vineyard block with yield larger than 91 tonnes is considered, the random
number, r, is generated in the interval (0,23]. From the random number, an interval for the
batch size is calculated with the use of the list {0, 1, 2, 8, 20, 22, 23}. For example, if 0 < r ≤ 1,
the first interval is chosen. Once the interval has been determined, another random number is
generated indicating the exact batch size within the interval after which the number of batches
the vineyard block is split into, may be deduced. For the sake of simplicity, the arrival batches
of one vineyard block are chosen to be of equal size. Although this is not necessarily the case,
it will not impact the accuracy of the model. Machinery inside the cellar is set to a specified
cycle and the batch size has no influence on the cycle time.

The matrix

s =

0 3 100 − − − − − − − − − − − −
3 6 57.1 96.4 100 − − − − − − − − − −
6 9 30 75 91.7 96.7 100 − − − − − − − −
9 12 5.1 43.6 66.7 94.9 100 − − − − − − − −
12 15 0 30 50 75 92.5 100 − − − − − − −
15 18 0 12.5 41.7 58.4 83.4 91.7 100 − − − − − −
18 21 0 8.8 44.1 64.7 76.5 85.3 88.2 94.1 100 − − − −
21 31 0 1.9 15.1 39.6 62.2 77.3 92.4 96.2 100 − − − −
31 41 0 0 0 7.1 32.1 71.4 75 82.1 95.4 95.4 100 − −
41 51 0 0 0 0 5 50 60 70 75 80 90 100 −
51 71 0 0 0 0 0 6.5 16.2 45.2 58.1 83.9 93.6 96.8 100
71 91 0 0 0 0 0 0 5 5 5 20 40 75 100

was constructed from Tables 7.2–7.4 for the purpose of generating the scenarios. If s (row, 1) <
Wb ≤ s (row, 2) holds for weight Wb of block Bb and r is a randomly generated number between
0 and 100, then the number of batches that block Bb is split into is calculated as the largest
value of x for which x ≤ s (row, x+ 2). These batches are the jobs considered in Chapters 5
and 6.

136 Chapter 7. The harvest scheduling problem at Wamakersvallei Winery

Example 7.4 (Example 7.3 continued) Consider the list of blocks {B1, . . . , B10} in Exam-
ple 7.3 and consider the following list, r = {33.9 , 87.9, 32.1, 48.9, 7.0, 67.0, 68.4, 5.7, 10.3,
86.2}, of 10 random numbers. First consider block B1, which has weight W1 = 50. This places
block B1 in row 10 and since r(1) = 33.9 lies between s(10, 7) and s(10, 8), block B1 is split into
6 batches. Applying the same technique for the remaining blocks, blocks B2 to B10 are divided
into 9, 4, 5, 2, 6, 5, 2, 3 and 5 batches respectively. The resulting jobs are shown in Table 7.6.

Jobs Cultivar Weight wj Class

J1, . . . , J6 Cabernet Sauvignon 8.3 1
J7, . . . , J15 Cabernet Sauvignon 4.4 1
J16, . . . , J19 Cabernet Sauvignon 6.3 1
J20, . . . , J24 Cabernet Sauvignon 5 2
J25, J26 Cabernet Sauvignon 5 2

J27, . . . , J32 Pinotage 6.7 1
J33, . . . , J37 Pinotage 4 3
J38, . . . , J39 Pinotage 5 1
J40, . . . , J44 Chardonnay 10 1
J45, . . . , J49 Chardonnay 3 1

Table 7.6: The resulting jobs after the 10 blocks considered in Example 7.4 have been split into
batches.

The next attribute of the scenario is the order and timing of the arriving jobs. The arrival
of the trucks at the cellar start early in the morning, with the exact starting time depend-
ing on how far into the harvesting season they are, and then steadily picks up until the
majority of the grapes have been received by approximately 14h00. The frequency of the
arriving truckloads then steadily drops until the end of the day [101]. Consider the vector,
a = { 0.05,0.10,0.15,0.35,0.60,0.70,0.85,1.00,1.00,1.00 } indicating the distribution of scheduled
jobs received over time. Let b denote the number of business hours during which the cellar is
open. No more than a(x) of jobs scheduled for arrival at the cellar have been received by 1

10xb
hours. The fact that no more than a(x) of the jobs is received by the set time, means that
even all jobs are supposed to have been received, some jobs may still arrive at the cellar. For
this reason and in order to fit the arrival pattern discussed with the viticulturist [101], the last
three entries of a is set as 1.0. For example, consider b = 12, then the business day is divided
into parts of 1.2 hours (1

10 × 12) each. If x = 1, then a proportion no more than a(1) = 0.05
of all scheduled arriving jobs have been received before 1.2 hours (1

10 × 12) into the day. This
deduction may be made for x = 2, . . . , 10 until, finally, all jobs have been received after b = 12
hours. The process of determining the arrival times from vector a is outlined in Algorithm 7.2.

The new variable, n′, refers to the number of jobs of Types I and II collectively. The function
rand(0, z) generates a random integer between 0 and z; therefore the constant division by 10
or 100 in order to include decimal numbers in the selection. The variable, x may be considered
as the number of arrival times that must be generated in one iteration of the for-loop, while y
refers to the total number of arrival times generated so far. The final arrival times of the n′ jobs
is then returned as the vector e. A random permutation is applied to e in order to consider the
different orders in which the jobs may arrive.

Example 7.5 (Example 7.4 continued) Consider the n′ = 49 jobs generated in Example
7.4 and listed in Table 7.6. Algorithm 7.2 is applied to generate the individual arrival times

7.3. Evaluating a harvest schedule 137

when the length of one business day is considered as 8 hours. Starting at p = 0, the value of
x is 2 and the value of z is 4 (referring to the first 0.4 hours). The value of r is generated
as 2 indicating that the first arrival time to be assigned in position 1 of e, is 0.2 hours. The
value of x is decreased, indicating that one fewer arrival time still needs to be generated in this
for-loop iteration, and y is increased since the number of arrival times generated increases by
1. Since x > 0 still holds, another arrival time is generated as e (2) = 0.1, after which p = 1
is considered. The algorithm continues in this fashion until the vector e has been filled with the
generated arrival times.

Algorithm 7.2: Generating arrival times
Input: The set business hours and the list of jobs J1, . . . , Jn.
Output: The arrival times, e, for jobs J1, . . . , Jn′ .
a← {0.05, 0.10, 0.15, 0.35, 0.60, 0.70, 0.85, 1.00, 1.00, 1.00};1

n′ ← (n− |Type III jobs|);2

x← 0;3

y ← 0;4

for p = 0 to 9 do5

x← b(a(p)n′)c − y;6

z ← b(a(p) b) /10c;7

while x > 0 do8

r ← rand(0, z);9

y ← y + 1;10

x← x− 1;11

e (y)← r/10;12

end13

end14

while y < n′ do15

r ← rand(0, 10b);16

e (y − 1)← r/10;17

y ← y + 1;18

end19

e ← applyRandomPermutation(e);20

e (0)← −1;21

The created scenarios may now be used in order to evaluate a harvesting schedule, by means of
calculating a harvest evaluation score.

7.3.2 Calculating the harvest evaluation score

There are three main factors to be taken into account in order to successfully evaluate a har-
vesting schedule. First, there is the (expected) ripeness of the grapes from the selected vineyard
block on the day it is scheduled for harvesting. Then there are the two factors inherited from the
cellar scheduling problem, namely the total processing time and the lack of space and wasted
space of job assignment to the red fermentation tanks. In order to generate a harvest evaluation
score based on a sensible, weighted combination of these three factors, the importance of the
three factors are considered. However, before the different contributions or any further aspects
of the generation of a harvest evaluation score may be discussed, the concept of a harvesting
schedule, H, requires some alteration.

138 Chapter 7. The harvest scheduling problem at Wamakersvallei Winery

As described earlier in this chapter, the harvesting schedule, H, contains the blocks to be
harvested on each day of the harvesting period under consideration. These blocks are chosen
from the set of N blocks, B, which is determined by considering the ripeness of each of the
blocks. However, it should be possible for a block to appear in this short-list of blocks and
not be selected for harvesting during the period of time under consideration. Denote the set
of blocks scheduled for harvesting on day d by set Bd. It should therefore be possible for a
vineyard block to appear in the set B and to not be selected for harvesting, i.e. the block should
not appear in any one of the sets B1, . . . ,BD (that is,

⋃D
d=1 Bd 6= B).

Since a tabu search is applied to the harvest scheduling problem, moves are applied to the initial
harvesting schedule, as discussed in §7.2. It is important that any vineyard block not selected
for harvesting in the current harvesting schedule, should be eligible for harvesting in a following
harvesting schedule. Therefore, the vineyard block not selected for harvesting still appears in
the harvest scheduling matrix, H, but the value of a new variable, u, is employed to distinguish
between blocks selected for harvesting and blocks that are not selected. All blocks appearing in
entries H(d, p) with p ≥ u, are not considered part of the harvesting schedule for the duration
of the harvesting period. For example, in the harvesting schedule

H =

u
↓{[

Bb1 Bb2 −1 · · · | Bby · · · −1
]
,[

Bb3 Bb4 Bb5 · · · | −1 · · · −1
]
,

...[
Bbx −1 −1 · · · | BN · · · −1

]}
,

vineyard blocks Bby and BN are not selected for harvesting. However, all the vineyard blocks
appearing to the left of the divider are harvested. Furthermore, the set B1 = {Bb1 , Bb2} does
not include vineyard block Bby even though Bby ∈ B.

The process of calculating the harvest evaluation score is outlined in Algorithm 7.3. The
evaluation score is a combination of the average cellar scheduling score, Ωx̄ and the sugar level
score, Ωs. It is possible for the sugar level score to have a value of 0. Therefore, in order to
never exclude the average cellar scheduling score, the harvest evaluation score, Ω, is taken as
(Ωh + 1) Ωx̄.

Lines 2–20 of Algorithm 7.3 are responsible for generating the average cellar scheduling score,
Ωx̄, which is the average of the five cellar scheduling scores, Ωc, each determind by the daily
generated scenarios. The scenarios are generated from the different sets B1, . . . ,BD of the
harvesting schedule, Hx, being evaluated. The first step in forming a complete harvesting
scenario, starts with the generation of the daily scenario, as explained in §7.3.1, for the first
day of harvesting. If at least one block is scheduled for harvesting on the first day, the scenario
(or generated cellar scheduling problem) is solved via the tabu search described in Chapter 6.
If the best completion time found, α, is not within the required business hours, the current
cellar scheduling score is severely penalized by setting α equal to 10 000α. The reason for
such a drastic penalization is that the best completion time of the cellar scheduling problem
may, in fact, cause the harvesting schedule to be infeasible when the cellar scheduling solution
suggests that the best completion time exceeds the chosen business hours. However, rather
than considering such a harvesting schedule as infeasible and excluding any such schedules from
consideration, a very poor harvest evaluation score is generated, causing it to rather be a highly
unfavourable harvesting schedule than an infeasible schedule.

7.3. Evaluating a harvest schedule 139

Each harvesting schedule spans D days and it was initially considered to multiply the sum
of the best completion time and the best red fermentation tank assignment score by (D − d).
This was considered in order to allow the first day to have the largest influence on the eventual
cellar scheduling score. With the argument in mind that the closer a day is to the start of the
harvesting period, the larger influence it has on the cellar scheduling score, not because the first
day in the scheduling period is more important than the following days, but rather because the
information available for the first day is more accurate than that of any of the following days.
However, after applying this evaluation method to an example problem, it was soon realized
that by allowing the day of the schedule to influence the score in such a way, fewer and fewer
blocks are assigned to the first day of harvesting. The day of harvesting is included when the
block scores are calculated. Aside from the fact that some predictions are made in terms of
sugar levels, the individual suppliers and the restrictions from their farms may also cause a
forced change in the suggested schedule. If αd and εd refer to the values of α and ε calculated
on day d, then the cellar scheduling score may be expressed as

Ωc =
D∑

d=1

(αd + εd) .

Algorithm 7.3: Evaluating a harvest schedule
Input: The harvesting schedule to be evaluated, Hx

Output: The harvest evaluation score, Ω, of Hx

ΩΣ ← 0;1

for scenario = 1 to 5 do2

generateDailyScenario(B1);3

Ωc ← 0;4

for d = 1 to D do5

if |Bd| ≥ 1 then6

solveScenario();7

if (α− αmax) > 0 then8

α← 100α;9

end10

Ωc ← Ωc + (α+ ε);11

updateMachineVolumes();12

end13

if (d+ 1 ≤ D) and |Bd+1| ≥ 1 then14

generateDailyScenario(Bd+1);15

end16

end17

ΩΣ = ΩΣ + Ωc;18

end19

Ωx̄ ← round(ΩΣ/5);20

Ωs ← determineSugarLevelScore(Hx);21

Ω← (Ωs + 1) Ωx̄;22

After the cellar scheduling problem of the first day in the harvesting schedule has been gener-
ated and solved, the red fermentation tank volumes require updating since grape batches have
(possibly) been assigned to them. The new volumes are then considered when the contribution
to the cellar scheduling score of the second day is calculated. This process is repeated for each
day of the harvest scheduling period, until the first cellar scheduling score has been calculated.

140 Chapter 7. The harvest scheduling problem at Wamakersvallei Winery

The whole process is repeated until five individual cellar scheduling scores have been determined.
For each of the cellar scheduling scores, the original machine volumes are considered for the first
day and then updated after each instance of the daily cellar scheduling problem has been solved.
The average cellar scheduling score may then be calculated from the five cellar scheduling scores
collectively as indicated in line 20.

The sugar level score, Ωs, is determined by the function determineSugarLevelScore(Hx).
The calculation of the sugar level score, may be split into two parts, the first part concerning
blocks assigned to positions Hx(d, p) where p < u and the second part to blocks assigned to
positions where p ≥ u in the harvesting schedule, Hx, under evaluation.

Procedure determineSugarLevelScore(Hx)

for d = 1 to D do1

for p = 0 to u do2

b←Hx(d, p);3

if b > 0 then Ωb(b)← dρ (d, b);4

end5

end6

for d = 1 to D do7

for p = u to |Hx| do8

b←Hx (d, p);9

for d2 = 1 to D do10

if b > 0 then11

if ρ (d2, p) = 0 then Ωb (b)←M/2;12

if
(
ζb + 1

2d2

)
≥ ς0,κ (2) then13

Ωb (b)←M ;14

break;15

end16

end17

end18

end19

end20

Ωs ←
∑N

b=1 Ωb (b);21

return Ωh;22

The matrix ρ refers to a penalty matrix generated at the start of the tabu search. This penalty
matrix is based on the sugar level of each block and the sugar class intervals described earlier in
this chapter. Unfortunately, not enough vineyard data are available to make good predictions
in terms of the expected increase in the sugar levels of the grapes as the harvesting period
progresses. However, this factor, along with a motivation for the method considered for esti-
mating sugar levels, is further discussed in Chapter 9. For now, it is assumed that once the
sugar level of the grapes enters the interval ς3,κ and is considered in the shortened set of blocks,
B, the increase in sugar level each day assumes a linear relationship with the number of days
since the measurement of the sample level. Furthermore, as indicated in the limited data made
available by the cellar, this daily increase in sugar level value is considered to be 0.5. The entry
ρ(d, b) = c indicates that on day d of the harvesting schedule, block Bb is considered to be in
sugar level class χ = c+1. If the samples were measured one day before the start of the harvest
scheduling period, the predicted sugar level value used to determine the sugar level class on day
d, is ζb + 1

2d.

7.4. Generating candidate moves and selecting the best move 141

All the blocks with entriesHx(d, p) for which p < u are assigned the block score, Ωb(b)= (d− 1)
ρ (d, b). However, the case where blocks have entries Hx(d, p) for which p ≥ u, require special
precaution. These are the blocks considered as unassigned to any of the days in the harvesting
schedule. Omitting a block from the harvesting schedule that should have been harvested may
have even more drastic consequences than simply harvesting a block on the wrong day. Two
such cases are identified. The first occurs when a vineyard block reaches maturity, i.e. the block
has a sugar level class of 1 sometime during the harvesting period, and is never assigned to be
harvested. The block score is then set as 5 000. An even worse case, is when a block reaches
maturity and is then left to over-ripen, in which case the block score is set as 10 000. The sum
of the individual block scores are then returned as the sugar level score Ωs, and the harvest
evaluation score Ω is calculated.

7.4 Generating candidate moves and selecting the best move

Generating moves for the harvesting schedule is not as complicated as the move types considered
for the cellar scheduling tabu search. This is due to the fact that there are not as many different
characteristics and requirements present within the harvesting schedule as there are within the
cellar scheduling problem. The types of moves considered, are swaps within the harvesting
schedule list H. Two entries in the harvesting schedule list are selected (following a set of rules)
and their values are exchanged. The process of generating the list of swap moves, evaluating
the moves and selecting and applying the best move, is outlined in Algorithm 7.5.

Algorithm 7.5: Generating the list of swap moves
Input: The current harvesting schedule list, H
Output: The best move is selected and applied and the tabu lists are updated.
[d, p]← chooseBlockToGenerateMoves();1

b←H(d, p);2

L← createListOfSwapMoves(b, d, p,H);3

Ω← evaluateSwaps(L);4

chooseAndApplyBestMove(L, υ, b);5

Whenever the sugar level score, Ωs, is determined, the list Ωb(b) of individual block scores is first
calculated. These scores are considered in the function chooseBlockToGenerateMoves() in
order to select a block with which to generate the list of moves. The block is chosen to be the
vineyard block with the largest contribution to the sugar level score, i.e. the block, Bb, with
the largest block score, Ωb(b). In order to avoid the same block from being selected repeatedly,
a small tabu list is created in order to limit the frequency with which each block is selected.

For the remainder of this chapter, all harvesting schedule entries of the form H(d, p) that are
not equal to −1 and for which p < u, are considered to be entries of type 0. In the case where
p < u still holds, butH(d, p) = −1, entries are considered to be of type 1. Types 2 and 3 refer to
the entries H(d, p) for which p ≥ u, where entries of type 2 refer to block numbers, and entries
of type 3 have a value of −1. Table 7.7 contains a summary of the entry type characteristics.

When a swap is performed, two entries in H are switched. There are some restrictions on
which swaps are allowed in order to avoid duplicate harvesting schedules in the list of moves, L.
Consider blocks Bb1 and Bb2 currently in positions H(d1, p1) and H(d2, p2), respectively. Both
entries are of type 0, therefore no difference will occur in the harvesting schedule if d1 = d2,
since the blocks selected for harvesting on day d1 (d2) remain the same after a swap. Whenever

142 Chapter 7. The harvest scheduling problem at Wamakersvallei Winery

Type Entry Position
number restriction restriction

0 H(d, p) > 0 p < u
1 H(d, p) = −1 p < u
2 H(d, p) > 0 p ≥ u
3 H(d, p) = −1 p ≥ u

Table 7.7: The entry types 0, 1, 2 and 3 as determined by corresponding harvesting schedule
entry and position.

d2 6= d1 the harvesting schedule is influenced upon application of a swap. Therefore, a swap
between two entries of type 0 (referred to as a type (0, 0) swap) is only allowed if d2 6= d1. The
type of block Bb1 is always the first entry when listing the swap type as type (i, j), where block
Bb1 refers to the block selected in the function chooseBlockToGenerateMoves(). Entries of
types 1 and 3 will never be selected by the function chooseBlockToGenerateMoves(), since
both these types have H(d, p) = −1 and are therefore only place-holding entries, not referring
to any block. A summary of the restrictions on all possible swaps is listed in Table 7.8.

Type i Type j Swap move restrictions

0 0 allowed for all,
dj 6= di

0 1 only one move per dj ,
dj 6= di

0 2 allowed
0 3 only one move allowed
2 0 allowed
2 1 only one move per dj ,

including dj = di
2 2 never allowed
2 3 never allowed

Table 7.8: The swap move restrictions, where Type i refers to the entry type of the selected
entry H(di, pi) and Type j refers to all entries H(dj , pj) available for the swap.

None of the swaps that are considered not allowed will necessarily cause an infeasible har-
vesting schedule. They are simply avoided since they will have no influence on the harvest-
ing schedule. The process of generating a list of swap moves is applied in the procedure
createListOfSwapMoves(b, d, p,H). When a swap move is selected as the best move and its
inverse is added to the relevant tabu list, the entry types, as well as the positions of the en-
tries in the harvest scheduling list are also relevant. Therefore, the list of moves includes more
information than only the two entries of the harvest scheduling list being switched. The list
entry, L(a, 1), contains the current entry type4 of the block Bb chosen and in L(a, 2) the entry
type of the other entry required for the swap is added, where a refers to the move number. In
positions 3, 4, 5 and 6, the values of db, pb, d2 and p2 are assigned, where db and pb refer to the
day and position of Bb (the selected block) in the current harvesting schedule, and d2 and p2

refer to the day and position of the other vineyard block selected for the swap.

4Referred to as current entry type, since the entry type does not depend on the block number or any other
vineyard block characteristics, but rather on the position in the harvesting schedule.

7.4. Generating candidate moves and selecting the best move 143

Procedure createListOfSwapMoves(b, d, p,H)

if p < u then1

blockType ← 0;2

both ← true;3

else4

blockType ← 2;5

end6

a← 0;7

for d2 = 1 to D do8

p2 ← 0;9

added ← false;10

if d2 6= d then11

while p2 < u do12

if (added = false) and (H(d2, p2) ≤ 0) then13

added ← true;14

L← addSwapToList(a, blockType, 1, d, p, d2, p2);15

a← a+ 1;16

else if (H(d2, p2) 6= −1) and (Hx(d2, p2) 6= b) then17

L← addSwapToList(a, blockType, 0, d, p, d2, p2);18

a← a+ 1;19

end20

p2 ← p2 + 1;21

end22

end23

p2 ← u;24

added ← false;25

while (both = true) and (p2 ≤ |H(d) |) do26

if (added = false) and (H(d2, p2) ≤ 0) then27

added ← true;28

L← addSwapToList(a, blockType, 3, d, p, d2, p2);29

a← a+ 1;30

else if (H(d2, p2) 6= −1) and (Hx(d2, p2) 6= b) then31

added ← true;32

L← addSwapToList(a, blockType, 2, d, p, d2, p2);33

a← a+ 1;34

end35

p2 ← p2 + 1;36

end37

end38

return L;39

The function addSwapToList(move, blockType, x, d, p, d2, p2) is utilized to add the swap
move to the list of candidate moves by placing the values of the current entry type of block Bb
in L(move, 1) and x, d, p, d2 and p2 in positions 2 to 6, for each move a.

In Algorithm 7.5, the function evaluateSwaps(L), is employed to evaluate each of the moves
in the list L. The vector Ω is generated when applying moves; here Ω(a) refers to the harvest
evaluation score calculated when applying move a.

144 Chapter 7. The harvest scheduling problem at Wamakersvallei Winery

Procedure chooseAndApplyBestMove(L, Ω, b)

bestMoveNumbers ← sortMoveValues(Ω);1

found ← false;2

moveNumber ← 0;3

while found = false do4

a← bestMoveNumbers(moveNumber);5

db ← L(a, 3);6

pb ← L(a, 4);7

d2 ← L(a, 5);8

p2 ← L(a, 6);9

swap ← [b,H(d2, p2)];10

currentMove ← [b,L(a, 1) ,L(a, 2) , db, d2];11

isInSwapList ← isInSwapList(swap);12

isInTypeList ← isInTypeList(currentMove);13

if (isInSwapList = true) or (isInTypeList = true) then14

if Ω(a) < ϑ then15

ϑ← Ω(a);16

found ← true;17

else18

found ← false;19

end20

else21

if Ω(a) < ϑ then ϑ← Ω(a);22

found ← true;23

end24

if found = true then25

ι← [b,L(a, 2) ,L(a, 1) , d2, db];26

addToTabuLists(ι, swap);27

H(db, pb)←H(d2, p2);28

H(d2, p2)← b;29

else30

moveNumber ← moveNumber + 1;31

end32

end33

The procedure chooseAndApplyBestMove(L, Ω, b) is applied to select the best suitable move
from the list of candidate moves and then to update the tabu lists. There are two tabu lists. The
first list limits the two entry values, i.e. the two blocks exchanging positions in the harvesting
schedule, from being exchanged again. The second tabu list limits the block Bb from moving
back to its previous harvesting day directly from the new day with the entry type also reverting
back to its previous state. For example, the best move in list L is represented by L(φ) =
[b, e1, e2, d, p, d2, p2] where H(d2, p2) = b2. Then (b, b2) is placed in the first tabu list so that
the exchange of the two values, b and b2, is not allowed to be applied again as long as it is in
the tabu list. Furthermore, the vector [b, e2, e1, d2, d] (the inverse of move L(φ)) is added to
the second tabu list disallowing a block to be moved to its previous harvesting day unless it is
swapped with a different entry type. For example, the move L(a) = [b, e2, e1, d2, p2, dx, px] is
allowed only if dx 6= d.

7.5. Solving the harvest scheduling problem with the tabu search 145

The moves are sorted from the highest harvest evaluation score to the lowest. Starting at the
first move in the list, each move is considered in the harvest evaluation score order until a
suitable move has been found. Such a move is found either if the move is not in any tabu list or
if the aspiration criterion is satisfied. The value of the best harvest evaluation score is denoted
by ϑ and is updated if the selected move results in a smaller harvest evaluation score.

7.5 Solving the harvest scheduling problem with the tabu search

As mentioned previously, the tabu search application developed to solve the harvest scheduling
problem is a much simpler process than that of the cellar scheduling tabu search. The harvest
scheduling tabu search is outlined in Algorithm 7.8.

Algorithm 7.8: The harvest scheduling tabu search
Input: The list of blocks, β, and their sugar levels, ςb.
Output: The harvesting schedule, H.
H ← generateInitialSolution(β, ςb);1

ϑ← evaluate(H);2

found ← false;3

counter ← 0;4

while (found = false) and (counter ≤ 50) do5

applySwapMove();6

if ϑ ≤ ϑmax then found ← true;7

end8

First, the initial harvesting schedule H is created, as described in §7.2. The harvest evaluation
score of the first harvesting schedule is then calculated and set as the best score, ϑ. The candi-
date swap moves are then generated, evaluated and the best move applied until a satisfactory
harvesting schedule is found.

The harvest scheduling tabu search is explained further in the following chapter, when the
harvest scheduling tabu search is applied to real data and the full-size cellar at Wamakersvallei.

7.6 Chapter overview

In this chapter the tabu search method developed in order to solve the harvest scheduling
problem was discussed. A good harvesting schedule should ensure that vineyard blocks are
harvested as close to their optimal maturity dates as possible. Furthermore, the restrictions
imposed by the physical capacity of the cellar should be used in order to further distinguish
between harvesting schedules. The contents of this chapter therefore achieves thesis objective
II expressed in Chapter 1.

In §7.1, the different harvest scheduling attributes were described. These include notations
for the set of vineyard blocks and their characteristics as well as a means of representing a
harvesting schedule mathematically.

The generation of the initial solution was discussed in §7.2, as well as a suggested order of
vineyard blocks to represent urgency with respect to harvesting, as indicated by the sugar
levels derived from samples.

146 Chapter 7. The harvest scheduling problem at Wamakersvallei Winery

In §7.3 a means of evaluating harvesting schedules was considered — first, by the generation
of realistic cellar scheduling scenarios (in §7.3.1) and then by the calculation of the harvest
evaluation score (as explained in §7.3.2).

The generation of a list of candidate moves is described in 7.4. The moves considered are swaps
and only certain harvesting schedule entries may be swapped with one another, as explained in
this section. The evaluation of such a list of candidate moves was also discussed, as well as the
selection and application of the best move.

Finally, the previous sections were brought together in §7.5 where a concise outline of the
harvest scheduling tabu search was presented. In the next chapter, the required changes to
the harvest and cellar scheduling problems is considered in order to successfully develop the
decision support system suitable for the Wamakersvallei Winery characteristics.

CHAPTER 8

The Wamakersvallei decision support system

Contents
8.1 Required changes to the tabu searches . 148

8.1.1 A new generation approach for candidate moves on the presses 148

8.1.2 Job generation for the active cellar scheduling problem 149

8.1.3 Generating moves in the harvest scheduling problem 150

8.1.4 Evaluation a harvesting schedule . 150

8.2 The decision support system applied to Wamakersvallei 152

8.2.1 Importing data . 152

8.2.2 Solving the harvest scheduling problem with VinDSS 154

8.2.3 Generating the candidate list of moves 158

8.3 A short analysis of the performed tabu search 159

8.4 The suggested schedule vs Wamakersvallei selection 161

8.5 Chapter overview . 163

In Chapters 5–7, the scheduling problems occurring at a winery, often focussing on Wamak-
ersvallei Winery, was defined mathematically and tabu search applications were developed to
solve the cellar scheduling and harvest scheduling problems. The goal of this chapter is to apply
the developed methods to solve the scheduling problem at Wamakersvallei using Wamakersvallei
2009 harvesting data and comparing it with the Wamakersvallei approach where possible. In
§8.1, the required changes are applied to the developed tabu searches in order to successfully
solve the larger scheduling problem occurring at Wamakersvallei. Such a customized approach
based on the generic approach defined in previous chapters, is required to better suit the cellar
or winery at hand, in this case, Wamakersvallei Winery. A means of displaying and calculating
the schedules by importing the necessary data is presented as the software solution VinDSS.
The working of VinDSS is illustrated by means of an example consisting of the application to
real Wamakersvallei 2009 harvesting data. VinDSS in its current state is a basic tool assisting
the staff at a winery to better schedule the harvesting of their grapes. However, the VinDSS
programs has much potential in becoming a more sophisticated and refined tool with possible
improvements discussed in Chapter 9. In §8.3, a concise analysis of the tabu search is presented
after which the harvesting schedule suggested by VinDSS may be compared to the harvest as
it occurred at Wamakersvallei, which is discussed in §8.4.

147

148 Chapter 8. The Wamakersvallei decision support system

8.1 Required changes to the tabu searches

The harvest scheduling approach considered in the previous chapter delivered intuitively good
harvesting schedules in a relatively short period of time when applied to the fictitious cellar
considered in the various examples in that chapter. The cellar scheduling tabu search approach
performed splendidly when applied to the fictitious cellar and scheduled grapeloads, rendering
optimal solutions in 100% of the trial runs when the number of allowed iterations was set high
enough. However, when applying the combined harvest and cellar tabu search approach to solve
a typical cellar scheduling problem as it occurs at Wamakersvallei some problems arise. For
example, it becomes a lenghthy process simply to find a feasible ordering on the presses, which
is where the majority of bottlenecks occur in the cellar. A few simple changes are therefore
required.

Perhaps the main problem area when applying the developed tabu searches to the Wamak-
ersvallei scheduling problem, is that an enormous amount of processing time is required in
order to achieve a good schedule. On further inspection, it was found that both an increase in
processor choices and an increase in the volume of grapes received at the real cellar influence
the computer processing time required to implement the tabu search when compared to the
fictitious cellar of Chapters 5–7. This led to an increase in the number of iterations required
to find feasible press assignments when the ejection chain move was applied. Furthermore, the
process of removing the unnecessarily assigned jobs (forming the maximum assignment order)
considered following the ejection chain move where every single possible removal combination
of the additional job assignments have to be considered. Some further problem areas also came
to light on closer inspection. The changes made to the two scheduling solution approaches are
outlined in the following subsections.

8.1.1 A new generation approach for candidate moves on the presses

In order to contain the first problem area, the ejection chain used when generating the first list
of candidate moves for assignments made to the presses is replaced by a more reliable means
of generating candidate assignment order matrices. Rather than randomly moving values in
the matrix until a feasible order matrix is found, the order is first considered separately. Two
types of orders are considered: the first concerns the white grapes arriving at the cellar, i.e.
Type II jobs. A desired order is generated by repeatedly selecting a random number between
1 and 3 indicating the tipping bin to consider. Furthermore, for each of the three tipping bins
there is a current position indicator, p1, p2 and p3 respectively, each set to 1 at the start of
the selection process. If, for example, the first tipping bin to be selected is tipping bin 1, row
1 of the current harvesting schedule is considered, i.e. the assignments made to tipping bin
1. Starting at position p1 the position indicator is increased until a Type II job is found in
H(1, p1) and then selected to be placed in the first position of the order under construction,
p1 is increased by a value of 1 thereby pointing to the next job assigned to P1. During each
iteration during which a tipping bin, Pi, is selected the next Type II job assigned to the tipping
bin, starting at the current pi, is selected, i.e. no job is selected more than once. This process is
repeated until all the Type II jobs to be received have been added to the order. A new order is
generated for each time that a new move is considered. The second type of order, functioning
completely separate from the previous type, consists of two orders and is concerned with the
emptying of the red fermentation tanks. These two orders are simply generated by considering
the generated ‘arrival times’, i.e. the time assigned to start emptying the tanks, for each of the
two sets of red fermentation tanks, DF tanks and RT tanks. Therefore, these two sets are only

8.1. Required changes to the tabu searches 149

changed at the start of a new cellar scheduling problem and not during each move considered
as with the previous type of order.

When applying the new modified ejection chain move, these orders are kept in mind when
moving the jobs. For example, consider the generated order Jj1 , Jj2 , . . . , Jjx and a job Jj6
selected to be moved to a new row, i, with the jobs Jj2 , Jj3 , Jj7 and Jj8 assigned in this order.
By obeying the order, job Jj6 may be placed in positions p = 1, 2 or 3, but not positions 4 or
5. From the range of allowed positions, one is chosen at random. If p = 2 is selected the new
row i will be Jj2 , Jj6 , Jj3 , Jj7 and Jj8 in this order. A new job is now selected from this row to
be placed in another row in the same fashion, any job other than the last placed job, job Jj6 ,
may be selected. By considering this new ejection chain approach, a larger variety of sensible
moves may be considered in a shorter time period.

The second aspect of the press order assignments from the previous chapters which causes a
very slow generation of candidate moves, is the process of considering the removal of certain
unnecessarily assigned jobs in order to form the maximum assignment order, as explained in
§6.3.4. In this case, rather than considering all the possible removals, a method similar to that
used when removing unnecessary assignments made to the red fermentation tanks, is used.

By applying both of these improvements, a major reduction in processing time is achieved
without any loss to the quality of solutions.

8.1.2 Job generation for the active cellar scheduling problem

Even at the start of the harvesting season, there is an enormous variety of blocks to consider
for harvesting. Therefore, rather than simply allowing all vineyard blocks with sample levels
within sugar level class 3, only vineyard blocks expected to reach maturity during the harvesting
period considered, are taken into account.

However, this alteration only leads to a minor, but still helpful, decrease in problem size. In
order to further lessen the processing time required for each application of the active cellar
scheduling problem, the construction of the set of jobs, J , is considered. For example, when a
vineyard block containing red grapes, is split into the calculated number of batches, the batches
are received at the tipping bins and then added together again at the red fermentation tanks.
However, since a large number of different combinations is then considered when applying the
ejection chain move to the Type I jobs, unnecessarily large processing time and a possible loss
in quality occurs. Therefore, a vineyard block containing red grapes, Br, with an expected yield
of w tonnes is split into the number of batches calculated, x. Job J1 is assigned the full weight
of the vineyard block, w, and jobs J2, . . . , Jx are considered to be of weight 0. These jobs are
still considered at the tipping bins in order to keep the schedule realistic, but are not assigned
to the red fermentation tanks. This is completely feasible since weight is not taken into account
at the tipping bins and this approach dramatically reduces the number of jobs to consider when
assignments are made to the red fermentation tanks.

In the same sense, two grapeloads of Type II grapes from the same vineyard block, that are
received at the cellar within 2.5 hours of one another, is combined to be one job. Again, the split
of a larger Type II job at the separators or the presses is less time consuming than increasing the
number of jobs to assign. The waiting time is the same as the processing time on the presses;
if the arrival time difference between two such jobs are greater than the processing time of one
job, it no longer makes sense to wait. This construction directly imitates what happens at
Wamakersvallei, where such grapeloads are added to the same separator or press if they arrive
close enough to each other. In this case, the first grapeload to arrive at the cellar is immediately

150 Chapter 8. The Wamakersvallei decision support system

received at the separator or press where it awaits the second grapeload. Therefore, two Type
II jobs, jobs Jj1 and Jj2 , may be combined when they are from the same vineyard block and
|ej1 − ej2 | ≤ 2.5. The processing time of the new job Jj , is considered to be the normal press
or separator cycle time together with the added waiting time, pij + |ej1 − ej2 |, and the arrival
time is taken as min{ej1 , ej2}.

8.1.3 Generating moves in the harvest scheduling problem

It has already been established that one of the most important criteria considered during re-
modelling of the scheduling problems, is the processing time. One of the simplest alterations is
to simply change the number of cellar scheduling problems solved for each day in the harvesting
schedule, as outlined in Algorithm 7.3. This number is then changed from the five considered
in Chapter 7 to only two which was found to be equally efficient. In order to reduce processor
time further, the size of the list of moves has been reduced. For each of the candidate moves
in the list of harvesting moves, LH , the cellar scheduling tabu search is still applied 2D times.
This results in a number around 900 when the harvesting schedule is calculated from the 2009
harvesting data at Wamakersvallei. Furthermore, in order to generate an efficient harvesting
schedule, at least 100 iterations of the harvest scheduling tabu search is required. Therefore, the
process of generating and evaluating the list of moves has been reconstructed so that this list
contains no more than 7 moves. Rather than considering each day in the harvesting schedule
as a possible placement for the selected block, only the two days closest to the block’s current
day, d, of harvesting is considered, days d1 and d2 say. Furthermore, for each of the days deter-
mined only three moves are added to the list. For the first move, the swap occurs between the
selected block scheduled for harvesting on day d and a1 block with the largest contribution to
the sugar level score, Ωs, of all the vineyard blocks considered for scheduling for each of days
d1 and d2. Then for each of days d1 and d2 another two moves are added to the list, the swap
occurs between the selected block and a randomly selected position in the harvesting schedule,
one position is selected with a value of −1 and the second position has H(di, p) 6= −1. The last
move is then added to the list of harvesting moves as a swap between the selected block and
H(d1, p1) or H(d2, p2), where p1, p2 ≥ u. However, the last move is only added to the list if
the selected block of harvesting day d is of block type 0 (assigned to a position H(d, p), where
p < u).

8.1.4 Evaluation a harvesting schedule

After ordering the vineyard blocks considered for scheduling during the harvesting period under
consideration, they are placed in the harvest schedule matrix in that order, as described in
Chapter 7. However, vineyard blocks are only placed in positions H(d, p), for which p < u,
until the average yearly intake has been matched in terms of the expected yield of the scheduled
blocks. Thereafter, the remaining vineyard blocks are placed in positions where p ≥ u.

The last aspect of the harvest scheduling tabu search proposed in Chapter 7 to be amended, is
the evaluation of a harvesting schedule under consideration. However, the method of evaluation
is not changed; only the construction of the harvest scheduling score, Ωs. The first change occurs
with the strict penalization of assigning a move to the position H(d, p) where p ≥ u. The penal-
ization discussed in the previous chapter, is far too strict and scews the relationship between the
sugar level score Ωs and the average cellar scheduling score Ωx̄, thereby disregarding the cellar

1More than one job may have the same contribution; simply one of these is selected.

8.1. Required changes to the tabu searches 151

harvesting score in some cases. The penalization is therefore reduced to only apply to blocks
that will overripen if they are not harvested during the harvest scheduling period. Further-
more, rather than penalizing all such cases equally, the penalization now occurs depending on
the quality of the grapes considered. Procedure determineSecondSugarLevelScore(Hx) may
now be used to replace the procedure determineSugarLevelScore(Hx) described in Chapter
7, with the new penalization expression shown in line 15.

The individual block sugar level score Ωb is also reconsidered. It is important that these block
sugar level scores are representative of the harvesting schedule as a whole by including influences
from the cellar scheduling solution found. A new matrix α is introduced in order to include the
effect of evaluating the cellar scheduling problem. Whenever a generated scenario for a specific
evaluation has a completion time larger than the set business hours, the entry α (b) for each
block Bb scheduled to be harvested on the particular day is increased. By including the matrix
α in the block sugar level score Ωb(b) for all blocks Bb ∈ Bd, unfavourable blocks indicated
by the cellar scheduling algorithm also stand a chance of being selected as blocks on which to
apply swaps.

Furthermore, the block sugar level scores are further adjusted by adding the deviation matrix
δ. The deviation matrix is employed to influence the exact placing of a block in the harvesting
schedule. The ideal day for harvesting any block is considered as the day where the sugar
level, ζb, of block Bb lies exactly in the middle of its first sugar level class, i.e. when ζb =
1
2 (ς1,κ (2) + ς1,κ (2)). However, the urgency with which a vineyard block should be considered
for harvesting when it lies in the second half of the first sugar class interval should be higher
than the urgency with which a block lying in the first half is considered for harvesting. In order
to avoid using negative values in the score, which may (possibly) result in two terms of the block
sugar level score cancelling one another out, the following method is considered to generate the
deviation matrix: First the middle of the first sugar level class is determined as

c 1
2

=
1
2

(ς1,κ (2) + ς1,κ (2))

and then the true deviation of the sugar level, ζb, from the middle of day d is computed as

xbd =
(
ζb +

1
4
d

)
− c 1

2
.

The value of x is therefore positive if ζb ≥ c 1
2

and negative otherwise. In order to emphasize the
importance of overripe grapes being scheduled for harvesting when compared to under ripened
grapes, the deviation matrix entry for a block Bb scheduled for harvesting on day d is

δ (d, b) =
{

2xbd if xbd ≥ 0,
−xbd otherwise.

The final change to the evaluation score of a harvesting schedule is that, rather than multiplying
the sugar level score and the average cellar scheduling score, the two are now added together.

The majority of the changes are easily justified by the decrease in processing time. However,
this last alteration had to be deduced intuitively after considering many more such alterations
to different instances of the scheduling problem. The performance of the modified tabu searches
may now be considered when the decision support system, VinDSS, employing the tabu searches
to solve the harvest scheduling problem, is applied to solve the harvest scheduling problem
occurring at Wamakersvallei.

152 Chapter 8. The Wamakersvallei decision support system

Procedure determineSecondSugarLevelScore(Hx)

for d = 1 to D do1

for p = 0 to u do2

b←Hx(d, p);3

if b > 0 then4

Ωb(b)← α (b) + δ (d, b) + dρ (d, b);5

end6

end7

end8

for d = 1 to D do9

for p = u to |Hx| do10

b←Hx (d, p);11

for d2 = 1 to D do12

if b > 0 then13

if
(
ζb + 1

4d2

)
≥ ς1,κ (2) then14

Ωb (b)← 1
2M/ρ (d2, p);15

break;16

end17

end18

end19

end20

end21

Ωs ←
∑N

b=1 Ωb (b);22

return Ωh;23

8.2 The decision support system applied to Wamakersvallei

The working of the decision support system, VinDSS, is now illustrated by applying the tabu
searches developed in Chapters 6 and 7 to solve the harvest scheduling problem experienced
at Wamakersvallei Winery. The data set used during the following sections was composed
by considering the sugar level forms filled in by the viticulturist (as illustrated in Figure 4.8)
during the Wamakervallei 2009 harvesting period. In order to find the expected yield for each
of the vineyard blocks, the information contained in the form was cross-referenced with both
the harvesting sheets (as illustrated in Figure 4.9) and the harvesting data recorded during
previous years. Unfortunately, for some of the vineyard blocks further information was not
available — for example, instances where a vineyard block was received for harvesting with no
sugar sample being noted was rather common. However, this shortcoming is taken into account
when the harvesting schedule generated is compared to the daily schedules suggested by the
Wamakersvallei team.

8.2.1 Importing data

When VinDSS is started, the user is given the option to import data from a Microsoft Excel
[86] file. The exact format of the file is very important; however, such technical aspects are
discussed in the concise user manual in Appendix D. The imported information includes a

8.2. The decision support system applied to Wamakersvallei 153

reference name for each block, the expected yield, cultivar, class, most recent sample sugar level
as well as the date on which the sample was taken (in order to calculate the expected sugar
level on the scheduled day of harvest). Figure 8.1 shows the user interface of VinDSS once the
data has been imported from Excel.

Figure 8.1: A screen shot of the user interface of VinDSS after data have been imported from
Microsoft Excel [86].

The harvesting period for which this harvesting schedule is to be generated is the five days
starting on Monday, 9 February 2009 to Friday, 13 February 2009. The reasoning behind
choosing such an early period is due to the large amount of non-electronic data that requires
manual processing. Even though this period is towards the start of the 2009 harvesting season,
spanning 29 January to 24 March, the acquired data indicate that an average of 373 tonnes of
grapes was already being received per day, with a daily maximum of 561 tonnes received on
Wednesday, 11 February 2009.

154 Chapter 8. The Wamakersvallei decision support system

Therefore, the sample sugar levels concerned are from the first arrival of samples on 26 January
2009 until Friday, 6 February. All the sample sugar levels received are added to a list of vineyard
blocks containing information regarding the contact person for the farm, the supplying farm, the
cultivar, the block number and finally the sugar levels, pH and acidity, as mentioned in Chapter
4. The sugar levels received are listed by their cultivar and each block has been assigned a block
name in order to easily refer to a specific vineyard block. The necessary information regarding
the blocks and their calculated sugar levels is listed in Appendix C.

Furthermore, the imported data should also contain information regarding the contents of each
non-empty red fermentation tank. The weight of the contents, the cultivar, class and an expected
emptying date is required. The emptying date refers to the day on which the fermentation tank
is emptied and the skins are transported to the presses.

After these data have been imported, they are presented graphically to the user in order to
ensure that the correct set of data has been imported. A button labelled ‘Calculate Schedule’
appears as well as drop down menus to specify the harvesting period to consider. Further
information regarding the process and specifics of importing the data is explained in §D.1.

8.2.2 Solving the harvest scheduling problem with VinDSS

For this instance of the scheduling problem at Wamakersvallei, a timespan of five days was
selected from the drop down menu and the starting date was set as 9 February with the day
of execution of the scheduling software taken as Friday, 7 February. The day of execution has
no influence on the final harvesting schedule, since the date on which the sample was received
until the start of the set harvesting period is the considered period for forecasting. Once the
‘Calculate Schedule’ button is pressed, the harvest scheduling tabu search is applied to the
imported data shown in Figure 8.1. The first step when applying the harvesting tabu search
to the data, is to generate the list of blocks based on the known sample sugar levels. The
required vineyard block information regarding the construction of the list of blocks, B, is listed
in Appendix C. The resulting list of blocks, generated from the sample sugar levels is listed in
Table 8.1. This list contains all the vineyard blocks that may fully ripen during the harvesting
time period under consideration.

The initial harvesting schedule

From the list of blocks, presented in Table 8.1, it is clear that during the start of the harvesting
season, the main focus is on the harvesting of white grapes with only 33 of the 103 vineyard
blocks received containing red grapes. Furthermore, this list contains 103 of the 450 vineyard
blocks listed in Table C.1. The blocks are ordered according to their estimated urgency, as
outlined in Algorithm 7.1 to be harvested as {B64 , B39, B30, B60, B57, B59, B69, B36, B18, B14,
B24, B45, B63, B33, B62, B37, B41, B20, B47, B25, B5, B31, B2, B12, B50, B22, B3, B43, B19,
B44, B58, B35, B46, B51, B52, B54, B11, B34, B17, B40, B13, B65, B10, B71, B55, B15, B48, B72,
B73, B74, B75, B76, B77, B80, B81, B82, B83, B84, B85, B86, B89, B90, B91, B92, B93, B94, B95,
B96, B97, B100, B1, B4, B6, B7, B8, B9, B16, B21, B23, B26, B27, B29, B32, B42, B49, B53, B56,
B61, B102, B79, B78, B98, B101, B28, B38, B66, B67, B68, B70, B87, B88, B103, B99}.
As discussed in Chapter 7, the blocks are arranged in an initial harvesting schedule with an
average daily grape intake taken as 290 tonnes and the maximum daily intake as 610 tonnes
(from the Wamakersvallei 2006 data in Table 4.5). The initial harvesting solution, with its

8.2. The decision support system applied to Wamakersvallei 155

Block list Block Sample date Sample Expected block
number name Cultivar Class Tonnes received sugar level sugar level

1 AB CABF 3 8 05-Feb 22.3 23.3
2 IM SHIR 1 15 03-Feb 23.0 24.5
3 IQ SHIR 2 30 05-Feb 23.5 24.5
4 IR SHIR 2 30 05-Feb 22.3 23.3
5 GH PINO 2 10 02-Feb 23.8 25.6
6 GI PINO 1 15 05-Feb 22.5 23.5
7 GL PINO 1 5 02-Feb 25.7 27.5
8 GO PINO 2 120 05-Feb 22.6 23.6
9 GQ PINO 1 10 27-Jan 21.7 23.5
10 GV PINO 1 5 02-Feb 23.2 25.0
11 GW PINO 1 5 02-Feb 23.3 25.1
12 GY PINO 1 9 05-Feb 24.5 25.5
13 HD PINO 1 20 02-Feb 23.2 25.0
14 HE PINO 2 11 05-Feb 25.2 26.2
15 HF PINO 1 10 27-Jan 22.6 24.4
16 HI PINO 1 40 06-Feb 23.0 23.8
17 FH MERL 1 5 03-Feb 22.0 23.5
18 FJ MERL 1 80 06-Feb 24.0 24.8
19 FK MERL 1 70 06-Feb 23.1 23.9
20 FL MERL 1 80 06-Feb 23.5 24.3
21 FM MERL 2 40 05-Feb 25.3 26.3
22 FN MERL 2 40 05-Feb 23.0 24.0
23 FO MERL 2 40 05-Feb 24.8 25.8
24 FQ MERL 1 40 05-Feb 23.7 24.7
25 FX MERL 1 16 06-Feb 23.3 24.1
26 FZ MERL 1 12 06-Feb 22.6 23.4
27 GB MERL 1 10 06-Feb 22.6 23.4
28 GE MERL 1 25 02-Feb 24.8 26.6
29 GF MERL 1 35 06-Feb 25.5 26.3
30 GG MERL 1 25 06-Feb 24.5 25.3
31 EZ MALB 1 120 06-Feb 22.8 23.6
32 FA MALB 1 70 06-Feb 22.1 22.9
33 FE MALB 2 4 06-Feb 23.2 24.0
34 CB CHBL 1 15 02-Feb 20.3 22.1
35 CC CHBL 1 55 05-Feb 21.2 22.2
36 CD CHBL 1 75 05-Feb 22.5 23.5
37 CE CHBL 1 65 05-Feb 21.8 22.8
38 CF CHBL 6 10 02-Feb 24.5 26.3
39 CH CHBL 1 16 06-Feb 23.0 23.8
40 CI CHBL 1 16 03-Feb 20.5 22.0

Table 8.1: The first 40 vineyard blocks of the ordered list of blocks to be considered for harvesting
when applying the harvesting schedule to the sample sugar levels in Table C.1. The sugar levels
of the grapes in each block expected on 9 February when the schedule period under consideration
starts, are shown in the last column.

156 Chapter 8. The Wamakersvallei decision support system

Block list Block Sample date Sample Expected block
number name Cultivar Class Tonnes received sugar level sugar level

41 CJ CHBL 1 16 03-Feb 21.3 22.8
42 CK CHBL 1 15 03-Feb 18.7 20.2
43 CR CHBL 2 24 05-Feb 21.4 22.4
44 CS CHBL 2 15 06-Feb 21.6 22.4
45 CV CHBL 2 8 05-Feb 22.1 23.1
46 CW CHBL 2 3 02-Feb 20.4 22.2
47 CX CHBL 1 30 06-Feb 21.8 22.6
48 CZ CHBL 1 30 03-Feb 19.8 21.3
49 DA CHBL 1 15 03-Feb 19.2 20.7
50 DB CHBL 2 15 03-Feb 21.0 22.5
51 DF CHBL 2 6 06-Feb 21.4 22.2
52 DG CHBL 2 6 06-Feb 21.4 22.2
53 DH CHBL 1 65 03-Feb 18.8 20.3
54 DM CHBL 2 10 06-Feb 21.4 22.2
55 DN CHBL 1 5 06-Feb 21.1 21.9
56 DO CHBL 1 5 06-Feb 19.8 20.6
57 DP CHBL 1 10 06-Feb 22.9 23.7
58 DQ CHBL 1 10 06-Feb 21.5 22.3
59 DR CHBL 1 4 06-Feb 22.8 23.6
60 DS CHBL 1 4 06-Feb 22.9 23.7
61 DU CHBL 1 4 30-Jan 18.7 20.5
62 DV CHBL 2 2 06-Feb 22.1 22.9
63 DW CHBL 2 2 06-Feb 22.3 23.1
64 DX CHBL 2 2 06-Feb 23.2 24.0
65 DZ CHBL 1 8 02-Feb 20.2 22.0
66 EA CHBL 3 4 06-Feb 24.2 25.0
67 EB CHBL 3 4 02-Feb 22.7 24.5
68 EC CHBL 3 4 06-Feb 23.6 24.4
69 EE CHBL 1 40 06-Feb 22.8 23.6
70 EF CHBL 1 20 03-Feb 18.4 19.9
71 EG CHBL 1 2 06-Feb 21.2 22.0
72 EH CHBL 1 20 03-Feb 20.7 22.2
73 EI CHBL 1 17 06-Feb 20.4 21.2
74 EJ CHBL 1 6 06-Feb 21.6 22.4
75 EL CHBL 1 16 30-Jan 19.4 21.2
76 EM CHBL 1 16 30-Jan 21.1 22.9
77 EN CHBL 1 12 02-Feb 20.0 21.8
78 EQ CHBL 2 12 26-Jan 18.4 20.2
79 ER CHBL 1 15 26-Jan 18.7 20.5
80 ES CHBL 1 18 06-Feb 22.3 23.1

Table 8.1 (continued): Vineyard blocks B41, . . . , B80 of the ordered list of blocks to be considered
for harvesting when applying the harvesting schedule to the sample sugar levels in Table C.1.
The sugar levels of the grapes in each block expected on 9 February when the schedule period
under consideration starts, are shown in the last column.

8.2. The decision support system applied to Wamakersvallei 157

Block list Block Sample date Sample Expected block
number name Cultivar Class Tonnes received sugar level sugar level

81 EU CHBL 1 25 06-Feb 23.1 23.9
82 EV CHBL 1 6 02-Feb 19.9 21.7
83 HV SAUV 1 35 02-Feb 19.0 20.8
84 BA CHAR 3 16 04-Feb 23.1 24.4
85 BB CHAR 1 4 05-Feb 22.4 23.4
86 BD CHAR 1 70 02-Feb 22.4 24.2
87 BE CHAR 1 80 02-Feb 23.8 25.6
88 BF CHAR 1 23 02-Feb 25.0 26.8
89 BG CHAR 3 5 05-Feb 22.8 23.8
90 BH CHAR 1 75 06-Feb 23.0 23.8
91 BI CHAR 2 5 30-Jan 21.1 22.9
92 BJ CHAR 1 24 06-Feb 23.5 24.3
93 BK CHAR 1 50 05-Feb 21.5 22.5
94 BP CHAR 1 4 27-Jan 20.5 22.3
95 BQ CHAR 1 10 05-Feb 22.3 23.3
96 BR CHAR 1 7 05-Feb 22.0 23.0
97 BS CHAR 3 35 06-Feb 22.9 23.7
98 BW CHAR 1 10 02-Feb 19.5 21.3
99 BZ CHAR 1 20 02-Feb 23.9 25.7
100 IW VIOG 1 0 02-Feb 21.8 23.6
101 JA VIOG 1 12 02-Feb 19.9 21.7
102 JC VIOG 1 3 02-Feb 22.0 23.8
103 HK RIES 1 5 02-Feb 22.8 24.6

Table 8.1 (continued): Vineyard blocks B81, . . . , B103 of the ordered list of blocks to be consid-
ered for harvesting when applying the harvesting schedule to the sample sugar levels in Table
C.1. The sugar levels of the grapes in each block expected on 9 February when the schedule
period under consideration starts, are shown in the last column.

transpose arranged in table format, is presented in Table 8.2 along with the total expected yield
of the vineyard blocks selected for harvesting expressed in tonnes for each harvesting day.

Thirty-four vineyard blocks were not selected for harvesting during the five day period consid-
ered. These blocks, in no particular order, are B100, B1, B4, B6, B7, B8, B9, B16, B21, B23,
B26, B27, B29, B32, B42, B49, B53, B56, B61, B102, B79, B78, B98, B101, B28, B38, B66, B67,
B68, B70, B87, B88, B103, B99. The first unconsidered position in the harvesting schedule, is
position u = 73.

Evaluating the harvesting schedules

The initial harvesting schedule, HI , is taken as the best schedule to date and is evaluated in
order to calculate the (best) current harvest evaluation score ϑ. Consider the evaluation process
outlined in Chapter 7, together with the suggested updates explained in §8.1.4 as indicated in
Algorithm 7.3. The starting day of the selected harvesting period, i.e. day 1, is 9 February.
Since |B1| > 0, the cellar scheduling scenario for day 1 may be generated. The generation of
a scenario is now consider as it occurred during this application of the heuristic. Each of the
vineyard blocks in the set B1 = { B64, B39, B30, B60, B57, B59, B69, B36, B18, B14, B24 } is

158 Chapter 8. The Wamakersvallei decision support system

p B1 B2 B3 B4 B5

1 B64 B45 B2 B52 B84

2 B39 B63 B12 B54 B85

3 B30 B33 B50 B11 B86

4 B60 B62 B22 B34 B89

5 B57 B37 B3 B17 B90

6 B59 B41 B43 B40 B91

7 B69 B20 B19 B13 B92

8 B36 B47 B44 B65 B93

9 B18 B25 B58 B10 B94

10 B14 B5 B35 B71 B95

11 B24 B31 B46 B55 B96

12 −1 −1 B51 B15 B97

13 −1 −1 −1 B48 −1
14 −1 −1 −1 B72 −1
15 −1 −1 −1 B73 −1
16 −1 −1 −1 B74 −1
17 −1 −1 −1 B75 −1
18 −1 −1 −1 B76 −1
19 −1 −1 −1 B77 −1
20 −1 −1 −1 B80 −1
21 −1 −1 −1 B81 −1
22 −1 −1 −1 B82 −1
23 −1 −1 −1 B83 −1
∑
Wb 307 353 292 306 305

Table 8.2: The initial harvesting schedule, HI , selected from the list of blocks presented in
Table 8.1. The total expected weight of grapes scheduled for harvesting during each day is also
included.

split into truckloads, as described in Chapter 7. During the next step in the generation of the
scenario the arrival times are assigned to the expected grapeloads. The loads expected to arrive
within 2.5 hours of one another are combined as discussed. The list of jobs generated consist of
four Type I jobs, seven Type II and twenty-nine Type IV jobs, where Type IV jobs now refer
to the red grapeloads that are ‘only’ assigned to the tipping bins with weight 0, as discussed in
§8.1.2. The full list of jobs are presented in Table C.3 in Appendix C.

A scenario is generated for each of the sets B1, . . . ,B5 and solved using the cellar scheduling
tabu search. Not one of the days are resolved within the set amount of time, with (α− αmax)
ranging between 3 and 15. The average cellar scheduling score is calculated as 7 625 and due to
many vineyard blocks being assigned to positions HI(d, p), with p ≥ u, the total block scores
add up to a further 50 261 resulting in a harvest evaluation score of 57 886, which is set as the
current best evaluation score.

8.2.3 Generating the candidate list of moves

The first step in generating the list of tabu search candidate moves, is to select the vineyard
block to which the swaps should be applied. The vineyard block sugar level scores, Ωb, are

8.3. A short analysis of the performed tabu search 159

considered. The maximum value contained in vector Ωb is 5 000. It is clear that such a large
value is due to vineyard blocks with a grape quality of class 1 which are left to overripen.
The vineyard blocks with a block score of 5 000 are blocks B7, B21, B23 and B29. Since this
is the first iteration, none of the vineyard block candidates are present in the block tabu list.
Therefore, a block is randomly selected from the four candidates and in this application of
VinDSS, vineyard block B23 (HI(1, 78)) was selected. Since the vineyard block is currently
contained in the first row of the initial harvesting row, the two rows closest to row 1 are rows
2 and 3, referring to the assignment of the block to days 2 and 3, respectively. In Chapter 7 a
move on the harvesting schedule was defined as an array containing first the block type of the
selected block, then the block type of the block selected to be swapped with and then the four
integers describing the row and column of each of the two blocks involved. Since vineyard block
B23 is unassigned to a specific day for harvesting, the block is of block type 2 and the candidate
list of moves therefore consists of 6 moves. The list,

L =

{[
2 0 1 78 2 2

]
,[

2 1 1 78 2 11
]
,[

2 0 1 78 2 4
]
,[

2 0 1 78 3 11
]
,[

2 1 1 78 3 12
]
,[

2 0 1 78 3 7
]}

is generated accordingly and evaluation of the moves results in the harvesting scores, 53 122,
53 014, 52 960, 53 040, 53 162 and 53 067 for each of the respective moves. Since this is the first
iteration, all tabu lists are empty and therefore the move with the lowest harvesting score, L(3),
is selected for application. Since 52 960 < ϑ, the new best harvesting score is set as ϑ = 52 960
and the new recorded best harvesting schedule is set to H1 referring to the harvesting schedule
after iteration 1 has been completed.

The inverse of the move being added to the move type tabu list, is [23, 0, 2, 2, 1], thereby not
allowing block B23 to be moved back from row 2 to a position in row 1 (resulting in a move
type of 2). The swap move (23, 62) is placed in the swap tabu list, thereby also not allowing
block B23 to be swapped with B62 for as long as the move is in the swap tabu list.

After the completion of the first iteration, the block score of block B23 has now improved to
Ωb (23) = 5. Blocks B7, B21 and B29 still have block scores of 5 000 and therefore a block is
randomly selected from these three blocks. In this instance of the tabu search, the vineyard
block B29 was selected and the process of generating a list of candidate moves, evaluating each
move and selecting the best move was repeated.

The process of generating the list of moves as described, comparing the moves to the tabu lists
and finally selecting and applying the best move, is continued until the stopping criterion is
satisfied. The stopping criterion is satisfied once a set number of iterations have been completed.
The exact number of iterations required is considered in the next section.

8.3 A short analysis of the performed tabu search

Before the best solution may be compared to the harvest as it occurs at Wamakersvallei Winery,
it is first necessary to consider whether a lower harvest evaluation score necessarily implies a
better harvesting schedule. Two harvest schedules are now considered and compared, the first
is the best schedule found by the tabu search described above after 50 iterations, and the second

160 Chapter 8. The Wamakersvallei decision support system

is the best harvesting schedule found after 100 iterations. The best harvesting schedule to be
found after 50 iterations, H50 is

84 64 30 54 18 24 23 66 48
92 39 3 99 47 38 41 31 103 35 22 20 25 63 44 7 36
2 21 60 29 65 83 17 72 86 14 34 57 88 40 67 95 62 33 91
52 19 71 55 15 74 58 93 76 77 80 89 82 11
87 85 81 68 90 28 96 97 13 75

,

while the best harvesting schedule found after 100 iterations, H100 is

97 30 18 24 31 41 57 2 38
34 3 67 62 88 22 20 7 17 44 86 95 52 29 72 14
65 28 77 84 90 54 36 66 74 82 83 85 75 99 87 91 48
19 71 55 15 58 40 33 93 63 39 81 11 25 96 76 23 89 92 64 68
47 21 103 13 80 60

.

The harvesting schedules H50 and H100 have harvest evaluation scores of 7 286 and 6 674,
respectively2. The first aspect of these schedules to consider is the total weight of the grapes
received during the suggested schedules, as well as total weight per day and the distribution of
the weights over the five days. This information is shown in Table 8.3.

Property Vineyard block set H50 H100
∑
Wb B1 247 351∑
Wb B2 559 371∑
Wb B3 332 427∑
Wb B4 221 329∑
Wb B5 291 117

Total 1 650 1 595

W̄ 330 319
α 134.8 118.6

Table 8.3: An analysis of the weight of the grapes scheduled for each harvesting day in harvesting
schedules H50 and H100, where W̄ denotes the average weight assigned per day and α denotes
the standard deviation of the daily weights per harvesting schedule.

The maximum daily intake (from the 2006 data) is set to 610 tonnes in one day and the average
daily intake (also from 2006 data) is set to 290 tonnes. The first number that stands out is
the large amount of vineyard blocks harvested on day 2 of the harvesting schedule H50, a total
of 559 tonnes. This number might be within range of the maximum tonnes to be received in
one day, but there are some less obvious facts to bear in mind. Firstly the maximum of 610
tonnes is from a day much further into the harvesting period, and therefore consists mostly of
the reception of red grape varietals. However, at the start of the harvesting season, which is
currently under consideration, more white grape varieties are received and fewer white varieties
may be received in one day than is the case with red grapes. This is due to the fact that the red
grape varieties are immediately added to a fermentation tank and even though it is found within
the active cellar, it is out of the way of any of the other processes. However, when white grape

2In the representation of the harvesting schedules, only positive entries are shown. Each empty space in this
representation has a value of −1. If the negative numbers are included, the schedule representation overshoots
the page margins.

8.4. The suggested schedule vs Wamakersvallei selection 161

varieties are received at the cellar, they are required to remain in the active cellar (possibly)
being moved from the separators to the presses, which may last up to 6 hours. Therefore, the
559 tonnes of mostly white grape varietals received on day 2 of H50 is definitely not ideal. The
maximum number of tonnes scheduled for one day in H100, is 427 tonnes which seems much
more reasonable for this time of the harvesting season.

Both H50 and H100 exhibit a day where the number of tonnes does not seem to fit the general
pattern of the assigned weights throughout the schedule. For H50, this is day 2 and for H100,
this is day 5, during which only 117 tonnes of grapes are scheduled for intake. However, as
discussed in the previous section, assigning too much grapes to one day is definitely a worse
strategy than assigning too little. Assigning too little grapes may possibly result in a large
volume of grapes to be scheduled on day 1 of the next 5 day harvesting period. Furthermore,
in order to fully measure the spread of the vineyard blocks over the harvesting period, the
standard deviation in the assigned daily weight, α is also included in the table. In this respect
H100 is again the better solution when compared to H50.

The analysis above does not yet say much about the quality of either of the harvesting schedules.
However, this comparison shows that a decrease in the harvest evaluation score produces a
better harvesting schedule. The final harvesting schedule is taken as the harvesting schedule
H100 achieved after 100 iterations. A screen shot of the user interface of VinDss is shown in
Figure 8.2.

8.4 The suggested schedule vs Wamakersvallei selection

There are a few problem areas when attempting to verify the schedule suggested by VinDSS by
comparing it to the Wamakersvallei harvest. Most of the data were not received electronically
resulting in a painstaking process of piecing together when each vineyard block was harvested.
Furthermore, different referencing names are used in the different sets of data when referring
to the same vineyard block. Another aspect making it almost impossible to piece together the
Wamakersvallei 2009 harvest, is that the list of sugar levels seems to be incomplete and also
contains a few nonsensical entries. Some vineyard blocks arrived at the cellar for which no
sugar level entry can be found. This might be due to the personal relationship between the
Wamakersvallei team and some of the suppliers. For example, if a certain trusted supplier calls
and says that he has a certain volume of grapes that is perfectly ripe and ready to be harvested,
this vineyard block may be scheduled for harvesting without generating the necessary paper
trial required to recreate the harvest.

The first step in comparing the Wamakersvallei scenario with the suggested schedule, is to con-
sider the total weight of the vineyard blocks received during each day of the harvesting schedule
and to compare this with the corresponding value for the schedule H100. This comparison is
presented in Table 8.3.

Two aspects stand out regarding the Wamakersvallei daily grape weights received. The first is
the very small volume of grapes received at the cellar during the last day of harvesting. On
closer inspection, it was found that the 23 tonnes of grapes harvested on day 5 are all from
vineyard blocks where harvesting have started but not finished. There exists a variety of reasons
for starting the process of harvesting a specific vineyard block and not finishing the process.
However, the most common would be that there was no space or time to receive grapes at the
cellar. The second aspect is the enormous volume of grapes being harvested on day 3 of the
Wamakersvallei harvesting schedule, which is not at all typical of the start of the harvesting

162 Chapter 8. The Wamakersvallei decision support system

Figure 8.2: A screen shot of the user interface of VinDSS after generating the harvesting
schedule.

season. During the five day harvesting period considered, a total of over 400 tonnes of grapes
were received at the cellar without any trace of samples being received. This definitely influences
the outcome of the schedule, since the 408 tonnes were most likely not scheduled and received
from a supplier who had a large amount of excess grapes3. If this is indeed the case, and it very
well may be, the scheduled volume of grapes received by Wamakersvallei and the volumes in
harvesting schedule H100 are in very close proximity to one another. Furthermore, 120 tonnes
of the 408 tonnes was received on day 3, possibly explaining the unexpected large volume of
grapes harvested on this day. The harvesting of vineyard blocks in the schedule generated by
VinDSS is better distributed over the harvesting period than that of Wamakersvallei.

3This often happens when a grape supplier supplies grapes to more than one winery. The staff at Wamakers-
vallei seem inclined to help out in such cases by taking in the additional grapes.

8.5. Chapter overview 163

Property Vineyard block set H100 Wamakersvallei harvest
∑
Wb B1 351 393∑
Wb B2 371 497∑
Wb B3 427 561∑
Wb B4 329 390∑
Wb B5 117 23

Total 1 595 1 865

W̄ 319 373
α 118.6 208.6

Table 8.4: An analysis of weight of grapes scheduled for intake during each day in harvesting
schedules H100 and the actual 2009 harvest at Wamakersvallei, where W̄ denotes the average
weight assigned per day and α denotes the standard deviation of the daily weights per harvesting
schedule.

8.5 Chapter overview

The goal in this chapter was to illustrate the working of the solution process of the harvest
scheduling problem as part of the decision support system, VinDSS. As mentioned earlier in
this thesis, each winery will require its own set of minor alterations to the generic cellar and
harvest scheduling tabu searches considered in Chapters 6 and 7 and incorporated into VinDSS,
thereby completing thesis object III expressed in Chapter 1. The required changes to the tabu
searches in order to best fit the Wamakersvallei cellar were outlined in §8.1.

In §8.2, the working of the decision support system, VinDSS, was illustrated by applying the
tabu searches to solve the harvest scheduling problem experienced at Wamakersvallei Winery.
The data set used was composed by considering the sugar level forms filled in by the viticulturist
(as illustrated in Figure 4.8) during the Wamakervallei 2009 harvesting period. In order to find
the expected yield for each of the vineyard blocks, the information contained in the form was
cross-referenced with both the harvesting sheets (as illustrated in Figure 4.9) and the harvesting
data recorded during previous years. Unfortunately, for some of the vineyard blocks further
information was not available and instances where a vineyard block was received at the cellar
without a sugar sample being noted was also rather common. However, this shortcoming is
taken into account when the harvesting schedule generated by VinDSS was compared to the
daily schedules actually implemented by the Wamakersvallei team.

Two harvesting schedules uncovered at different iterations of the harvest scheduling problem
tabu search, namely H50 and H100 taken after 50 and 100 iterations, respectively, were con-
sidered in §8.3. The two schedules were compared to one another and it was determined that
harvesting schedule H100 is a better schedule than harvesting schedule H50. This is to be ex-
pected, since the tabu search was allowed to explore the solution neighbourhood for 50 more
iterations resulting in a better harvest evaluation score found for harvesting schedule H100 than
for harvesting schedule H50.

Finally, the final harvesting schedule generated after 100 iterations of the harvest scheduling
tabu search, H100, was compared to the actual Wamakersvallei 2009 harvest in §8.4. It was
found that a similar grape volume was harvested during both harvesting schedules. However,
harvesting schedule H100 contained a better distribution of harvested vineyard blocks over the
five day period considered.

164 Chapter 8. The Wamakersvallei decision support system

CHAPTER 9

Conclusion

Contents
9.1 Thesis summary . 165
9.2 Suggestions and recommendations . 166
9.3 Possible future work . 167

9.3.1 Improving the cellar and harvest scheduling problems 167

9.3.2 Improving the mathematical representation of winery characteristics . . 169

9.3.3 Improving the functionality of VinDSS 169

This chapter consists of three sections. The first section, §9.1, contains a brief summary of work
contained in this thesis. In §9.2, a suggestion is made with respect to any winery interested in
considering the VinDSS approach towards harvest scheduling, in terms of data that would be
required. Suggestions for possible work to further this study is considered in §9.3.

9.1 Thesis summary

In the introduction to this thesis, Chapter 1, a short overview of wine making in South Africa
was presented with some focus on the history of how the wine industry came to be. An informal
introduction to the scheduling problems considered in this thesis was presented, along with the
objectives pursued for this thesis.

The aim in the second chapter of this thesis was to provide the reader with an understanding
of wine and the South African wine industry, with the development of the South African wine
industry organisational structure as well as its current state forming an integral part of this
chapter. Some statistics were given on wine production and the import and export of wine in
South Africa. Furthermore, viticultural practices and a basic overview of wine making methods
were considered.

The necessary background information on scheduling problems considered in this thesis and
possible solution methods were presented in Chapter 3 with a view to properly identify the
scheduling problems experienced at a winery. The chapter also contains a concise survey of
literature regarding the job shop scheduling problem with some focus on the flexible job shop
scheduling problem. However, this subproblem was only identified in 1994 and comparatively
little research is available on this problem. A mixed integer programming model for the flexible
job shop scheduling problem with sequence-dependent setup times and a no-wait characteristic

165

166 Chapter 9. Conclusion

was reviewed and a brief description was included of the branch-and-bound method of solving
integer programming problems. An introduction to the tabu search method used to solve both
the cellar and harvest scheduling problems was also outlined in this chapter.

In order to fully understand the origin of the scheduling problems experienced at Wamakers-
vallei, some important aspects of the case study winery is required. These aspects were discussed
in Chapter 4, including information such as the physical layout and location of the cellar, the
machinery in the cellar, the wines of Wamakersvallei and the staff employed there. The current
order of processing and receiving grapes at the cellar was described with a more in-depth look
at the different requirements of producing red or white wine.

The active cellar scheduling problem experienced at Wamakersvallei winery deals with the
assignment and ordering of certain processes required in the production of wine. The active
cellar refers to the problem area where bottlenecks often occur during the busy harvesting
season. The purpose of Chapter 5 was to derive a mathematical programming model in order
to consider an exact solution approach to the active cellar programming problem. However,
after solving the resulting mathematical programming model for a small, fictitious cellar, it was
found that this method of solving the active cellar scheduling problem is too time consuming
when applied to the larger scheduling problem occurring at Wamakersvallei.

However, in Chapter 6, an alternative tabu search approach towards solving the cellar scheduling
problem was developed. The tabu search solved the small fictitious cellar optimally, 100% of
the time, when the problem was solved a thousand times. The computer processing time
asociated with the tabu search approach also constitued a significant improvement over that of
the branch-and-bound approach, the former being up to 1 000 times faster.

The goal of Chapter 7 was to develop a generic tabu search method which may be applied to
solve the harvesting schedule for a general winery. This schedule is found by referring to the
active cellar scheduling tabu search in order to verify the impact that harvesting moves have
on activities in the active cellar. One harvesting schedule is considered a better solution than
another when it has a lower harvest evaluation score, which is determined by the placement of
the vineyard blocks in the schedule.

Some minor changes to the active cellar and harvest scheduling tabu searches were applied to
the general tabu searches presented in Chapters 6 and 7. Chapter 8 contains an overview of the
resulting decision support system, VinDSS, based on the tabu search approaches of Chapters
6 and 7. It was found that a harvesting schedule delivered by VinDSS is a good schedule when
compared to a five day period of the 2009 harvest at Wamakersvallei. However, the processing
time required when solving the harvest scheduling problem at Wamakersvallei requires between
two and three hours to deliver a good harvesting schedule.

9.2 Suggestions and recommendations

In order to apply forecasting methods to estimate the sugar levels of vineyard blocks, significant
volumes of data are required. It is therefore suggested that any winery considering applying such
forecasting techniques should keep sugar level data of samples received in a disciplined fashion,
electronically. Each vineyard block should be assigned a unique reference number or name and
the data should be kept in a database allowing for easy extraction thereof. The weather reported
for each day during the harvesting schedule should be included in the database, specifically the
minimum and maximum temperatures, as well as the rainfall. This would make it possible to
properly investigate the relationship between these circumstances and the sugar content of the

9.3. Possible future work 167

grapes. It is expected that the sugar content should drop in rainy weather, since the grapes
absorb excess water, and also that the grapes would have much higher sugar levels during warm
weather, since more moisture is lost from the grapes. Both these situations may result in an
inaccurate representation of the maturity of the grapes and is therefore a very important place
to start if further research is attempted in this field.

Furthermore, data as to the exact route each grape load takes inside the active cellar would be
a great help in evaluating any application of a solution to the cellar scheduling problem. Such
a data set should contain, for each truckload, all processors it was assigned to (with processor
numbers included, i.e. not just ‘press’ but ‘press x’, for example) and also, very importantly,
the time the processing on each of the machines lasted. This will lead to better processing
time approximations that may be based on the cultivar of the grape (if enough data are made
available). This set of data should also include the time of the arrival of the truckload at the
cellar in order to better simulate the arrival of the delivery trucks.

9.3 Possible future work

As with most projects, there is never enough time to follow through with all the ideas conceived
during the research period. This section therefore contains some suggestions with respect to
possible future work. The suggestions may be classified into three classes; the first is considered
in §9.3.1 and is concerned with possible improvements with respect to the cellar and harvest
scheduling meta-heuristics developed in this thesis. Then, in §9.3.2, possible improvements are
suggested with respect to the mathematical approximation of the winery characteristics. In
order to successfully research these suggestions, some of the data described in §9.2 may be
required. Finally, in §9.3.3, some suggestions are made regarding increased functionality of
VinDSS. This section mostly contains further areas where the scheduling solution methods
developed in this thesis might be applied to solve a (possibly) different problem.

9.3.1 Improving the cellar and harvest scheduling problems

Even though the general tabu searches described in Chapters 6 and 7 were adapted to better
solve the Wamakersvallei scheduling problems, some improvement may still be made. This
section contains some alternate methods to parts of the cellar and harvest scheduling problems
that are yet to be explored.

Suggestion 9.1 Consider a third-level, nested tabu search within the active cellar scheduling
problem to replace the ejection chain move to generate a list of moves.

This suggestion would be particularly interesting to consider as a means of generating a list of
moves for the set of presses when a large active cellar scheduling problem is considered. The
reason why the ejection chain method developed in Chapter 6 was replaced by the separate order
and assignment method, was due to the increased processing time and space that is required
to apply the ejection chain move to the set of processors. The number of combinations to
consider just becomes too large and with the random generation of moves it requires thousands
of iterations before an assignment preserving a order throughout the presses is found.

This third tabu search may consider a means of evaluating the moving of a job from one
row of the order to another, rather than randomly selecting the moves. There are numerous
ways in which such moves may be evaluated. Consider, for example, Algorithm 6.11. Rather

168 Chapter 9. Conclusion

than breaking the loop if an infeasible solution occurs, the infeasibility count may be increased
and the process continued. The lower the infeasibility count, the better (or closer to feasible)
the solution. This infeasibility count may be combined with an estimated move impact score
referring to the expected impact that a move might have on the assignment order generated by
the move. For example, moving a Type III job from a position where it follows a Type II job
to a position where it precedes a Type II job, should be considered a bad move since it incurs
a higher setup time. By including the estimated move impact score, the assignment orders
generated from the moves should be of a higher quality.

Suggestion 9.2 Consider a more representative means of evaluating an order matrix in the
active cellar scheduling problem than the completion time currently considered.

Currently the main evaluation index of the order matrix is the completion time — the tabu
search strives to find a solution with the smallest completion time. The total setup time required
by the suggested order matrix is only used as a tiebreaker. A more representative means of
evaluating the cellar schedule may be to combine the completion time workforce requirements.
For example, in order to wash a tipping bin after red grapes have been received may take only
one hour. However, stopping the intake of grapes and removing a worker from the cellar floor
to clean the tipping bin in the middle of the day is more expensive than the cost incurred by a
delay of one hour. Another example where considering the setup time as part of the evaluation
may be desired, is when a Type II job is assigned to a press directly after a Type III job has been
pressed on the same press. The Type II job is the last job to be scheduled on the specific press,
but another press will be active for a couple more hours. In this case, focussing only on the
completion time, the unnecessarily bad assignment is not penalized. Therefore, an evaluation
method directly penalizing setup times should result in a more representative schedule with
assignments guaranteed to be spread more evenly over the processors.

Suggestion 9.3 Find a better method of generating an initial solution to the harvest scheduling
problem.

During the first couple of iterations of the harvest scheduling tabu search, major improvements
are made to the initial harvesting schedule, mainly due to blocks that were placed in positions
HI(d, p), with p ≥ u, which overripen during the harvesting period under consideration. A
simple, yet (possibly) effective method of improving the initial harvest scheduling would be to
ensure that no block remains unassigned if it is expected to exceed the upper bound on the
first-class sugar level during the harvesting period.

Suggestion 9.4 Add an ejection chain move as a diversification move to the current harvest
scheduling problem.

When the best harvest evaluation score for each iteration is considered over a large number
of iterations, it sometimes happens that the best harvest evaluation score remains unchanged
for a very large number of iterations. Furthermore, it is possible that some vineyard blocks
are not subjected to moves and it is not clear whether this is due to the fact that blocks have
been assigned to their ‘perfect’ positions or whether their assigned positions are just never bad
enough. Both of these situations may be avoided by applying a randomly generated ejection
chain move. A possible list of ejection chain moves may be generated easily using the general
ejection chain of Algorithm 6.10. Since the order in which the moves are assigned is irrelevant,
all moves generated are feasible. The move with the best harvest evaluation score may then be
selected and the tabu lists cleared.

9.3. Possible future work 169

9.3.2 Improving the mathematical representation of winery characteristics

In this section, some improvements in the formulation of the winery characteristics are suggested.
However, in order to apply any of these suggestions, further data are required (as mentioned in
§9.2).

Suggestion 9.5 Consider a more efficient measure of optimal grape ripeness.

The reliability of considering only the sugar level of grapes as an indicator of the ripeness of the
grapes has been doubted for a long time [131]. Studies have reported a block of grapes harvested
at the same sugar level for four years in a row (Pinotage at 22◦B) still result in fluctuations in
grape quality [131]. However, it has been determined that an index of sugar multiplied by the
pH level may serve as a much better yardstick for the ripeness of certain red cultivars [131].
Finding the best index for each cultivar might require processing large quantities of data.

Suggestion 9.6 Reconsider the forecasting technique used to calculate the expected sugar levels
of the vineyard blocks.

The credibility of the harvest scheduling solution suggested will increase significantly if more
research can be done concerning the forecasting of optimal grape ripeness. The data made
available for this study were not sufficient to derive proper forecasting techniques. It is very
important to accommodate the daily rainfall in order to fully understand grape maturation,
since the sugar levels in the grapes may be expected to decrease during a rainy week as a
result of grapes absorbing water. The relationship between rainfall and sugar levels of grapes
should also be explored in order to find a good approach when compared to forecasting grape
maturation dates. Researching and developing such a model may yield a drastic improvement
when compared to the current approach.

9.3.3 Improving the functionality of VinDSS

VinDSS is currently a very basic, yet efficient, decision support system that may be used to
determine good harvesting schedules. However, the solution methods incorporated into the
system for the active cellar scheduling and harvest scheduling problems may be applied in a
wider context than is currently the case if some alterations are made.

Suggestion 9.7 Include the option of finding a solution to only the active cellar scheduling
problem when the list of vineyard blocks for harvesting on a specific day has already been selected.
The cellar scheduling problem should then be solved for the full cellar by adding the storage tanks
to the problem definition.

This functionality will be particularly helpful to smaller estate wineries where the vineyard
blocks are all owned by the cellar — even more so if it is an estate only producing red (or white)
wines, since this implies that all the vineyard blocks should be nearing optimal harvesting dates
around the same time. It is to be expected that the size of such a cellar is much smaller than
that of the case study winery. An optimal assignment of grape loads to the machinery inside
the cellar is very important. In a smaller cellar it should also be possible to include the rest of
the cellar in the scheduling problem (as opposed to only focussing on the active cellar).

170 Chapter 9. Conclusion

The addition of another set of processors is easily accommodated by increasing the number of
machine sets and generating an additional move for assignments made to these machines. These
moves should follow a similar process to the moves applied to the red fermentation tanks, seeing
that the rest of the cellar also consists of tanks and the problem when assigning jobs to the
tanks is similar to that of assigning jobs to the red fermentation tanks.

When the cellar scheduling problem is adapted to fit a whole cellar, it may be applied to
determine the influence of decisions at the tipping bins on later stages of processing or storage
facilities (for example, what would be to gain or to lose if only white or only red grapes were
to be accepted during one particular day). This could very well yield surprisingly good results
since it will eliminate most setup times. The question is whether this will result in bottlenecks
in other parts of the cellar.

Suggestion 9.8 Rather than fixing the cellar information, such as the number of tipping bins,
allow the user to change these settings.

By including this simple functionality, the cellar scheduling solution method may be applied by
cellar management to determine which processors may possibly be unnecessary or scheduled for
maintenance. It would also be helpful when the cellar is expanded. By adding different machine
types in different quantities and sizes, the delivered schedule may be analysed in order to support
a decision of whether to expand in certain areas rather than others. This added feature should
easily answer questions such as: How would adding an extra tipping bin influence the working
inside the cellar? Will this just lead to bottlenecks occurring at the presses or would more
varietals be able to enter the cellar without too much setup time being wasted. The user may
thus analyse the optimality of the physical cellar.

References

[1] Aarts EHL, van Laarhoven PJM, Lenstra, JK & Ulder NLJ, 1994, A com-
putational study of local search algorithms for job shop scheduling, Operations Research
Society of America Journal of Computing, 6(2), pp. 118–125.

[2] Adams J, Balas E & Zawack D, 1988, The shifting bottleneck procedure for job shop
scheduling, Management Science, 34, pp. 391–401.

[3] Al-Turki U, Fedjki C & Anijani A, 2001, Tabu search for a class of single-machine
scheduling problems, Computers & Operations Research, 28, pp. 1223–1230.

[4] Applegate D & Cook W, 1991, A computational study of the job shop scheduling
problem, Operations Research Society of America Journal on Computing, 3(2), pp. 149–
156.

[5] Arkell J, 2003, Wine — A comprehensive guide to drinking and appreciating wine, New
Holland Publishers (UK) Ltd, London.

[6] Ashour S & Hiremath SR, 1973, A branch-and-bound approach to the job-shop schedul-
ing problem, International Journal of Production Research, 11(1), pp. 47–58.

[7] Auger A, Ferrer J, Maturana S & Vera J, 2003, Simulation of the grape reception
at a winery, [Online], [cited January 31st, 2007], Available from http://www.gepuc.cl/
publicaciones/Simulation_of_the_Grape-AA-JCF-SM-JV.pdf

[8] Baker KR, 1984, Sequencing rules and due date assignments in a job shop, Management
Science, 30, pp. 1093–1104.

[9] Balas E, Lenstra JK, Vazacoupoulos A, 1995, The one-machine problem with de-
layed precedence constraints and its use in job shop scheduling, Management Science,
41(1), pp. 94–109.

[10] Balas E & Vazacopoulos A, 1998, Guided local search with shifting bottleneck for
job-shop scheduling, Management Science, 44(2), pp. 262–275.

[11] Batiti R, 1996, Reactive search: Toward self-tuning heuristics, pp. 61–83 in Rayward-
Smith VF, Osman IH, Reeves CR & Smith GD (Eds), Modern heuristic search
methods, John Wiley and Sons Ltd, Chichester.

[12] Batiti R & Tecchiolli G, 1994, The reactive tabu search, Operations Research Society
of America Journal on Computing, 7, pp. 126–140.

[13] Baykasoǧlu A, 2002, Linguistic-based meta-heuristic optimization model for flexible job
shop scheduling, International Journal of Production Research, 40(17), pp. 4523–4543.

171

172 References

[14] Bester MJ, 2005, Design of an automated decision support system for scheduling tasks
in a generalized job-shop, MSc Thesis, University of Stellenbosch, Stellenbosch.

[15] Binato S, Henry WJ, Loewenstern DM & Resende MGC, 2000, A grasp for job
shop scheduling, AT&T Labs Research Technical Report: 00.6.1, pp. 1–17.

[16] B lazėwics J, Ecker KH, Pesch E, Schmidt G & Weglarz J, 2001, Scheduling
computer and manufacturing processes, 2nd Edition, Springer-Verlag, Berlin.

[17] B lazėwics J, Dror M & Weglarz J, 1991, Mathematical programming formulations
for machine scheduling: a survey, European Journal of Operational Research, 51, pp.
283–300.

[18] B lazėwics J, Pesch E & Sterna M, 2000, The disjunctive graph machine representa-
tion of the job shop scheduling problem, European Journal of Operational Research, 127,
pp. 317–331.

[19] Brandimarte P, 1993, Routing and scheduling in a flexible job shop by tabu search,
Annals of Operations Research, 41(3), pp. 157–183.

[20] Brizuela CA & Sannomiya N, 2000, From the classical job shop to a real problem: A
genetic algorithm approach, Proceedings of the 39th IEEE Conference on Decision and
Control, IEEE, Sydney, pp. 4174–4180.

[21] Brucker P, 2001, Scheduling algorithms, 3rd Edition, Springer-Verlag, Berlin.

[22] Brucker P, Jurisch B & Krämer A, 1997, Complexity of scheduling problems with
multi-purpose machines, Annals of Operations Research, 70, pp. 57–73.

[23] Brucker P, Jurisch B & Sievers B, 1994, A branch and bound algorithm for the
job-shop scheduling problem, Discrete Applied Mathematics, 49, pp. 109–127.

[24] Brooks GH & White CR, 1965, An algorithm for finding optimal or near-optimal
solutions to the production scheduling problem, The Journal of Industrial Engineering,
16, pp. 34–40.

[25] Cape Town Routes Unlimited, 2007, Wellington, [Online], [cited February 20th,
2007], Available from http://www.tourismcapetown.co.za/xxl/_lang/en/_site/
visit-travel/_area/westerncape/_subArea/355760/_subArea2/358119/_subArea3/
364754/_articleId/364773/index.html

[26] Carlier J, 1982, The one-machine sequencing problem, European Journal of Operational
Research, 11, pp. 42–27.

[27] Carlier J & Pinson E, 1989, An algorithm for solving the job-shop problem, Manage-
ment Science, 35, pp. 164–176.

[28] Carlier J & Pinson E, 1994, Adjustment of heads and tails for the job-shop problem,
European Journal of Operational Research, 78, pp. 146–161.

[29] Charlton JM & Death CC, 1970, A generalized machine-scheduling algorithm, Oper-
ational Research Quarterly, 21(1), pp. 127– 134.

[30] Chen J & Chen FF, 2003, Adoptive scheduling in random flexible manufacturing systems
subject to machine breakdowns, International Journal of Production Research, 41, pp.
1927–1951.

References 173

[31] Chen JC, Chen KH, Wu JJ & Chen CW, 2007, A study of the flexible
job shop scheduling problem with parallel machines and reentrant process, The In-
ternational Journal of Advanced Manufacturing Technology, Springer-Verlag Lon-
don Limited 2007, [Online], [cited March 11th, 2008], Available from http://
www.springerlink.com/content/3l7358276103j4kl/

[32] Chen H & Luh PB, 2003, An alternative framework to Lagrangian relaxation approach
for job shop scheduling, European Journal of Operational Research, 149, pp. 499–512.

[33] Collins Concise Dictionary 21st Century Edition, 5th Edition, HarperCollins
Publishers, Glasgow.

[34] Crawford JM, Dalal M & Walser JP, 1998, Abstract local search, [Online],
[cited June 9th, 2009], Available from http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.14.2287

[35] Dauzere-Peres S & Lasserre JB, 1993, A modified shifting bottleneck procedure for
job shop scheduling, International Journal for Production Research, 31, pp. 11–39.

[36] Dell Croce F, Tadei R & Volta G, 1995, A genetic algorithm for the job shop
problem, Computers and Operations Research, 22, pp. 15–24.

[37] Demirkol E, Mehta S & Uzsoy R, 1997, A computational study of shifting bottleneck
procedures for shop scheduling problems, Jounal of Heuristics, 3(2), pp. 111–137.

[38] Department of logistics, University of Stellenbosch, 2000, Optimal viticulture
practice, Report prepared for Winetech Vision 2020, Stellenbosch.

[39] Department of industrial engineering, University of Stellenbosch, 2000,
Best practise study on the wine cellar and wine making environment, Report prepared for
Winetech Vision 2020, Stellenbosch.

[40] Deyer ME & Wolsey LA, 1990, Formulating the single machine sequencing problem
with release dates as a mixed integer program, Discrete Applied Mathematics, 26, pp.
255–270.

[41] Dunstall S & Johnstone R, 2005, Applying innovative decision support technologies
to achieve harmony and adaptability in an Australian wine supply network, Media release,
SMART 2005 Conference, Australia.

[42] Ewineplanet.com, 2007, South Africa, [Online], [cited May 2nd, 2007], Available from
http:// ewineplanet.com/country.asp?id=23

[43] Ezy Systems, 2004, Business software you can depend on, [Online], [cited February 5th,
2008], Available from http://www.ezysys.com.au

[44] Ferrer JC, MacCawley A, Maturana S & Vera J, 2008, An optimization ap-
proach for scheduling wine grape harvest operations, International Journal of Production
Economics, 112, pp. 985–999.

[45] Fisher ML, 1973, Optimal solution of scheduling problems using Lagrange multipliers:
Part I, Operations Research, 21, pp. 1114–1127.

[46] Florian M, Trepant P & McMahon G, 1971, An implicit enumeration algorithm for
the machine sequencing problem, Management Science, 17, pp. B-789–B-792.

174 References

[47] Garey MR, Johnson DS & Sethi R, 1976, The complexity of flow shop and job shop
scheduling, Mathematics of Operations Research, 1(2), pp. 117–129.

[48] Gere WS, Heuristics in job shop scheduling, 1996, Management Science, 13, pp. 167–190.

[49] Gertioso C, 1988, A decision support system for wine-making cooperatives, European
Journal of Operational Research, 33, pp. 273–278.

[50] Giffler B & Thompson GL, 1960, Algorithms for solving production scheduling prob-
lems, Operations Research, 8, pp. 487–503.

[51] Glover F, 1990, Tabu search: A tutorial, Interfaces, 20, pp. 74–94.

[52] Glover F & Laguna M, 1993, Tabu search, pp. 70–150 in Reeves CR (Ed), Modern
heuristic techniques for combinatorial problems, Blackwell Scientific Publications, Oxford.

[53] Grabowski J, Nowicki E & Zdrzlka S, 1986, A block approach for single-machine
scheduling with release dates and due dates, European Journal of Operational Research,
26, pp. 278–285.

[54] Grabowski J & Wodecki M, 2005, A very fast tabu search algorithm for job shop
problem, pp. 117–144 in Rego C & Alidaee B (Eds), Metaheuristic optimization via
memory and evolution: Tabu search and scatter search, Kluwer Academic Publishers,
Hingham (MA).

[55] Grape, 2006, New chair of SA Wine Industry Council takes over, Grape News, 17 Oc-
tober 2006, [Online], [cited May 8th, 2007], Available from http://www.grape.co.za/
News/061011Asmal.htm

[56] Greenberg HH, 1968, A branch-bound solution to the general scheduling problem, Op-
erations Research, 16, pp. 353–361.

[57] Hansen G, 2000, Cognitive process simulation in wine making: Determin-
ing the best route for wine transfers, Wine Business Monthly, October 2000,
[Online], [cited June 5th, 2009], Available from http://www.winebusiness.com/
wbm/?go=getArticle&dataId=3563

[58] Hooker JN, 2007, Integrated methods for optimization, Springer, New York (NY).

[59] Hurink J, Jurisch B & Thole M, 1994, Tabu search for the job-shop scheduling
problem with multi-purpose machines, OR Spectrum, 15, pp. 205–215.

[60] Inman RA, 2006, Layout, [Online], [cited July 26th, 2007], Available from http://
www.referenceforbusiness.com/management/Int-Loc/Layout.html

[61] Jain AS & Meeran S, 1998, A state-of-the-art review of job shop scheduling techniques,
Technical Report, Department of Applied Physics, Electronics and Mechanical Engineer-
ing, University of Dundee, Dundee.

[62] Jain AS, Rangaswamy B & Meeran S, 1998, Job shop neighbourhoods and
move evaluation strategies, [Online], [cited June 7th, 2009], Avalable from http://
citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.48.790

[63] Jain AS, Rangaswamy B & Meeran S, 2000, New and “stronger” job-shop neigh-
bourhoods: A focus on the method of Nowicki and Smutnicki, Journal of Heuristics, 6(4),
pp. 1–29.

References 175

[64] Jansen K, Solis-Oba R & Sviridenko MI, 1999, A linear time approximation
scheme for job shop scheduling, [Online], [cited June 9th, 2009], Available from
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.25.8172

[65] Jansen K, Solis-Oba R & Sviridenko MI, 1999, Makespan minimization in job shops:
a polynomial time approximation scheme, Proceedings of the 31st Annual ACM Sympo-
sium on the Theory of Computing (STOC’99).

[66] Jensen MT, 2003, Generating robust and flexible job shop schedules using genetic algo-
rithms, IEEE Transactions on Evolutionary Computation, 7(3), pp. 275–288.

[67] Johnson SM, 1954, Optimal two-and three-stage production schedules with setup times
included, Naval Research Logistics Quaterly, 1, pp. 61–68.

[68] Joubert E, 2007, SAWIT restructures SAWB — Makes way for new representative
wine industry muscle, [Online], [cited May 8th, 2007], Available from www.sawit.co.za/
news/news_articles_07.asp

[69] Jurisch B, 1992, Scheduling jobs in shops with multi-purpose machines, PhD Disserta-
tion, Fachbereich MathematikyInformatik, Universität Osnabrück, Osnabrück.

[70] Kacem I, Hammadi S & Borne P, 2002, Approach by localization and multiobjective
evolutionary optimization for flexible job-shop scheduling problems, IEEE Transactions on
Systems, Man and Cybernetics — Part C: Applications and Reviews, 32(1), pp. 1–13.

[71] Kobayashi S, Ono I & Yamamura, 1995, An efficient genetic algorithm for job shop
scheduling problems, Proceedings of International Conference on Genetic algorithms, pp.
506–511.

[72] Köppe M & Weismantel R, 2003, An algorithm for mixed integer optimization, Math-
ematical Subject Classification, Springer-Verlag, New York (NY).

[73] Krajewski LJ & Ritzman LP, 1990, Operations management: Strategy and analysis,
2nd, Addison-Wesley Publishing Company, Inc, Reading (MA).

[74] Kruger B, 2000, A logistic strategy for the RSA wine industry: Part I, Report prepared
for Winetech 2020, Winetech, Stellenbosch.

[75] Kubiak W & van de Velde S, 1998, Scheduling deteriorating jobs to minimize
makespan, Naval Research Logistics, 45, pp. 511–523.

[76] KWV, 2007, KWV, [Online], [cited May 2nd, 2007], Available from http://
www.kwv.co.za/

[77] Lageweg BJ, Lenstra JK & Rinnooy-Kan AHG, 1977, Job-shop scheduling by
implicit enumeration, Management Science, 24, pp. 441–450.

[78] Lawrence S, 1984, Supplement to resource constrained project scheduling: An exper-
imental investigation of heuristic scheduling techniques, Graduate School of Industrial
Administration, Carnegie-Mellon University, Pittsburgh (PA).

[79] Lee SM & Asllani AA, 2004, Job scheduling with dual criteria and sequence-dependent
setups: Mathematical versus genetic programming, The International Journal of Manage-
ment Science, 32, pp. 145–153.

176 References

[80] Leung JYT (Ed), 2004, Handbook of scheduling: Algorithms, models and performance
analysis, CRC Press, Boca Raton (FL).

[81] Lindo Systems, 2008, Lindo Systems, [Online], [cited August 25th, 2008], Available from
http://www.lindo.com/

[82] Martin P & Shmoys DB, 1996, A new approach to computing optimal schedules
for the job shop scheduling problem, [Online], [cited June 9th, 2009], Available from
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.33.695

[83] Mason SJ, Fowler JW & Carlyle WM, 2002, A modified shifting bottleneck heuristic
for minimizing total weighted tardiness in complex job shops, Journal of Scheduling, 5,
pp. 247–262.

[84] McMillan C, 1970, Mathematical programming: An introduction to the design and ap-
plication of optimal decision machines, John Wiley & Sons, Inc, New York (NY).

[85] MediaVision, on behalf of SA Wine Council, 2008, Wine Council flexes
muscles on social transformation in the wine industry, Media Release, [On-
line], [cited March 19th, 2009], Available from http://www.wine.co.za/news/
news.aspx?NEWSID=11442&Source=News

[86] Microsoft Office, 2003, Excel, [Online], [cited June 7th, 2009], Information available
from http://office.microsoft.com/en-us/excel/default.aspx

[87] Mittenthal J, Raghavachari M & Rana AI, 1993, A hybrid simulated annealing
approach for single machine scheduling problems with non-regular penalty functions, Com-
puters and Operations Research, 20, pp. 103–111.

[88] Musee N, Lorenzen L & Aldrich C, 2005, Decision support for waste minimization
in wine making processes, Environmental Progress, 25(1), pp. 56–63.

[89] Nahmias S, 1997, Production and operations analysis, 3rd Edition, The McGraw-Hill
Companies, Inc, Hightstown (NJ).

[90] Nowicki E & Smutnicki C, 1996, A fast tabu search algorithm for the permutation
flow-shop problem, European Journal of Operational Research, 91, pp. 160–175.

[91] Pandell AJ, 1999, The acidity of wine, [Online], [cited November 21st, 2007], Available
from http://www.wineperspective.com/the_acidity_of_wine.htm

[92] Pezzela F & Merelli E, 2000, A tabu search method guided by shifting bottleneck for
the job-shop scheduling problem, European Journal of Operational Research, 120(3), pp.
297–310.

[93] Pinedo M, 2002, Scheduling: Theory, algorithms and systems, 2nd Edition, Prentice
Hall, Inc, Upper Saddle River (NJ).

[94] Pinedo ML, 2005, Planning and scheduling in manufacturing and services, Springer
Science Business Media, LLC, New York (NY).

[95] Pirlot M, 1996, General local search methods, European Journal of Operational Re-
search, 92, pp. 493–511.

References 177

[96] Practical action, technology challenging poverty, 2006, Grape wine, [On-
line], [cited January 25th, 2007], Available from http://practicalaction.org/docs/
technical_information_service/grape_wine.pdf

[97] Ramudhin A & Marier P, 1996, The generalized shifting bottleneck procedure, European
Journal of Operational Research, 93, pp. 34–48.

[98] Rankine B, 1989, Making good wine: A manual of winemaking practice for Australia
and New Zealand, Sun Books, Melbourne.

[99] Reid RD & Sanders NR, 2007, Operations management, [Online], [cited August 10th,
2007], Available from www.csus.edu/mgmt/blakeh/RS-Ch10.ppt

[100] Robinson J (Ed), 1994, The Oxford companion to wine, Oxford University Press, Ox-
ford.

[101] Roux M, 2009, Viticulturist at Wamakersvallei wine cellar, [Personal Communication],
Contactable at marko@wamakersvallei.co.za

[102] SA Wine Council, 2006, SA Wine Council, [Online], [cited March 19th, 2009], Available
from http://www.winecouncil.co.za/

[103] SA Wine Industry Information & Systems, 2006, Annual report, [On-
line], [cited May 2nd, 2007], Available from http://www.sawis.co.za/
SAWISPortal/DesktopDefault.aspx?tabindex=3&tabid=53

[104] SA Wine Industry Information & Systems, 2005, Statistics of wine-grape vines
as on 30 November 2005, [Online], [cited May 2nd, 2007], Available from http://
www.sawis.co.za/SAWISPortal/DesktopDefault.aspx?tabindex=3&tabid=53

[105] SA Wine Industry Information & Systems, 2008, Annual report, [On-
line], [cited March 19th, 2009], Available from http://www.sawis.co.za/info/
annualpublication.php

[106] Sabuncuoglu I & Bayiz M, 1999, Job shop scheduling with beam search, European
Journal of Operational Research, 118, pp. 390–412.

[107] Saidi-Mehrabad M & Fattahi P, 2007, Flexible job shop scheduling with tabu search
algorithms, International Journal of Advanced Manufacturing Technology, 32, pp. 563–
570.

[108] SAWIS, 2007, SA wine industry information & systems, [Online], [cited May 22nd, 2007],
Available from http://www.sawis.co.za/

[109] Serafini P, 2003, Asymptotic scheduling, Mathematical Programming, 98(1–3), pp. 1–
15.

[110] Sevastianov S, 1998, Nonstrict vector summation in multi-operation scheduling, Annals
of Operations Research, 83, pp. 1–31.

[111] Sevastianov SV, 1994, On some geometric methods in scheduling theory: A survey,
Discrete Applied Mathematics, 55, pp. 59–82.

178 References

[112] Shafaei R & Brunn P, 1999, Workshop scheduling using practical (inaccurate) data —
Part 1: The performance of heuristic scheduling rules in dynamic job shop environment
using a rolling time horizon approach, International Journal of Production Research,
37(17), pp. 3913–3925.

[113] Singer M, 2001, Decomposition methods for large job shops, Computers and Operations
Research, 28(3), pp. 193–207.

[114] Slack N, Chambers S & Johnston R, 1995, Operations management, 4th Edition,
Study guide, Pearson Education, [Online], [cited August 6th, 2007], Available from
http://wps.pearsoned.co.uk/ema_uk_he_slack_opsman_4/0,8757,1144919-,00.html

[115] South African wine, 2007, Wamakersvallei Winery, 2005, [Online], [cited November
27th, 2007], Available from http://www.wamakersvallei.co.za

[116] South African Wine Industry Trust, 2007, [Brochure], Agricultural Research Cen-
tre, Manor House, R44 Arterial Road, Stellenbosch, 7600.

[117] South African Wine & Brandy Company, 2003, The South African wine industry
strategy plan (WIP), [Retrieved May 2nd, 2007], SAWB Online DataBase.

[118] South African Wine & Brandy Company, 2006, The effects of deregulation on the
South African wine industry, [Retrieved May 4th, 2007], SAWB Online DataBase.

[119] Southern Hemisphere Wine Center, 2007, The history of South African wine,
[Online], [cited May 2nd, 2007], Available from http://www.southernwines.com/
history.cfm

[120] Steinhöffel K, Albercht A & Wong CK, 2002, Fast parallel heuristics for the job
shop scheduling problem, Journal of the Operational Research Society, 39, pp. 1163–1174.

[121] Stevenson WJ, 2007, Operations management, 9th Edition, McGraw-Hill Companies,
Inc, New York (NY).

[122] Storer RH, Wu SD & Vaccari R, 1992, New search spaces for sequencing problems
with application to job shop scheduling, Management Science, 38, pp. 1495–1509.

[123] Sun D, Batta R & Lin L, 1995, Effective job shop scheduling through active chain
manipulation, Computers and Operations Research, 22(2), pp. 159–172.

[124] Taillard ED, 1994, Parallel taboo search techniques for the job-shop scheduling problem,
Operations Research Society of America Journal on Computing, 6, pp. 108–117.

[125] Truter H, 2007, Cellar master at Wamakersvallei wine cellar, [Personal Communica-
tion], Contactable at hugo@wamakersvallei.co.za

[126] Truter J, 2007, Cellar manager at Wamakersvallei wine cellar, [Personal Communica-
tion], Contactable at johan@wamakersvallei.co.za

[127] van der Merwe K, 2007, Viticulturist at Wamakersvallei wine cellar, [Personal Com-
munication], Contactable at koos@wamakersvallei.co.za

[128] van Dyk FE, 2009, Principal supply chain analyst in the Built Environments department
of the Council for Scientific and Industrial Research (CSIR) in South Africa, [Personal
Communication], Contactable at fevandyk@csir.co.za

References 179

[129] van Laarhoven PJM & Aarts EHL, 1998, Simulated annealing: Theory and applica-
tions, D. Reidel Publishing Company, Dortrecht.

[130] van Laarhoven PJM, Aarts EHL & Lenstra JK, 1992, Job-shop scheduling by
simulated annealing, Operations Research, 40, pp. 113–125.

[131] van Schalkwyk H & Archer E, 2000, Determining optimal ripeness in wine grapes,
Wynboer: A Technical Guide for Wine Producers, [Online], [cited June 5th, 2009], Avail-
able from http://www.wynboer.co.za/recentarticles/0500optimum.php3

[132] Vaessens RJM, Aarts EHL & Lenstra JK, 1994, Job shop scheduling by local search,
INFORMS Journal on Computing, 8, pp. 302–317.

[133] Varela R, Vela CR, Puente J & Gomez A, 2002, A knowledge-based evolution-
ary strategy for scheduling problems with bottlenecks, European Journal of Operational
Research, 145, pp. 57–71.

[134] Vine RP, Harkness EM, Browning T & Wagner C, 1999, Winemaking: From grape
growing to marketplace, Aspen Publishers, Inc, Gaithersburg (MD).

[135] Visser C, 2007, Winemaker at Wamakersvallei wine cellar, [Personal Communication],
Contactable at christiaan@wamakersvallei.co.za

[136] Wagner HM, 1959, An integer linear-programming model for machine scheduling, Naval
Research Logistics Quarterly, 6, pp. 131–140.

[137] Wang L & Zheng D, 2001, An effective hybrid optimization strategy for job-shop schedul-
ing problem, Computers and Operations Research, 28(6), pp. 585–596.

[138] Watson J, Beck JC, Hove AE & Whitley, 2001, Towards a descriptive model of
local search cost in job shop scheduling, Proceedings of the Sixth European Conference on
Planning, ECP, Toledo.

[139] Weiss KA & Kelly S, 2004, Reading rehabilitation: A case on organizational layouts,
[Online], [Cited July 26th, 2007], Available from http://courses.washington.edu/
smartman/pdf/ReadingRehab.pdf

[140] Wellington Tourism Bureau, 2007, Wamakersvallei Winery, [Online], [cited Febru-
ary 20th, 2007], Available from http://www.wellington.co.za/taste_wellington.php

[141] Wellington Tourism Bureau, 2007, Wellington Guide, [Online], [cited February 20th,
2007], Available from http://www.wellington.co.za/

[142] Wikipedia, the free encyclopedia, 2007, History of South Africa in the apartheid
era, [Online], [cited August 13th, 2007], Available from http://en.wikipedia.org/
wiki/History_of_South_Africa_in_the_Apartheid_era#Sanctions

[143] Wikipedia, the free encyclopedia, 2007, Tartaric acid, [Online], [cited November
21st, 2007], Available from http://en.wikipedia.org/wiki/Tartaric_acid

[144] Wikipedia, the free encyclopedia, 2007, Viticulture, [Online], [cited January 31st,
2007], Available from http://en.wikipedia.org/wiki/Viticulture

[145] Wikipedia, the free encyclopedia, 2007, Wine, [Online], [cited January 26th, 2007],
Available from http://en.wikipedia.org/wiki/Wine

180 References

[146] Wikipedia, the free encyclopedia, 2007, Winemaking, [Online], [cited January 26th,
2007], Available from http://en.wikipedia.org/wiki/Winemaking

[147] Williamson DP, Hall LA, Hoogeveen JA, Hurkens CAJ, Lenstra JK, Sev-
ast’janove SV & Shmoys DB, 1997, Short shop schedules, Operations Research, 45,
pp. 288–295.

[148] Wine, 2007, Wamakersvallei Winery, [Online], [cited January 25th, 2007], Available from
http://www.wine.co.za/directory/winery.aspx?PRODUCERID=3205

[149] Wine Charter Steering Commitee, 2006, The wine industry transformation charter,
Consultative Draft I, [Online], [cited May 21st, 2007], Available from www.sawit.co.za/
downloads/Wine_Industry_Transformation_Charter.pdf

[150] Winetech, 2006, Annual report outline, [Online], [cited May 2nd, 2007], Available from
http://www.winetech.co.za/docs2007/winetechjaarverslag2006engelsoutline.doc

[151] Wineland, 2006, Money makes the wine go round — but who foots the bill?,
Wineland, October 2006, [Online], [cited May 2nd, 2007], Available from http://
www.wineland.co.za/2006oct-money.php3

[152] Winston WL, 1994, Operations research: Applications and algorithms, 3rd Edition,
Duxbury Press, Belmont (CA).

[153] Wittwer G & Rothfield J, 2008, Global wine — Australia in perspective,
The Global Wine Statistical Compendium, Australian Wine and Brandy Corpora-
tion, [Online], [cited March 19th, 2009], Available from https://www.awbc.com.au/
winefacts/data/free.asp?subcatid=97

[154] WOSA, 2007, Wines of South Africa, [Online], [cited May 2nd, 2007], Available from
http://www.wosa.co.za/

[155] Yamanda T & Nakano R, 1992, A genetic algorithm applicable to large-scale job shop
problems, Parallel Problem Solving from Nature, 2, pp. 281–290.

[156] Yamanda T & Nakano R, 1996, Job shop scheduling by simulated annealing combined
with deterministic local search, pp. 237–248 in Osman IH, Kelly JP, Meta-heuristics:
Theory & Applications, pp. 237–248.

[157] Yang S & Wang D, 2001, A new adaptive neural network and heuristic hybrid approach
for job-shop scheduling, Computers and Operations Research, 28, pp. 955–971.

APPENDIX A

Processor specifications

Contents
A.1 Tank capacities and processor numbering . 181

A.1.1 Tank capacities . 181

A.1.2 Processor numbers . 188

A.2 Grape Intakes . 188

This appendix contains information regarding the equipment used in the cellar at Wamak-
ersvallei Winery, such as the physical and actual capacities (where relevant) of processors.
Furthermore, the necessary information regarding each of the processors forming part of the
active cellar, and therefore part of the active cellar scheduling problem as described in Chapters
4–6, are considered. Th appendix also contains a summary of information on the yearly grape
intake at Wamakersvallei Winery from 2000 to 2006, presented in §A.2.

A.1 Tank capacities and processor numbering

Each processor involved in the active cellar scheduling problem is assigned an unique processor
number. In §A.1.1, these numbers are shown, where necessary deferring the introduction of
some processor numbers to §A.1.2.

A.1.1 Tank capacities

Information with respect to tanks and their capacities, is listed in Table A.1. It is important to
note the difference between the Vessel reference and the processor number. The Vessel reference
is a label assigned to each of the processors by the winemaker in order to keep track of machine
activity (using the cellar software), whereas the processor number, i, is used to label machine Pi
for the active cellar scheduling problem in VinDSS. Table A.1 therefore contains the individual
physical machine capacities, the machine locations in the cellar, their vessel numbers and their
processor numbers. Store BS refers to the Blue Store, the remaining the store labels are self
explanatory.

181

182 Chapter A. Processor specifications

Vessel Store Description Physical Actual Processor
reference Capacity Capacity number

001 B Settling tank 43 580
002 B Settling tank 43 513
003 B Settling tank 43 644
004 B Settling tank 43 612
005 B Settling tank 43 345
006 B Settling tank 44 021
007 B Settling tank 43 626
008 B Settling tank 43 624
009 B Settling tank 43 686
010 B Settling tank 43 776
011 B Settling tank 43 806
012 B Settling tank 43 580
013 B Settling tank 43 424
014 B Settling tank 43 662
015 B Settling tank 43 846
016 B Settling tank 43 487
017 B Fermentation tank 43 590
018 B Fermentation tank 43 470
019 B Fermentation tank 43 404
020 B Fermentation tank 43 610
021 B Fermentation tank 43 563
022 B Fermentation tank 43 599
023 B Fermentation tank 43 813
024 B Fermentation tank 43 851
025 B Fermentation tank 43 733
026 B Fermentation tank 43 746
027 B Fermentation tank 43 791
028 B Fermentation tank 43 820
029 B Fermentation tank 43 622
030 B Fermentation tank 43 512
031 B Fermentation tank 43 464
032 B Fermentation tank 43 573
033 B Fermentation tank 43 519
034 B Fermentation tank 43 509
035 B Fermentation tank 22 959
036 B Fermentation tank 22 867
037 B Fermentation tank 22 980
038 B Fermentation tank 22 934
039 B Fermentation tank 22 982
040 B Fermentation tank 22 926
041 B Fermentation tank 22 935
042 B Fermentation tank 22 950

Table A.1: Physical capacities (in litres) of the different types of tanks found in Stores A to
F of Wamakersvallei cellar, including the actual capacity (in tonnes) where it is relevant. A
processor number is assigned to the tanks forming part of the active cellar [135].

A.1. Tank capacities and processor numbering 183

Vessel Store Description Physical Actual Processor
reference Capacity Capacity number

043 B Fermentation tank 22 949
044 B Fermentation tank 30 118
045 B Fermentation tank 30 119
046 B Fermentation tank 30 154
047 B Fermentation tank 30 300
048 B Fermentation tank 30 163
049 B Fermentation tank 30 261
050 B Fermentation tank 30 182
051 B Fermentation tank 30 158
052 B Fermentation tank 29 852
053 B Fermentation tank 29 882
054 B Fermentation tank 29 873
055 B Fermentation tank 29 887
056 B Fermentation tank 29 783
057 B Fermentation tank 29 865
058 B Fermentation tank 29 876
059 B Fermentation tank 29 832
061 E Fermentation tank 51 633
062 E Fermentation tank 50 908
063 E Fermentation tank 51 481
064 E Fermentation tank 51 571
065 E Fermentation tank 33 774
066 E Fermentation tank 33 655
067 E Fermentation tank 33 771
068 E Fermentation tank 33 556
071 A Fermentation tank 89 089
072 A Fermentation tank 89 014
073 A Fermentation tank 88 554
081 BS Storage tank 175 206
082 BS Storage tank 174 738
083 BS Storage tank 172 564
084 BS Storage tank 172 105
090 A Fermentation tank 5 483
091 A Fermentation tank 5 470
092 A Fermentation tank 5 382
093 A Fermentation tank 2 869
094 A Fermentation tank 2 868
095 A Storage tank 2 901
096 A Storage tank 2 882
201 F Fermentation Tank 53 343
202 F Fermentation Tank 53 319
203 F Fermentation Tank 53 451

Table A.1 (continued): Physical capacities (in litres) of the different types of tanks found in
Stores A to F of Wamakersvallei cellar, including the actual capacity (in tonnes) where it is
relevant. A processor number is assigned to the tanks forming part of the active cellar [135].

184 Chapter A. Processor specifications

Vessel Store Description Physical Actual Processor
reference Capacity Capacity number

204 F Fermentation Tank 53 542
205 F Fermentation Tank 53 401
206 F Fermentation Tank 53 462
207 F Fermentation Tank 53 537
208 F Fermentation Tank 53 384
209 F Fermentation Tank 110 403
210 F Fermentation Tank 110 771
211 F Fermentation Tank 109 994
212 F Fermentation Tank 110 459
213 F Fermentation Tank 110 494
214 F Fermentation Tank 110 216
215 F Fermentation Tank 110 568
216 F Fermentation Tank 110 538
217 F Fermentation Tank 110 647
218 F Fermentation Tank 110 473
219 F Fermentation Tank 110 622
220 F Fermentation Tank 110 323
221 F Fermentation Tank 110 222
222 F Fermentation Tank 110 224
223 F Fermentation Tank 109 881
224 F Fermentation Tank 110 078
225 F Fermentation Tank 53 257
226 F Fermentation Tank 53 223
227 F Fermentation Tank 53 367
228 F Fermentation Tank 53 425
229 F Fermentation Tank 53 458
230 F Fermentation Tank 53 352
231 F Fermentation Tank 53 485
232 F Fermentation Tank 53 430
233 F Fermentation Tank 89 250
234 F Fermentation Tank 88 685
235 F Fermentation Tank 88 452
236 F Fermentation Tank 88 925
237 F Fermentation Tank 89 266
238 F Fermentation Tank 88 596
239 F Fermentation Tank 89 177
240 F Fermentation Tank 27 206
241 F Fermentation Tank 27 238
242 F Fermentation Tank 27 187
243 F Fermentation Tank 27 152
244 F Fermentation Tank 27 171
245 F Fermentation Tank 27 194

Table A.1 (continued): Physical capacities (in litres) of the different types of tanks found in
Stores A to F of Wamakersvallei cellar, including the actual capacity (in tonnes) where it is
relevant. A processor number is assigned to the tanks forming part of the active cellar [135].

A.1. Tank capacities and processor numbering 185

Vessel Store Description Physical Actual Processor
reference Capacity Capacity number

246 F Fermentation Tank 27 324
247 F Fermentation Tank 27 195
248 F Fermentation Tank 27 342
249 F Fermentation Tank 27 358
250 F Fermentation Tank 27 188
251 F Fermentation Tank 27 185
252 F Fermentation Tank 27 191
253 F Fermentation Tank 27 258
254 F Fermentation Tank 27 226
255 F Fermentation Tank 27 171
301 C back Fermentation tanks 87 654
302 C back Fermentation tanks 87 569
303 C back Fermentation tanks 87 689
304 C back Fermentation tanks 87 369
305 C back Fermentation tanks 87 486
306 C back Fermentation tanks 87 592
307 C back Fermentation tanks 87 497
308 C back Fermentation tanks 110 927
309 C back Fermentation tanks 111 122
310 C back Fermentation tanks 111 210
311 C back Fermentation tanks 111 159
312 C back Fermentation tanks 110 849
313 C back Fermentation tanks 111 083
314 C back Fermentation tanks 87 419
315 C back Fermentation tanks 87 728
316 C back Fermentation tanks 87 481
325 C front Cold stabilisation 17 354
326 C front Cold stabilisation 17 431
327 C front Cold stabilisation 17 596
328 C front Buffer 21 501
329 C front Buffer 21 560
330 C front Buffer 21 503
331 C front Buffer 17 523
332 C front Buffer 17 433
333 C front Buffer 17 545
334 C front Buffer 11 310
335 C front Buffer 11 345
336 C front Buffer 11 204
337 C front Buffer 8 024
338 C front Buffer 8 030
339 C front Buffer 8 046
340 C front Cold stabilisation 5 358

Table A.1 (continued): Physical capacities (in litres) of the different types of tanks found in
Stores A to F of Wamakersvallei cellar, including the actual capacity (in tonnes) where it is
relevant. A processor number is assigned to the tanks forming part of the active cellar [135].

186 Chapter A. Processor specifications

Vessel Store Description Physical Actual Processor
reference Capacity Capacity number

341 C front Cold stabilisation 5 364
342 C front Cold stabilisation 8 050
343 C front Cold stabilisation 11 276
344 C front Cold stabilisation 11 303
345 C front Buffer 26 865
346 C front Cold stabilisation 26 837
347 C front Cold stabilisation 26 906
401 D Fermentation tank 75 000
402 D Fermentation tank 75 000
403 D Fermentation tank 75 000
404 D Fermentation tank 75 000
405 D Fermentation tank 75 000
406 D Fermentation tank 75 000
407 D Fermentation tank 75 000
408 D Fermentation tank 75 000
409 D Fermentation tank 75 000
410 D Fermentation tank 75 000
411 D Fermentation tank 75 000
412 D Fermentation tank 75 000
413 D Fermentation tank 75 000
414 D Fermentation tank 75 000
415 D Fermentation tank 130 000
416 D Fermentation tank 130 000
417 D Fermentation tank 130 000
418 D Fermentation tank 130 000
419 D Fermentation tank 130 000
420 D Fermentation tank 130 000
421 D Fermentation tank 130 000
422 D Fermentation tank 130 000
423 D Fermentation tank 130 000
424 D Fermentation tank 130 000
430 D Fermentation tank 37 000
431 D Fermentation tank 37 000
432 D Fermentation tank 37 000
433 D Fermentation tank 37 000
434 D Fermentation tank 34 000
435 D Fermentation tank 34 000
436 D Fermentation tank 34 000
437 D Fermentation tank 34 000
438 D Fermentation tank 34 000
439 D Fermentation tank 34 000
440 D Fermentation tank 34 000

Table A.1 (continued): Physical capacities (in litres) of the different types of tanks found in
Stores A to F of Wamakersvallei cellar, including the actual capacity (in tonnes) where it is
relevant. A processor number is assigned to the tanks forming part of the active cellar [135].

A.1. Tank capacities and processor numbering 187

Vessel Store Description Physical Actual Processor
reference Capacity Capacity number

441 D Fermentation tank 34 000
442 D Fermentation tank 34 000
443 D Fermentation tank 34 000
449 D Fermentation tank 20 000
450 D Fermentation tank 20 000
451 D Fermentation tank 20 000
452 D Fermentation tank 20 000
453 D Fermentation tank 20 000
454 D Fermentation tank 20 000
455 D Fermentation tank 20 000
456 D Fermentation tank 20 000
457 D Fermentation tank 20 000
458 D Fermentation tank 20 000
A E Contech Buffer A 11 710
B E Contech Buffer B 11 710

DF1 E Red fermentation tank 100 197 80 19
DF2 E Red fermentation tank 100 194 80 20
DF3 E Red fermentation tank 100 235 80 21
DF4 E Red fermentation tank 100 564 80 22
DF5 E Red fermentation tank 100 605 80 23
DF6 E Red fermentation tank 100 475 80 24
DF7 E Red fermentation tank 100 323 80 25
DF8 E Red fermentation tank 100 785 80 26
DF9 E Red fermentation tank 100 363 80 27
DF10 E Red fermentation tank 100 085 80 28
RT317 C front Red fermentation tank 55 742 50 29
RT318 C front Red fermentation tank 55 793 50 30
RT319 C front Red fermentation tank 55 804 50 31
RT320 C front Red fermentation tank 54 169 50 32
RT321 C front Red fermentation tank 56 081 50 33
RT322 C front Red fermentation tank 55 615 50 34
RT323 C front Red fermentation tank 55 868 50 35
RT324 C front Red fermentation tank 55 783 50 36
RT325 C front Red fermentation tank 88 000 80 37
RT326 C front Red fermentation tank 88 000 80 38
RT327 C front Red fermentation tank 88 000 80 39
RT328 C front Red fermentation tank 88 000 80 40
RT329 C front Red fermentation tank 95 000 80 41
RT330 C front Red fermentation tank 95 000 80 42
RT331 C front Red fermentation tank 95 000 80 43
RT332 C front Red fermentation tank 95 000 80 44

Table A.1 (continued): Physical capacities (in litres) of the different types of tanks found in
Stores A to F of Wamakersvallei cellar, including the actual capacity (in tonnes) where it is
relevant. A processor number is assigned to the tanks forming part of the active cellar [135].

188 Chapter A. Processor specifications

A.1.2 Processor numbers

The remaining processor numbers are shown in Table A.2 together with their actual capacities,
expressed in tonnes, where relevant.

Processor Processor Actual
type number capacity

Tipping bins 1 —
2 —
3 —

Separators 4 20
5 20
6 20
7 20
8 20
9 20
10 20

Presses 11 15
12 15
13 25
14 25
15 25
16 25
17 25
18 25

Table A.2: The processor numbers for the machinery in the active cellar, excluding the red wine
fermentation tanks already listed in Table A.1.

A.2 Grape Intakes

The daily total grape intake during the period 2000 to 2006 is shown in Table A.3 in order to
provide the reader with a better understanding of the progression of the harvesting season at
Wamakersvallei winery.

A.2. Grape Intakes 189

Year
Month Day 2000 2001 2002 2003 2004 2005 2006

01 14 59
01 15
01 16 18
01 17 50
01 18 204
01 19 58 415
01 20 89 69 355
01 21 59 268
01 22 141
01 23 52 178 91 53
01 24 218 77 87 169 443
01 25 435 102 84 7 400 9
01 26 433 100 36 590
01 27 458 386 56 386 52
01 28 234 111 449 39
01 29 148 109 554
01 30 322 149 449 78 261
01 31 180 185 133 453 140 200
02 01 430 246 77 362 303
02 02 304 13 181 287 447
02 03 302 513 325 326 471
02 04 236 295 636 408 350 13
02 05 409 574 584 388
02 06 530 259 609 461 480
02 07 427 508 515 499 438 549
02 08 535 434 414 536 539
02 09 531 379 513 700 610
02 10 510 477 714 515 406
02 11 337 512 504 444 480
02 12 483 544 489 699
02 13 531 470 495 544 422
02 14 356 584 461 352 553 452
02 15 471 494 133 5 454
02 16 336 340 414 541 262
02 17 381 479 522 517 316
02 18 174 598 490 527 279
02 19 446 501 464 342
02 20 457 426 298 443 83
02 21 192 419 214 71 251 152
02 22 243 309 332 503 307
02 23 250 256 353 368 506
02 24 216 311 321 491 399

Table A.3: A summary of the daily grape intakes from 2000 to 2006 at Wamakersvallei Winery,
expressed in tons.

190 Chapter A. Processor specifications

Year
Month Day 2000 2001 2002 2003 2004 2005 2006

02 25 118 275 305 378 199
02 26 309 135 316 350
02 27 318 221 383 204 404
02 28 238 295 277 317 235 76
02 29 167
03 01 177 286 192 342 279
03 02 205 118 259 396 471
03 03 38 330 418 302 295
03 04 167 425 418 245
03 05 208 176 165 79
03 06 330 205 217 108 405
03 07 273 245 87 261 339 292
03 08 196 222 78 336 167 314
03 09 147 76 129 45 354
03 10 101 171 130 92
03 11 71 49 378 98
03 12 146 139 244
03 13 142 106 127 96
03 14 113 3 29 294
03 15 119 11 138 39 360
03 16 15 97 5 268
03 17 2 237 109
03 18 36
03 19 9
03 20
03 21
03 22 87
03 23 27
Total 10 718 10 361 9 174 13 014 12 038 13 320 11 617

Table A.3 (continued): A summary of the daily grape intakes from 2000 to 2006 at Wamak-
ersvallei Winery, expressed in tons.

APPENDIX B

Mathematical formulation of the scheduling
problem

Contents
B.1 IP formulation without pipe assignment . 191

B.2 Solving the problem instance in Example 5.1 193

B.3 The IP formulation including pipe assignment 198

The mixed IP formulation of Chapter 5 is given in §B.1 of this appendix where pipe assignments
are disregarded. The additional data required to solve the example problems of Chapter 5 were
also given. The Lingo model for the IP approach is shown in §B.2. The possibility of applying
the mixed IP to solve the cellar scheduling problem with pipe assignment is discussed in §B.3.

B.1 IP formulation without pipe assignment

The objective in the scheduling problem inside the active cellar (without regarding the assign-
ment of tasks to pipes) is to minimize C subject to the constraints

r∑

j=1

tjkj
+

n∑

j=r+1

fjkj
≤ C

tj1 ≥ ej , j = 1, . . . , n
tjk + aijkpijk ≤ fjk, i = 1, . . . ,m, j = 1, . . . , n, k = 1, . . . , kj

fjk = tj(k+1), j = 1, . . . , n, k = 1, . . . , kj − 1
aijk ≤ µijk, i = 1, . . . ,m, j = 0, . . . , n, k = 1, . . . , kj

m∑

i=1

aij1 = 1, j = 1, . . . , n

m2−1∑

i=m1

aij2 =
⌈wj

20

⌉
y(j−r), j = r + 1, . . . , w

fj2 − f`2 ≥ 1−
(
3− z(j−r)(`−r) − y(j−r) − y(`−r)

)
M, j = r + 1, . . . , w − 1,

` = j + 1, . . . , w

191

192 Chapter B. Mathematical formulation of the scheduling problem

f`2 − fj2 ≥ 1−
(
z(j−r)(`−r) + 2− y(j−r) − y(`−r)

)
M, j = r + 1, . . . , w − 1,

` = j + 1, . . . , w
m3−1∑

i=m2

aij2ci ≥ wj
(
1− y(j−r)

)
, j = r + 1, . . . , w

aij2 ≤ 1− y(j−r), i = m2, . . . ,m3 − 1, j = r + 1, . . . , w
aij2 ≤ aij3, i = m2, . . . ,m3 − 1, j = r + 1, . . . , w

m3−1∑

i=m2

aij3ci ≥ wj , j = r + 1, . . . , w

vi +
r∑

j=1

aij2wj ≤ ci, i = m3, . . . ,m

aij2 + ai`2 ≤ qj` + 1, i = m3, . . . ,m, j = 1, . . . , r, ` = 1, . . . , r and ` 6= j

aij2 ≤ tqij , i = m3, . . . ,m, j = 1, . . . , r
aij1 = tqij , i = m3, . . . ,m, j = w + 1, . . . , n

fj1 ≤ t`1 +

(
2−

m4−1∑

i=m3

aij1 −
m4−1∑

i=m3

ai`1

)
M, j = w + 1, . . . , n,

` = j + 1, . . . , n

fj1 ≤ t`1 +

(
2−

m∑

i=m4

aij1 −
m∑

i=m4

ai`1

)
M, j = w + 1, . . . , n,

` = j + 1, . . . , n
fjk + sij` ≤ t`h + (3− xij` − aijk − ai`h)M, h = 1, . . . , k` − 1, i = 1, . . . ,m,

j = 0, . . . , n, k = 1, . . . , kj − 1, ` = 1, . . . , n, and ` 6= j

n∑

j=0

xij` =
k∑̀

h=1

ai`h, i = 1, . . . ,m2 − 1,m3 . . . ,m, ` = 1, . . . , n

n∑

`=0

xij` =
kj∑

k=1

aijk, i = 1, . . . ,m2 − 1,m3 . . . ,m, j = 0, . . . , n

n∑

j=0

xij` =

k`(with h6=3

if r+1≤`≤w)∑

h=1

ai`h, i = m2, . . . ,m3 − 1, ` = 1, . . . , n

n∑

`=0

xij` =

kj(with k 6=3

if r+1≤j≤w)∑

k=1

aijk, i = m2, . . . ,m3 − 1, j = 0, . . . , n

tjk ≥ 0, j = 0, . . . , n, k = 1, . . . , kj
fjk ≥ 0, j = 0, . . . , n, k = 1, . . . , kj
aijk ∈ {0, 1} , i = 1, . . . ,m, j = 0, . . . , n, k = 1, . . . , kj
xij` ∈ {0, 1} , i = 1, . . . ,m, j = 0, . . . , n, ` = 1, . . . , n

y(j−r) ∈ {0, 1} , j = r + 1, . . . , w

B.2. Solving the problem instance in Example 5.1 193

z(j−r)(`−r) ∈ {0, 1} , j = r + 1, . . . , w, ` = j + 1, . . . , w

B.2 Solving the problem instance in Example 5.1

In order to solve Example 5.1, additional data are required. The values of all the parameters
µijk are shown in Table B.1. This is an indication of the allowed processors of each task Tjk.

Jj Tjk P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0

5 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0

6 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0
3 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0

7 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
2 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table B.1: The values of all µijk for the processors, jobs and their tasks in Example 5.1.

In Table B.2, the relevant non-zero setup times are listed for Example 5.1.

Lingo 11.0 IP formulation

Lingo 11.0 was used to solve the IP in Example 5.1. The Lingo 11.0 problem formulation is
presented below.

MODEL:
! A medium sized cellar with 15 machines excluding pipe assignment;
DATA:

r = 3; !The last red wine job;
w = 6; !The last white wine job;
n = 7; !The last job;
m1 = 4; !The first separator;
m2 = 7; !The first press;

194 Chapter B. Mathematical formulation of the scheduling problem

Tipping bins P1, . . . , P3 Presses P7, . . . , P9

si14 = 1.5 si45 = 1
si15 = 1.5 si46 = 1
si16 = 1.5 si47 = 1.5
si24 = 1.5 si54 = 1
si25 = 1.5 si56 = 1
si26 = 1.5 si57 = 1.5
si34 = 1.5 si64 = 1
si35 = 1.5 si65 = 1
si36 = 1.5 si67 = 1.5
si41 = 0.5 si74 = 2
si42 = 0.5 si75 = 2
si43 = 0.5 si76 = 2
si51 = 0.5
si52 = 0.5
si53 = 0.5
si61 = 0.5
si62 = 0.5
si63 = 0.5

Table B.2: All non-zero setup times sij` for Example 5.1, expressed in hours.

m3 = 10; !The first DF tank;
m4 = 13; !The first RT tank;
m = 15;
NUM = 3;
LARGE = 1000;

ENDDATA

SETS:
MACHINES: VOLUME, CAPACITY;
JOBS: K_J, WEIGHT, SPLIT;
TASKS;
WHITE_JOBS /1..NUM/: y1;
WHITE_JOBS_2 (WHITE_JOBS, WHITE_JOBS): y2;
ALLOWED_TANKS(MACHINES, JOBS): TANK_MATCH;
TASK(JOBS, TASKS): STARTT, ENDT;
RED_JOB(JOBS, JOBS): MATCH;
ASSIGN(MACHINES, JOBS, TASKS): ASSIGNMENT, DURATION, MU;
FOLLOWING_JOBS(MACHINES, JOBS, JOBS): X, SETUP;

ENDSETS
! The objective;

MIN = C;

! Defining the objective function;
@SUM(JOBS(j)|j #NE# 1 #AND# (r+1) - j #GE# 0: STARTT(j,K_J(j))) +
@SUM(JOBS(j)| (j - (r+2) #GE# 0): ENDT(j,K_J(j))) - C <= 0;

B.2. Solving the problem instance in Example 5.1 195

! Ensuring that the end and start times of a task leaves enough time for
production;

@FOR(MACHINES(i):
@FOR(JOBS(j)|(j #NE# 1):

@FOR(TASKS(k)|(K_J(j) - k #GE# 0):
STARTT(j,k) + ASSIGNMENT(i,j,k)*DURATION(i,j,k) -
ENDT(j,k) <= 0)));

! A task of a job should follow its previous task directly;
@FOR(JOBS(j)|j #NE# 1:

@FOR(TASKS(k)|K_J(j) - k #GE# 1:
ENDT(j,k) - STARTT(j,(k+1)) = 0));

! Ensuring that a task is only assigned to an allowed machine;
@FOR(MACHINES(i):

@FOR(JOBS(j):
@FOR(TASKS(k)|K_J(j) - k #GE# 0:

ASSIGNMENT(i,j,k) - MU(i,j,k) <= 0)));

! All first tasks may be assigned to exactly one processor;
@FOR(JOBS(j)|(j #NE# 1):

@SUM(MACHINES(i): ASSIGNMENT(i,j,1)) = 1);

@FOR(JOBS(j)|((r+1) - j #GE# 0) #AND# (j #NE# 1):
@SUM(MACHINES(i)|(i - m3 #GE# 0): ASSIGNMENT(i,j,2)) = 1);

! When a load of white grapes is assigned to different separators;
@FOR(JOBS(j)|(j - (r+2) #GE# 0) #AND# ((w+1) - j #GE# 0):

@SUM(MACHINES(i)|(i - m1 #GE# 0) #AND# ((m2-1) - i #GE# 0):
CAPACITY(i)*ASSIGNMENT(i,j,2)) - WEIGHT(j)*y1(j-(r+1)) >= 0);

! Allowing only one separator to be emptied at any one time;
@FOR(JOBS(j)|(j - (r+2) #GE# 0) #AND# ((w+1) - j #GE# 0):

@FOR(JOBS(l)|(l - (j+1) #GE# 0) #AND# ((w+1) - l #GE# 0):
ENDT(j,2) - ENDT(l,2) + (3 - y2(j-(r+1),l-(r+1)) -
y1(j-(r+1)) - y1(l-(r+1)))*LARGE >= 1;
ENDT(l,2) - ENDT(j,2) + (y2(j-(r+1),l-(r+1)) + 2 -
y1(j-(r+1)) - y1(l-(r+1)))*LARGE >= 1));

! Ensuring assignment to more than one press when needed;
@FOR(JOBS(j)|(j - (r+2) #GE# 0) #AND# ((w+1) - j #GE# 0):

@SUM(MACHINES(i)|(i - m2 #GE# 0) #AND# ((m3-1) - i #GE# 0):
CAPACITY(i)*ASSIGNMENT(i,j,2)) - WEIGHT(j)*(1-y1(j-(r+1))) >= 0;

@SUM(MACHINES(i)|(i - m2 #GE# 0) #AND# ((m3-1) - i #GE# 0):
CAPACITY(i)*ASSIGNMENT(i,j,3)) - WEIGHT(j) >= 0);

@FOR(JOBS(j)|(j - (w+2) #GE# 0):
@SUM(MACHINES(i)|(i - m2 #GE# 0) #AND# ((m3-1) - i #GE# 0):

196 Chapter B. Mathematical formulation of the scheduling problem

CAPACITY(i)*ASSIGNMENT(i,j,2)) - WEIGHT(j) >= 0);

! If a white grape job is separated and pressed at the presses it must be on
the same press.;

@FOR(MACHINES(i)|(i - m2 #GE# 0) #AND# ((m3-1) - i #GE# 0):
@FOR(JOBS(j)|(j - (r+2) #GE# 0) #AND# ((w+1) - j #GE# 0):

ASSIGNMENT(i,j,2) - ASSIGNMENT(i,j,3) <= 0));

! Limiting the volume of a redwine tank;
@FOR(MACHINES(i)|(i - m3 #GE# 0) #AND# (m - i #GE# 0):

VOLUME(i) + @SUM(JOBS(j)|((j - 2 #GE# 0) #AND# ((r+1) - j #GE# 0)):
ASSIGNMENT(i,j,2)*WEIGHT(j)) - CAPACITY(i) <= 0);

! Allowing two tasks to be asigned to the same red wine tank only if the
matching paramater allows it;

@FOR(MACHINES(i)|(i - m3 #GE# 0) #AND# (m - i #GE# 0):
@FOR(JOBS(j)|((j #NE# 1) #AND# ((r+1) - j #GE# 0)):

@FOR(JOBS(l)|((l #NE# 1) #AND# ((r+1) - j #GE# 0) #AND# (j -
l #NE# 0)):

ASSIGNMENT(i,j,2) + ASSIGNMENT(i,l,2) - MATCH(j,l) <=
1)));

! Limiting the assignment of task 2 red grape jobs to only allowed fermentation
tanks;

@FOR(MACHINES(i)|(i - m3 #GE# 0) #AND# (m - i #GE# 0):
@FOR(JOBS(j)|(j #NE# 1) #AND# ((r+1) - j #GE# 0):

ASSIGNMENT(i,j,2) - TANK_MATCH(i,j) <= 0));

! The ’assignment’ of a red wine to be emptied from the suitable fermentation
tank;

@FOR(MACHINES(i)|(i - m3 #GE# 0) #AND# (m - i #GE# 0):
@FOR(JOBS(j)|(j - (w+2) #GE# 0):

ASSIGNMENT(i,j,1) = TANK_MATCH(i,j)));

! If there are more than one fermentation tank to be emptied, only one task 1
at a time is allowed on each subset of the red wine fermentation tanks;

@FOR(JOBS(j)|j - (w+2) #GE# 0:
@FOR(JOBS(l)|(l - (j+1) #GE# 0):

ENDT(j,1) - STARTT(l,1) - (2 - @SUM(MACHINES(i)|(i - m3
#GE# 0) #AND# ((m4-1) - i #GE# 0): ASSIGNMENT(i,j,1) +
ASSIGNMENT(i,l,1)))*LARGE <= 0));

@FOR(JOBS(j)|j - (w+2) #GE# 0:
@FOR(JOBS(l)|(l - (j+1) #GE# 0):

ENDT(j,1) - STARTT(l,1) - (2 - @SUM(MACHINES(i)|(i - m4
#GE# 0): ASSIGNMENT(i,j,1) + ASSIGNMENT(i,l,1)))*LARGE <=
0));

! Using the setup times to set the starting times of tasks following on one

B.2. Solving the problem instance in Example 5.1 197

another on the same machine;
@FOR(MACHINES(i)|(m3-1) - i #GE# 0:

@FOR(JOBS(j):
@FOR(TASKS(k)|K_J(j) - k #GE# 0:

@FOR(JOBS(l)|(l #NE# 1) #AND# (l - j #NE# 0):
@FOR(TASKS(h)|K_J(l) - h #GE# 0:

ENDT(j,k) + SETUP(i,j,l) - STARTT(l,h) -
(3 - X(i,j,l) - ASSIGNMENT(i,l,h) -
ASSIGNMENT(i,j,k))*LARGE <= 0)))));

! Defining X as a result of the assignments;
@FOR(MACHINES(i)|(i - m2 #GE# 0) #AND# ((m3-1) - i #GE# 0):

@FOR(JOBS(l)|l #NE# 1:
@SUM(JOBS(j): X(i,j,l)) - @SUM(TASKS(h)|((l - (r+2) #GE# 0)
#AND# ((w+1) - l #GE# 0) #AND# (h #NE# 2) #AND# (K_J(l) - h
#GE# 0)) #OR# (((l - (w+2) #GE# 0) #OR# ((r+1) - l #GE# 0))
#AND# (K_J(l) - h #GE# 0)): ASSIGNMENT(i,l,h)) = 0));

@FOR(MACHINES(i)|(i - m2 #GE# 0)#AND#((m3-1) - i #GE# 0):
@FOR(JOBS(j):

@SUM(JOBS(l): X(i,j,l)) - @SUM(TASKS(k)|((j - (r+2) #GE# 0)
#AND# ((w+1) - j #GE# 0) #AND# (k #NE# 2) #AND# (K_J(j) - k
#GE# 0)) #OR# (((j - (w+2) #GE# 0) #OR# ((r+1) - j #GE# 0))
#AND# (K_J(j) - k #GE# 0)): ASSIGNMENT(i,j,k)) = 0));

@FOR(MACHINES(i)|(i - m3 #GE# 0) #OR# ((m2-1) - i #GE# 0):
@FOR(JOBS(l)|l #NE# 1:

@SUM(JOBS(j): X(i,j,l)) - @SUM(TASKS(h)|K_J(l) - h #GE# 0:
ASSIGNMENT(i,l,h)) = 0));

@FOR(MACHINES(i)|(i - m3 #GE# 0) #OR# ((m2-1) - i #GE# 0):
@FOR(JOBS(j):

@SUM(JOBS(l): X(i,j,l)) - @SUM(TASKS(k)|K_J(j) - k #GE# 0:
ASSIGNMENT(i,j,k)) = 0));

! Define all X(i, j, j) to be zero for all machines;
@FOR(MACHINES(i):

@FOR(JOBS(j): X(i,j,j) = 0));

! Set binary values for the required variables;
@FOR(MACHINES(i):

@FOR(JOBS(j):
@FOR(JOBS(l): @BIN(X(i,j,l)))));

@FOR(ASSIGN: @BIN(ASSIGNMENT));

@FOR(JOBS(j)|(j - (r+2) #GE# 0) #AND# ((w+1) - j #GE# 0):
@BIN(y1(j - (r+1))));

198 Chapter B. Mathematical formulation of the scheduling problem

@FOR(JOBS(j)|(j - (r+2) #GE# 0) #AND# ((w+1) - j #GE# 0):
@FOR(JOBS(l)|(l - (r+2) #GE# 0) #AND# ((w+1) - l #GE# 0):

@BIN(y2(j - (r+1),l - (r+1)))));

@FOR(MACHINES(i):
@FOR(JOBS(j):

@FOR(TASKS(k)|k - K_J(j) #GE# 1:
ASSIGNMENT(i,j,k) = 0)));

DATA:
! Import the data from Excel;

JOBS, TASKS, MACHINES, DURATION, K_J, MU, SETUP, MATCH, WEIGHT, VOLUME,
CAPACITY, TANK_MATCH = @OLE(’C:\Documents and Settings\Adri\My Documents\
2008\Masters\Lingo\No_pipes_4.xls’);

ENDDATA

B.3 The IP formulation including pipe assignment

The approach in §5.2 of a mathematical programming formulation for the scheduling problem
in the active cellar where pipe assignment were disregarded in the main body of the thesis.
In this section, the changes required to the mathematical programming model is considered in
order to consider relevant pipe assignments as well. The tasks, their individual task types and
required processors are listed in Tables B.3 and B.4 for the jobs consisting of red and white
grapes respectively.

Red wine First Job Second job

Task type T1 T6 T4 T5 T6 T3

Tasks Tj1 Tj2 Tj3 Tj′1 Tj′2 Tj′3
Processor Tipping Pipes Fermentation Fermentation Pipes Presses

bins tanks tanks

Table B.3: The different tasks required in order to process a load of red grapes and their
corresponding task types and processor requirements when pipe assignment is considered. The
first job refers to the job, Jj , taking place on the day of receiving the grapes, whereas the second
job, Jj′ , refers to the job that requires processing after primary fermentation.

White wine

Task type T1 T6 T2 T6 T3

Tasks Tj1 Tj2 Tj3 Tj4 Tj5
Processor Tipping Pipes Separators Pipes Presses

bins or Presses

Table B.4: The different tasks required in order to process a load of white grapes, as well as
the corresponding task types and processor requirements, when pipe assignment is considered.

Applying the parameters explained in §5.1, The constraint set is similar to that considered
without pipe assignment since the pipes are now considered to be machines. The only additional
requirement is that no job may be assigned to two machines directly after one another, but that

B.3. The IP formulation including pipe assignment 199

at least one pipe should be allowed in between. However, this problem constraint set is not
discussed fully. However, the cellar graph with pipe numbering is included in order to provide
the reader a better understanding of the approach. No solution to the suggested method is
considered.

Using the same smaller active cellar as in Example 5.1, a solution to the mathematical program-
ming model of §B.3 is illustrated. The numbered cellar graph with the dummy pipes indicated
is shown in Figure B.1.

{16...24}
��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

3
24

16

39

38

33

35

36

31 25 2637

32

34

27
28

29

30

��
��
��

��
��
��

Presses

15

14

13

9

8

7

fermentation
tanks

Red

fermentation

Separators

tanks

Red

bins
Tipping

10

11

2

12

654

1

Figure B.1: The numbered cellar graph for the active cellar to illustrate the working of the
mathematical programming model when pipe assignment is included.

The same grape loads as in Example 5.1 are expected and the current status of red wine tanks
are also the same as those shown in Table 5.3. The expected jobs are also the same as those
presented in Table 5.4.

The allowable successors are listed in Table B.7.

200 Chapter B. Mathematical formulation of the scheduling problem

Job j Task k Allowed Pi Corresponding pijk

0 1 P 0
1 1 P1, . . . , P3 0.1

2 P10, . . . , P15 144
2 1 P1, . . . , P3 0.1

2 P10, . . . , P15 144
3 1 P1, . . . , P3 0.1

2 P10, . . . , P15 120
4 1 P1, . . . , P3 0.1

2 P4, . . . , P6 2.25
P7, . . . , P9 0

3 P7, . . . , P9 2.5
5 1 P1, . . . , P3 0.1

2 P4, . . . , P6 1.25
P7, . . . , P9 0

3 P7, . . . , P9 2.5
6 1 P10, . . . , P15 5

2 P7, . . . , P9 2.5

Table B.5: The duration pijk of processing task Tjk on an allowed set of processors (therefore
all processors for which µijk = 1).

Tipping bins P1, . . . , P3 Separators P4, . . . , P6 Presses P7, . . . , P9

si14 = 1.5 si45 = 0.5 si45 = 1
si15 = 1.5 si54 = 0.5 si46 = 1.5
si24 = 1.5 si54 = 1
si25 = 1.5 si56 = 1.5
si34 = 1.5 si64 = 2
si35 = 1.5 si65 = 2
si41 = 1
si42 = 1
si43 = 1
si51 = 1
si52 = 1
si53 = 1

Table B.6: All non-zero setup times sij` for Example 5.1, expressed in hours.

B.3. The IP formulation including pipe assignment 201

Processor P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14

P1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P5 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P6 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P7 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P8 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P9 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P10 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P11 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P12 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P13 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P14 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P15 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P16 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P17 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P18 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P19 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P20 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P21 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P22 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P23 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P24 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P25 0 0 0 0 0 0 1 1 1 0 0 0 0 0
P26 0 0 0 0 0 0 1 1 0 0 0 0 0 0
P27 0 0 0 0 0 0 1 1 0 0 0 0 0 0
P28 0 0 0 0 0 0 1 0 0 0 0 0 0 0
P29 0 0 0 0 0 0 0 1 0 0 0 0 0 0
P30 0 0 0 0 0 0 0 0 1 0 0 0 0 0
P31 0 0 0 1 1 1 0 0 0 0 0 0 0 0
P32 0 0 0 0 0 0 0 0 0 0 0 0 1 1
P33 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P34 0 0 0 0 0 0 0 1 1 0 0 0 0 0
P35 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P36 0 0 0 0 0 0 0 1 1 0 0 0 0 0
P37 0 0 0 0 0 1 0 0 0 0 0 0 0 0
P38 0 0 0 0 0 0 0 0 0 0 0 0 1 1
P39 0 0 0 0 0 0 0 0 0 1 1 1 0 0

Table B.7: The values of the variable ui1,i2 where the entry (i1, i2) of the matrix corresponds
to the value of variable ui1,i2 .

202 Chapter B. Mathematical formulation of the scheduling problem

Processor P15 P16 P17 P18 P19 P20 P21 P22 P23 P24 P25 P26 P27 P28

P1 0 1 1 1 0 0 0 0 0 0 0 0 0 0
P2 0 0 0 0 1 1 1 0 0 0 0 0 0 0
P3 0 0 0 0 0 0 0 1 1 1 0 0 0 0
P4 0 0 0 0 0 0 0 0 0 0 1 0 0 0
P5 0 0 0 0 0 0 0 0 0 0 1 0 0 0
P6 0 0 0 0 0 0 0 0 0 0 1 0 0 0
P7 0 0 0 0 0 0 0 0 0 0 0 0 0 1
P8 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P9 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P10 0 0 0 0 0 0 0 0 0 0 0 1 0 0
P11 0 0 0 0 0 0 0 0 0 0 0 1 0 0
P12 0 0 0 0 0 0 0 0 0 0 0 1 0 0
P13 0 0 0 0 0 0 0 0 0 0 0 0 1 0
P14 0 0 0 0 0 0 0 0 0 0 0 0 1 0
P15 0 0 0 0 0 0 0 0 0 0 0 0 1 0
P16 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P17 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P18 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P19 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P20 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P21 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P22 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P23 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P24 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P25 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P26 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P27 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P28 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P29 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P30 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P31 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P32 1 0 0 0 0 0 0 0 0 0 0 0 0 0
P33 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P34 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P35 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P36 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P37 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P38 1 0 0 0 0 0 0 0 0 0 0 0 0 0
P39 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table B.7 (continued): The values of the variable ui1,i2 where the entry (i1, i2) of the matrix
corresponds to the value of variable ui1,i2 .

B.3. The IP formulation including pipe assignment 203

Processor P29 P30 P31 P32 P33 P34 P35 P36 P37 P38 P39

P1 0 0 0 0 0 0 0 0 0 0 0
P2 0 0 0 0 0 0 0 0 0 0 0
P3 0 0 0 0 0 0 0 0 0 0 0
P4 0 0 0 0 0 0 0 0 0 0 0
P5 0 0 0 0 0 0 0 0 0 0 0
P6 0 0 0 0 0 0 0 0 0 0 0
P7 0 0 0 0 0 0 0 0 0 0 0
P8 1 0 0 0 0 0 0 0 0 0 0
P9 0 1 0 0 0 0 0 0 0 0 0
P10 0 0 0 0 0 0 0 0 0 0 0
P11 0 0 0 0 0 0 0 0 0 0 0
P12 0 0 0 0 0 0 0 0 0 0 0
P13 0 0 0 0 0 0 0 0 0 0 0
P14 0 0 0 0 0 0 0 0 0 0 0
P15 0 0 0 0 0 0 0 0 0 0 0
P16 0 0 1 1 0 0 0 0 0 0 0
P17 0 0 0 0 1 1 0 0 0 0 0
P18 0 0 0 0 0 0 1 1 0 0 0
P19 0 0 1 1 0 0 0 0 0 0 0
P20 0 0 0 0 1 1 0 0 0 0 0
P21 0 0 0 0 0 0 1 1 0 0 0
P22 0 0 1 1 0 0 0 0 0 0 0
P23 0 0 0 0 1 1 0 0 0 0 0
P24 0 0 0 0 0 0 1 1 0 0 0
P25 0 0 0 0 0 0 0 0 0 0 0
P26 0 0 0 0 0 0 0 0 0 0 0
P27 0 0 0 0 0 0 0 0 0 0 0
P28 0 0 0 0 0 0 0 0 0 0 0
P29 0 0 0 0 0 0 0 0 0 0 0
P30 0 0 0 0 0 0 0 0 0 0 0
P31 0 0 0 0 0 0 0 0 0 0 1
P32 0 0 0 0 0 0 0 0 0 0 0
P33 0 0 0 0 0 0 0 0 1 1 0
P34 0 0 0 0 0 0 0 0 0 0 0
P35 0 0 0 0 0 0 0 0 1 1 0
P36 0 0 0 0 0 0 0 0 0 0 0
P37 0 0 0 0 0 0 0 0 0 0 1
P38 0 0 0 0 0 0 0 0 0 0 0
P39 0 0 0 0 0 0 0 0 0 0 0

Table B.7 (continued): The values of the variable ui1,i2 where the entry (i1, i2) of the matrix
corresponds to the value of variable ui1,i2 .

204 Chapter B. Mathematical formulation of the scheduling problem

APPENDIX C

Wamakervallei harvesting application data

Contents
C.1 Sample sugar levels . 205
C.2 Example information . 217

C.1 Sample sugar levels

The vineyard blocks for which sample sugar levels have been calculated at Wamakersvallei are
listed in Tables C.1 and C.2. These tables contain the sugar levels for the periods 26 January
2009 to 3 February 2009, and 4 February 2009 to 12 February 2009, respectively. The vineyard
blocks are renamed as blocks AA to JH.

Vineyard
block Cultivar 26-Jan 27-Jan 28-Jan 29-Jan 30-Jan 02-Feb 03-Feb

AA CABF
AB CABF
AC CABF
AD CABS
AE CABS 18.2
AF CABS 16.8
AG CABS
AH CABS
AI CABS
AJ CABS
AK CABS
AL CABS
AM CABS
AN CABS

Table C.1: The sugar levels calculated from the samples received during the period of 26 January
to 3 February, 2009. The blocks that were harvested before 9 February are denoted by a darker
row colour.

205

206 Chapter C. Wamakervallei harvesting application data

Vineyard
block Cultivar 26-Jan 27-Jan 28-Jan 29-Jan 30-Jan 02-Feb 03-Feb

AO CABS
AP CABS
AQ CABS
AR CABS
AS CABS
AT CABS 17.7 18.5
AU CABS
AV CABS
AW CABS
AX CABS
AY CABS
*AZ CHAR 23.4
BA CHAR
BB CHAR 20.5
*BC CHAR 24.8
BD CHAR 22.4
BE CHAR 23.8
BF CHAR 23.3 25
BG CHAR 19 22.5
BH CHAR 20.6 20.6 20.5
BI CHAR 21.1
BJ CHAR 21.3 20.7 20.5
BK CHAR
BL CHAR
BM CHAR 21.8
BN CHAR 21.2
BO CHAR 21.2
BP CHAR 20.5
BQ CHAR 18.8
BR CHAR 20.2
BS CHAR 19.2 21.3
BT CHAR
*BU CHAR 23.2
*BV CHAR 23.2
BW CHAR 20.4 19.5
BX CHAR
BY CHAR 21.3
BZ CHAR 21.2 23.9
CA CHEN 20.2
CB CHEN 19.0 20.3
CC CHEN 19.7
CD CHEN 17.0 20.5

Table C.1 (continued): The sugar levels calculated from the samples received during the period
of 26 January to 3 February, 2009. The blocks that were harvested before 9 February are
denoted by a darker row colour.

C.1. Sample sugar levels 207

Vineyard
block Cultivar 26-Jan 27-Jan 28-Jan 29-Jan 30-Jan 02-Feb 03-Feb

CE CHEN 17.8 19.9
CF CHEN 24.5
CG CHEN 15.2 17.3
CH CHEN 18.4
CI CHEN 20.5
CJ CHEN 21.3
CK CHEN 15.7 18.7
CL CHEN 14.7 15.7
CM CHEN 17.3
CN CHEN 15.0 18.6
CO CHEN 18.8 18.9 19.9
CP CHEN 16.0
CQ CHEN 15.9
CR CHEN
CS CHEN
CT CHEN 19.7 20.1
CU CHEN 19.5 22.1
CV CHEN 20.0 20.4
CW CHEN 19.6 20.4
CX CHEN 18.2 20.3
CY CHEN 17.0 18.2
CZ CHEN 15.8 19.8
DA CHEN 16.8 19.2
DB CHEN 21.0
DC CHEN
DD CHEN
DE CHEN
DF CHEN 18.6 20.9
DG CHEN 18 19.3
DH CHEN 15.7 18.8
*DI CHEN 21.9
DJ CHEN 21.1
DK CHEN 17.8
DL CHEN 17.1
DM CHEN
DN CHEN
DO CHEN
DP CHEN 18.1 21.1
DQ CHEN 17.7
DR CHEN
DS CHEN 19.2
DT CHEN 16.8

Table C.1 (continued): The sugar levels calculated from the samples received during the period
of 26 January to 3 February, 2009. The blocks that were harvested before 9 February are
denoted by a darker row colour.

208 Chapter C. Wamakervallei harvesting application data

Vineyard
block Cultivar 26-Jan 27-Jan 28-Jan 29-Jan 30-Jan 02-Feb 03-Feb

DU CHEN 18.7
DV CHEN
DW CHEN
DX CHEN
DY CHEN 22.3
DZ CHEN 20.2
EA CHEN 22.4
EB CHEN 22.7
EC CHEN 21.5
ED CHEN
EE CHEN 18.2 21.7
EF CHEN 16.3 18.4
EG CHEN
EH CHEN 15.9 20.7
EI CHEN 19.1
EJ CHEN 18.6
EK CHEN 20.7
EL CHEN 19.4
EM CHEN 21.1
EN CHEN 17.2 20.0
EO CHEN 18
EP CHEN 16.2
EQ CHEN 18.4
ER CHEN 18.7
ES CHEN 20.1 21.2
ET CHEN 17.9
EU CHEN 20.3 21.8
EV CHEN 19.1 19.9
EW CHEN 19.0 19.1
EX COLO
EY COLO
EZ MALB
FA MALB
FB MALB
FC MALB
FD MALB
FE MALB
FF MALB
FG MALB 20.3
FH MERL 22.2
FI MERL
FJ MERL

Table C.1 (continued): The sugar levels calculated from the samples received during the period
of 26 January to 3 February, 2009. The blocks that were harvested before 9 February are
denoted by a darker row colour.

C.1. Sample sugar levels 209

Vineyard
block Cultivar 26-Jan 27-Jan 28-Jan 29-Jan 30-Jan 02-Feb 03-Feb

FK MERL
FL MERL
FM MERL 21.6
FN MERL
FO MERL 20.1
FP MERL
FQ MERL 20.5
FR MERL 19.7 21.9
FS MERL
FT MERL
FU MERL
FV MERL 19.7
FW MERL 21.9
FX MERL 20.0
FY MERL
FZ MERL
GA MERL
GB MERL
GC MERL
GD MERL
GE MERL 21.3 24.8
GF MERL 22.5 23.2
GG MERL 21.6
GH PINO 21.6 23.8
GI PINO
GJ PINO 19.0
GK PINO 19.8
GL PINO 22.5 25.7
*GM PINO 20.5
*GN PINO 22.3
GO PINO
GP PINO 17.9 21.4
GQ PINO 21.7 23.9
GR PINO
GS PINO 21.4
*GT PINO 20.4
*GU PINO
GV PINO
GW PINO
GX PINO
GY PINO 24.5 25.7
*GZ PINO

Table C.1 (continued): The sugar levels calculated from the samples received during the period
of 26 January to 3 February, 2009. The blocks that were harvested before 9 February are
denoted by a darker row colour.

210 Chapter C. Wamakervallei harvesting application data

Vineyard
block Cultivar 26-Jan 27-Jan 28-Jan 29-Jan 30-Jan 02-Feb 03-Feb

HA PINO
HB PINO
HC PINO
HD PINO
HE PINO 25.2
HF PINO 29.0
HG PINO 24.2
HH PINO
HI PINO 23.0 21.0
HJ PINO 23.5
HK RIES 15.5
HL SAUV
HM SAUV
HN SAUV
*HO SAUV
HP SAUV
*HQ SAUV
HR SAUV
*HS SAUV
*HT SAUV
*HU SAUV
HV SAUV 20.0 20.6
*HW SAUV 22.3
*HX SAUV
*HY SAUV
*HZ SAUV
*IH SAUV
*IB SAUV
*IC SAUV
*ID SAUV
IE SAUV
*IF SAUV
IG SAUV
IH SAUV
*II SAUV
*IJ SAUV
*IK SAUV
*IL SAUV
IM SHIR 23.0
IN SHIR
IO SHIR
IP SHIR

Table C.1 (continued): The sugar levels calculated from the samples received during the period
of 26 January to 3 February, 2009. The blocks that were harvested before 9 February are
denoted by a darker row colour.

C.1. Sample sugar levels 211

Vineyard
block Cultivar 26-Jan 27-Jan 28-Jan 29-Jan 30-Jan 02-Feb 03-Feb

IQ SHIR 18.5
IR SHIR
IS SHIR
IT SHIR
IU SHIR
IV SHIR
IW VIOG 21.8
IX VIOG
IY VIOG
IZ VIOG
JA VIOG 19.9
JB VIOG 18.1
JC VIOG 22.0
JD VIOG
JE VIOG
JF VIOG

Table C.1 (continued): The sugar levels calculated from the samples received during the period
of 26 January to 3 February, 2009. The blocks that were harvested before 9 February are
denoted by a darker row colour.

Vineyard
block Cultivar 04-Feb 05-Feb 06-Feb 09-Feb 10-Feb 11-Feb 12-Feb

AA CABF 21.8
AB CABF 22.3 23.4
AC CABF 23
AD CABS 19.4 18.8
AE CABS 20.2 20.6
AF CABS 19.2 20.3
AG CABS 24
AH CABS 22.9
AI CABS 22.3
AJ CABS 24.5
AK CABS 24.6
AL CABS 23.6
AM CABS 24.2
AN CABS 23.7
AO CABS 23.0
AP CABS 24.0
AQ CABS 22.0
AR CABS 23.0

Table C.2: The sugar levels calculated from the samples received during the period of 4 February
to 12 February, 2009. The blocks that were harvested before 9 February are denoted by a darker
row colour.

212 Chapter C. Wamakervallei harvesting application data

Vineyard
block Cultivar 04-Feb 05-Feb 06-Feb 09-Feb 10-Feb 11-Feb 12-Feb

AS CABS 23.0
AT CABS 21.4
AU CABS 26.3
AV CABS 22.6
AW CABS 19.8
AX CABS 21.4
AY CABS 20.9
*AZ CHAR
BA CHAR 23.1
BB CHAR 22.4 22.8 23.0
*BC CHAR
BD CHAR
BE CHAR
BF CHAR
BG CHAR 22.8
BH CHAR 23.0
BI CHAR
BJ CHAR 23.5
BK CHAR
BL CHAR 21.3 22.6
BM CHAR
BN CHAR
BO CHAR 23.5
BP CHAR
BQ CHAR 22.3
BR CHAR 22.0
BS CHAR 22.9 23.5
BT CHAR 19.4 19.8
*BU CHAR
*BV CHAR 24.5
BW CHAR
BX CHAR 21.6
BY CHAR 24.2
BZ CHAR
CA CHEN 22.0 23.3
CB CHEN
CC CHEN 21.2
CD CHEN 22.5
CE CHEN 21.8
CF CHEN
CG CHEN 19.9
CH CHEN 23.0

Table C.2 (continued): The sugar levels calculated from the samples received during the period
of 4 February to 12 February, 2009. The blocks that were harvested before 9 February are
denoted by a darker row colour.

C.1. Sample sugar levels 213

Vineyard
block Cultivar 04-Feb 05-Feb 06-Feb 09-Feb 10-Feb 11-Feb 12-Feb

CI CHEN 21.3
CJ CHEN
CK CHEN 19.2
CL CHEN 16.3
CM CHEN 19.7
CN CHEN 19.8
CO CHEN 20.9
CP CHEN
CQ CHEN
CR CHEN 21.4
CS CHEN 21.6 22.2
CT CHEN 20.8 23.6
CU CHEN 22.0 25.1
CV CHEN 22.1 24.2
CW CHEN
CX CHEN 21.8
CY CHEN 21.6
CZ CHEN 19.8
DA CHEN 21.2
DB CHEN
DC CHEN 21.3
DD CHEN 21.0
DE CHEN 18.3
DF CHEN 20.1 21.4 22.3
DG CHEN 19.8 21.4 22.3
DH CHEN
*DI CHEN
DJ CHEN
DK CHEN 21.2
DL CHEN
DM CHEN 21.4
DN CHEN 21.1
DO CHEN 19.8
DP CHEN 22.9
DQ CHEN 21.5
DR CHEN 22.8
DS CHEN 22.9
DT CHEN
DU CHEN
DV CHEN 22.1
DW CHEN 22.3
DX CHEN

Table C.2 (continued): The sugar levels calculated from the samples received during the period
of 4 February to 12 February, 2009. The blocks that were harvested before 9 February are
denoted by a darker row colour.

214 Chapter C. Wamakervallei harvesting application data

Vineyard
block Cultivar 04-Feb 05-Feb 06-Feb 09-Feb 10-Feb 11-Feb 12-Feb

DY CHEN 23.9
DZ CHEN
EA CHEN 24.2
EB CHEN 20.8
EC CHEN 23.6 20.8
ED CHEN 18.8 22
EE CHEN 22.8
EF CHEN
EG CHEN 21.2
EH CHEN
EI CHEN 20.4
EJ CHEN 21.6
EK CHEN 22.7
EL CHEN
EM CHEN
EN CHEN 20.8
EO CHEN
EP CHEN
EQ CHEN
ER CHEN
ES CHEN 22.3
ET CHEN
EU CHEN 23.1
EV CHEN
EW CHEN
EX COLO 18.3 19.3
EY COLO 20.9 19.2
EZ MALB 22.8
FA MALB 22.1
FB MALB 21.6
FC MALB 21.6
FD MALB 18.8
FE MALB 23.2 24.6
FF MALB
FG MALB
FH MERL 24.8
FI MERL 20.5 23.7
FJ MERL 24 24.7
FK MERL 23.1
FL MERL 23.5 24.1
FM MERL 25.3
FN MERL 23.0

Table C.2 (continued): The sugar levels calculated from the samples received during the period
of 4 February to 12 February, 2009. The blocks that were harvested before 9 February are
denoted by a darker row colour.

C.1. Sample sugar levels 215

Vineyard
block Cultivar 04-Feb 05-Feb 06-Feb 09-Feb 10-Feb 11-Feb 12-Feb

FO MERL 24.8
FP MERL 22.0
FQ MERL 23.7 26.6
FR MERL 24.3 25.3
FS MERL 27.8
FT MERL 27.0
FU MERL 23.5
FV MERL 24.6
FW MERL 23.5
FX MERL 23.3
FY MERL 24
FZ MERL 22.6 23.2
GA MERL 20.2 24.5
GB MERL
GC MERL 25.7
GD MERL 27.2
GE MERL
GF MERL 25.5
GG MERL 24.5
GH PINO
GI PINO 22.5 25.9
GJ PINO
GK PINO 21.9 24.5 24.7
GL PINO
*GM PINO 23.8
*GN PINO
GO PINO 22.6
GP PINO 23.2 24.4
GQ PINO 26.8 27.3
GR PINO 25.1
GS PINO 22.6
*GT PINO
*GU PINO
GV PINO
GW PINO
GX PINO
GY PINO 24.5 25.7
*GZ PINO
HA PINO
HB PINO
HC PINO
HD PINO

Table C.2 (continued): The sugar levels calculated from the samples received during the period
of 4 February to 12 February, 2009. The blocks that were harvested before 9 February are
denoted by a darker row colour.

216 Chapter C. Wamakervallei harvesting application data

Vineyard
block Cultivar 04-Feb 05-Feb 06-Feb 09-Feb 10-Feb 11-Feb 12-Feb

HE PINO 25.2
HF PINO 29.0
HG PINO 24.2
HH PINO
HI PINO 23.0 21.0
HJ PINO 23.5
HK RIES 15.5
HL SAUV
HM SAUV
HN SAUV
*HO SAUV
HP SAUV
*HQ SAUV
HR SAUV
*HS SAUV
*HT SAUV
*HU SAUV
HV SAUV 20.0 20.6
*HW SAUV 22.3
*HX SAUV
*HY SAUV
*HZ SAUV
*IH SAUV
*IB SAUV
*IC SAUV
*ID SAUV
IE SAUV
*IF SAUV
IG SAUV
IH SAUV
*II SAUV
*IJ SAUV
*IK SAUV
*IL SAUV
IM SHIR 25.5
IN SHIR 23.5
IO SHIR 20.9
IP SHIR 21.7 23.2
IQ SHIR 23.5 24.4
IR SHIR 22.3 24.4
IS SHIR 23.0
IT SHIR 24.0

Table C.2 (continued): The sugar levels calculated from the samples received during the period
of 4 February to 12 February, 2009. The blocks that were harvested before 9 February are
denoted by a darker row colour.

C.2. Example information 217

Vineyard
block Cultivar 04-Feb 05-Feb 06-Feb 09-Feb 10-Feb 11-Feb 12-Feb

IU SHIR 22.0
IV SHIR 21.5 22.2 22.5
IW VIOG
IX VIOG 21.8
IY VIOG 25.7
IZ VIOG 22.1
JA VIOG
JB VIOG 23.4
JC VIOG
JD VIOG 24.0
JE VIOG 20.9
JF VIOG 22.7

Table C.2 (continued): The sugar levels calculated from the samples received during the period
of 4 February to 12 February, 2009. The blocks that were harvested before 9 February are
denoted by a darker row colour.

C.2 Example information

This section contains results obtained by applying the decision support system to the 2009
harvesting data of Wamakersvallei Winery. In Table C.3, the jobs generated as the first scenario
when attempting to evaluate the initial harvest scheduling solution are listed along with the job
types, weights, arrival times, allowed processors (where relevant), jobs that are allowed to be
mixed (where relevant) and the additional processing time to be added to the normal processing
time when two Type II truckloads are joined together.

218 Chapter C. Wamakervallei harvesting application data

Jj Type wj ej Pi with µij = 1 all J` for which qj` = 1 extra processing time

J1 I 11.0 3.3 P21, . . . , P44 – 0.0
J2 I 25.0 3.4 P21, . . . , P44 J3, J4 0.0
J3 I 80.0 1.6 P21, . . . , P44 J2, J4 0.0
J4 I 40.0 5.6 P21, . . . , P44 J2, J3 0.0
J5 II 11.9 3.7 – – 1.1
J6 II 18.0 6.4 – – 1.5
J7 II 2.0 2.7 – – 0.0
J8 II 24.1 6.4 – – 1.6
J9 II 51.6 5.4 – – 2.5
J10 II 6.3 0.7 – – 0.0
J11 II 37.8 5.3 – – 2.1
J12 IV 0.0 3.2 – – 0.0
J13 IV 0.0 0.0 – – 0.0
J14 IV 0.0 4.5 – – 0.0
J15 IV 0.0 5.2 – – 0.0
J16 IV 0.0 5.6 – – 0.0
J17 IV 0.0 2.9 – – 0.0
J18 IV 0.0 3.4 – – 0.0
J19 IV 0.0 3.9 – – 0.0
J20 IV 0.0 3.7 – – 0.0
J21 IV 0.0 1.7 – – 0.0
J22 IV 0.0 5.0 – – 0.0
J23 IV 0.0 2.8 – – 0.0
J24 IV 0.0 5.0 – – 0.0
J25 IV 0.0 3.2 – – 0.0
J26 IV 0.0 6.2 – – 0.0
J27 IV 0.0 4.2 – – 0.0
J28 IV 0.0 6.0 – – 0.0
J29 IV 0.0 5.2 – – 0.0
J30 IV 0.0 0.0 – – 0.0
J31 IV 0.0 4.8 – – 0.0
J32 IV 0.0 5.6 – – 0.0
J33 IV 0.0 2.8 – – 0.0
J34 IV 0.0 6.0 – – 0.0
J35 IV 0.0 3.1 – – 0.0
J36 IV 0.0 2.8 – – 0.0
J37 IV 0.0 1.8 – – 0.0
J38 IV 0.0 0.8 – – 0.0
J39 IV 0.0 1.9 – – 0.0
J40 IV 0.0 6.0 – – 0.0

Table C.3: Jobs J1, . . . , J40 generated as part of the first scenario from the initial harvesting
schedule in §8.2.

APPENDIX D

VinDSS user manual

Contents
D.1 Importing data from Excel . 219

D.2 Generating a harvesting schedule from the imported data 220

This appendix serves as a concise user manual for VinDSS with the main focus on the correct
import of the data from Microsoft Excel [86] (discussed in §D.1). The process of generating and
viewing the solution is briefly outlined §D.2.

D.1 Importing data from Excel

The layout of the Microsoft Excel file used for the importing of data is shown in Figure D.1.
Each column contains the name of the column as the first column entry. For example, Excel
column A contains the referencing names for each of the vineyard blocks. Therefore, cell (A,1)
contains the title ‘Block reference’. However, importing data also works perfectly fine without
the column name. The importance lies in the order of the columns and also in the requirement
that all entries should only start in row 2 since row 1 is considered a row containing only
titles. The order of the columns is first, the block reference, then in column B the cultivar
abbreviation. It is necessary for the abbreviation to exactly match the abbreviations listed in
Table D.1. Column C contains the class of the grapes of the vineyard block and column D
contains the expected vineyard block yield expressed in tonnes. The most recent sample data
are included in Column E and the calculated sugar level is included in Column F, expressed in
degrees Balling.

In the case where it is required that the vineyard block should be kept separate from other
vineyard blocks, the name of the vineyard block is preceded by a ‘$’. For example, if vineyard
block AB may not be mixed with any other blocks, $AB is entered as the vineyard block name.
If, for any reason, a block in the Excel file should not be considered for harvesting during the
current harvesting period, the name is preceded by a ‘*’. For example, if block AB is referred
to as *AB it is not included in the harvesting schedule.

Column G is left open after which the necessary tank information is listed, starting with the
tank name in Column H. It is not the tank name that is of the greatest importance, but rather
the order — the fermentation tank information should always be listed in the indicated order,
starting at tank DF1 up to the last DF tank, DF10 and then the RT tanks in numerical order

219

220 Chapter D. VinDSS user manual

Figure D.1: A screen shot the exact format of the Microsoft Excel file used to import data to
VinDSS.

starting at RT317 and ending at RT332. Column I contains the weight of the grapes that are
currently contained in the tank and is left open if the tank is empty. It is only one third of
this indicated weight actually being transported to the presses, since the free run juice is first
drained and does not require pressing. The contents of the tank is included in columns J and
K, indicating the cultivar and class, respectively. Finally, the expected emptying date of the
tank is indicated in Column L.

Further important factors to keep in mind when importing the data from an Excel file, is that
the data should be contained in the first Worksheet of the file and that the file should be saved
as an xls-file. The Excel file should be saved as C://HarvestScheduling/Data.xls

D.2 Generating a harvesting schedule from the imported data

Generating a harvesting schedule from the imported data is a very simple process. The user
should select the number of days for which a schedule is sought, ranging between 3 and 5
days. Then the starting date should be selected from the drop-down menu, as shown in Figure
D.2. VinDSS cannot tell the difference between weekdays and weekend days. Therefore, if

D.2. Generating a harvesting schedule from the imported data 221

Cultivar Cultivar Cultivar
number name reference

0 Cabernet Franc CABF
1 Cabernet Sauvignon CABS
2 Shiraz SHIR
3 Petit Verdot PETI
4 Pinotage PINO
5 Merlot MERL
6 Mourvedre MOUR
7 Malbec MALB
8 Roobernet ROOB
9 Ruby Cabernet RUBY
10 Cinsaut CINS
11 Chenin Blanc CHBL
12 Sauvignon Blanc SAUV
13 Chardonnay CHAR
14 Viognier VIOG
15 Colombar COLO
16 Hanepoot HANE
17 SA Riesling RIES
18 Weisser Riesling WEIS

Table D.1: The abbreviations used to refer to the cultivars when the data importing function
of VinDSS.

the schedule is generated on a Friday, the user should ensure that the selected date refers to
the coming Monday. If the harvest scheduling process is started, it cannot be stopped until a
feasible solution is found. If, for some reason, it was started unnecessarily, the application may
be stopped by cancelling the process in the task manager.

The final harvesting schedule is displayed by selecting the tabbed pane labelled ‘Suggested
Harvesting Schedule’.

222 Chapter D. VinDSS user manual

Figure D.2: A screen shot of the drop down month selection function of VinDSS, where only
months considered as harvesting months is available for selection.

