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Abstract

This thesis is a case study in optimal inventory control, applied to Clickabox factory, a
South African cardboard box producer from whom cardboard boxes may be ordered at
short notice via the internet.

The problem of developing a decision–support system for optimal stockholding at the
factory, in order to minimize cardboard off–cut wastage subject to required service levels,
is addressed in this thesis. Previously a simple replenishment policy, based largely on
experience, was implemented at the factory. The inventory model developed for and
applied to Clickabox in this thesis takes account of a raw materials substitution cascade,
as well as the stochasticity of demand, and other factors such as cost, service level and
spatial requirements for the storage of stock. This combination of stochastic demand and
product substitution has not, to the author’s knowledge, previously been dealt with in
the literature.

There are two primary deliverables of this study. The first is a suggestion as to the suitable
stock composition (cardboard types from which boxes may be manufactured) to be kept
in inventory at the factory. The second deliverable is a computerised decision–support
system, based on the inventory model developed, to aid in future inventory replenishment
decisions at Clickabox.

Some of the results of this thesis have, at the time of writing, already been implemented
with success at the factory. These include the suggestions given to the management
of Clickabox as to the suitable stock types to be held in inventory, which have been
implemented in stages since March 2003. The suggested stock composition has proven to
be superior to the previous stock types held, in terms of a reduction in off–cut wastage
and increased availability of suitable boards.
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Opsomming

Hierdie tesis is ’n gevallestudie in optimale voorraadbeheer, toegepas op Clickabox fabriek,
’n Suid–Afrikaanse kartondoosprodusent by wie kartondose op kort kennisgewing via die
internet bestel kan word.

In hierdie tesis word ’n besluitnemingsteunstelsel ontwikkel vir optimale bestuur van voor-
raad by die fabriek, wat karton afknipselvermorsing onderhewig aan vereiste diensvlakke
minimeer. Vantevore is ’n eenvoudige voorraad aanvullingstrategie, wat hoofsaaklik op
ondervinding gebaseer was, by die fabriek toegepas. ’n Wetenskaplike gefundeerde voor-
raadmodel word vir Clickabox ontwikkel en toegepas, waarin ’n rou–voorraad kaskade–
substitusie proses in aanmerking geneem word, asook die stogastiese vraag na kartondose
en faktore soos prys, diensvlakke en benodigde stoorruimte. Hierdie kombinasie van sto-
gastiese vraag en rou–voorraad kaskade–substitusie is, tot die skrywer se kennis, nog nie
in die literatuur behandel nie.

Die studie het twee hoof–uitkomste ten doel. Die eerste is ’n aanbeveling ten opsigte van
’n geskikte rou–voorraad samestelling (kartontipes waaruit kartondose geproduseer kan
word) wat by die fabriek in voorraad gehou moet word. Die tweede is ’n rekenaarmatige
besluitnemingsteunstelsel, wat op die ontwikkelde voorraadbeheermodel gegrond is, en
wat vir toekomstige besluite in verband met voorraadaanvulling by Clickabox bedoel is.

Van die resultate wat in hierdie tesis vervat is, is reeds ten tyde van die opskryf daarvan
doeltreffend by die fabriek gëımplementeer. Ondermeer is die aanbeveling in verband
met die geskikte voorraadsamestelling, geleidelik vanaf Maart 2003 by die fabriek inge-
faseer. Dit het duidelik geword dat hierdie samestelling beter as die vorige voorraad-
profiel funksioneer, in terme van ’n verlaging in afknipselvermorsing en ’n verhoging in
die beskikbaarheid van geskikte kartonne.
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Terms of Reference

This thesis is a case study in optimal inventory control at Clickabox, a cardboard box
manufacturing company in the South African Western Cape Industria. The company’s
inventory control practices take into account a number of factors, most notably non-
stationary, partially observed stochastic demand and cascading product substitution. To
the author’s knowledge this combination of factors has not previously been dealt with in
the literature.

The company was founded by Mr Bob Fuller in May 1988 as Corrucape Packaging CC,
the first private carton manufacturing plant in the greater Cape Town area. Its turnover
grew steadily and reached a high point in 1996, when it achieved an annual turnover of
R4.3 million. It was converted to a PTY LTD company in 1997. Stiff competition and
Mr Fuller’s approach with respect to remaining a one–man business led to a decline in
turnover in 1997 and 1998, and as a result he decided to sell the company. In October 1999
the company was bought by Mr Piet Taljaard. The new directors, the Taljaard Family
Trust, changed the company name to Clickabox Pty Ltd in November 2000, reflecting the
company’s new focus on e–commerce.

The need for a scientific inventory control process was identified during the development
of a web–based interface for Clickabox that allows customers to receive quotes and place
orders online. This website interfaces with the Pastel [58] accounting system, used by
Clickabox, that maintains information on stock levels, sales, etc. It was developed during
the period October 2000 – August 2001 by Netcommerce Consulting [69], a company
owned and managed by Mr Leon Swanepoel.

Mr Swanepoel introduced Mr Taljaard, the director of Clickabox factory, to Prof Jan van
Vuuren from the Department of Applied Mathematics at the University of Stellenbosch,
in March 2001. At this meeting Mr Taljaard expressed his interest in a solution to his
inventory control problem. Since then, the factory has twice been used as a case study
for projects forming part of a project driven postgraduate course at the Department of
Applied Mathematics, called Methods of Operations Research [25]. This thesis is the first
study beyond Honours level to be conducted at Clickabox.

Prof van Vuuren was the supervisor for this thesis. The first meeting between the author
and the director of Clickabox took place on 8 May 2001, and after a number of subsequent
visits a research proposal was drawn up and presented to the director. The factory was
visited by the author on a weekly basis during the two months July to August 2001, for
the purposes of observing the quoting, ordering, manufacturing, and other administrative
processes. Subsequent to that period, the factory was visited by the author whenever
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required, but in any case at least on a bi–monthly basis. The computing facilities of
the Department of Applied Mathematics, as well as private facilities, were used during
numerical simulations so as to obtain model solutions. Much of the data required were
collected by the author on site at the factory, or provided by correspondence with Mr
Taljaard. Mr Jannie Brandt, a programmer from Netcommerce Consulting, assisted with
extraction of data from the Pastel database. Work on this thesis was completed in July
2004, and work emanating from this study was presented twice at annual conferences of
the Operations Research Society of South Africa (ORSSA).
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Definition of Symbols

A number of symbols will conform to the following convention:
A Symbol denoting a set. (Caligraphy capitals)
A Symbol denoting a matrix. (Boldfaced capitals)
a Symbol denoting a vector. (Underlined letters)

α(β) Service level of board β
At Total floor area at Clickabox factory [m2]
As Floor area of the storage space at Clickabox factory [m2]
A(β) Area of board type β [m2]
β Fraction of demand that is backordered during a stockout period
B Set of indices of board types kept in inventory, |B| = b and

B = BAC ∪ BDWB

BAC Set of indices of board types of cardboard type AC kept in inventory,
|BAC | = 28

BDWB Set of indices of board types of cardboard type DWB kept in inventory,
|BDWB| = 18

χn
j The sum of n independent, identically distributed random variables with

distribution r
vi
j,z in class j ∈ K

c Cost of capital rate [Rands per week]
D(β) Average annual demand for board type β [Sheets per annum]
d

vi
t Demand class of board preference vector vi in week t

Φ(ξ) The probability density function of random demand ξ
φi,f The wastage cost incurred when the f–th board in board preference vector

vi is used instead of the optimal board [Rands per board]
fn(x) Discounted expected cost for an n–period model under an optimal control

policy with an on hand inventory level of x [Rands per week]
Ft(ft)(j, x) Expected holding cost in time period t, given demand state j and inventory

level x [Rands per time period]
G Set of grid points (potential stock boards)
gi,β The wastage per board when one sheet of type i ∈ S is cut out of a board

of type β ∈ B [m2]
g′

i,β The percentage wastage when one sheet of type i ∈ S is cut out of a board
of type β ∈ B

G
(β)
t (u

(β)
t ) The single week expected cost for board type β and inventory

position ut [Rands per week]
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η�
(z) Spatial constraint for cardboard type z of rank � [Number of boards]

h′ The height to which boards may be stacked [m]
h(β) Holding cost per week of board type β [Rands per week]
hT Total holding cost per week over all board types [Rands per week]

H
(β)
t (u

(β)
t ) The total single week cost for board type β and inventory position ut,

comprising the purchasing cost and the inventory cost Gt(ut|πt, l)
[Rands per week]

I
vi
t Vector of information available at the start of week t for board

preference vector vi

κ(β) Number of order cycles in a year for board type β

Kj
t The fixed order cost in week t and demand state j [Rands per order]

K
j

t The expected fixed order cost in week t + 1 and demand state j [Rands per
order]

K Set of indices of demand classes, |K| = 7
L(S, x) Expected period cost for on hand inventory level x and order–up–to level S
LBf

The length of entry f in the set B [m]
LGf

The length of entry f in the set G [m]
LOf

The length of entry f in the set O [m]
l Lead–time for delivery of raw materials [Number of weeks]

m
(i,β)
t The maximum number of sheets, optimally produced by board preference

vector vi, i ∈ V, that can be produced from board type β ∈ B in week t
[Sheets per board]

m(β,f) The maximum number of sheets of type f ∈ S that can be produced from
board type β ∈ B [Sheets per board]

nj(σ
vi) The number of times that state j occurs in the sequence σvi

Oi Modified set of past orders (excluding those made by β1 to βi)
O Set indices of past orders
Π

vi
j,t The probability of board preference vector vi being in demand state

j, given the information available up to week t
Pvi The transition probability matrix for board preference vector vi

P
vi
j,k The probability of the demand state of board preference vector vi changing

from state j to state k
p(β) Purchasing cost per unit of board type β [Rands per board]

q
(β)
t The quantity of board type β ordered in week t [Boards per week]

q∗ Economic order quantity [Number of boards]
Rc Rental cost per volume of stock per week [Rands per m3 per week]
Rp Total annual rent paid [Rands per annum]
Rs Proportion of annual rent paid attributed to storage space [Rands per annum]
RT Total rent per period [Rands per week]
r Re–order level [Number of boards]
rvi Probability distribution of demand for board preference vector vi

r
vi
j,k Probability of a demand realisation in demand class k, given a current

demand state of j distribution of demand for board preference vector vi

r̂
vi
j,k The probability distribution of the lead time demand of board preference

vector vi
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S Set of indices of possible sheet types for which orders may be received, |S| = s
S Order–up–to or base–stock level [Number of boards]
S∗(β) Optimal number of stockouts of board type β in a year [Stockouts per annum]

S
(β)

Probability of a stockout of board type β in each order cycle
s Re–order level [Number of boards]
s(β) Cascading shortage cost per unit of board type β [Rands per board]
T Point of time at which the myopic behaviour of the demand is terminated
T Set of indices of one–week time periods, |T | = 52
τ Expediting factor
θ Discount factor

u(β)
t Inventory position of board type β at the start of week t [Number of boards]

υ
vi
j Mean of distribution j

υ
(2)vi
j Second moment about the mean of distribution j

v(β) Volume of board β [m3]
V Set of indices of board preference vectors, |V| = μ
vi Board preference vector i
WBf

The width of entry f in the set B [m]
WGf

The width of entry f in the set G [m]
WOf

The width of entry f in the set O [m]
w

vi
t Realised demand for board preference vector vi in week t [Number of boards]

W β
t Realised demand for board type β in week t [Number of boards]

W β
t,i The i–th level demand for board type β in week t [Number of boards]

Ŵ β
t Realised demand for board type β during the lead time from week t

[Number of boards]
Ψ(β) Shortage cost of board type β [Rands per week]
X Set of indices of boards in the board preference vector, |X | = 3

x
(β)
t Inventory level of board type β in week t [Number of boards]

ζ
(i,k)
t The set of all possible demand state sequences σ

vi
t = (d

vi
t , d

vi
t+1, . . . d

vi
t+l)

such that d
vi
t = k
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Glossary

Adaptive policy. A policy in which the information gained during each time period is
used to update the estimates of unknown parameters, for use during the subsequent
periods.

Backorder. A customer demand that has not been met due to a stockout situation,
where the customer is prepared to wait for the raw materials to arrive in stock.

Base–stock level. The inventory level to which an inventory replenishment order should
bring the stock on hand.

Base–stock Policy A continuous review inventory replenishment policy which com-
prises a single parameter, namely an order–up–to or base–stock level, S.

Bill of Materials. A listing of raw materials required by a manufacturer to complete
or produce a specified product.

Board. A piece of cardboard received as is from a supplier, not yet cut to the correct
dimensions for the manufacturing of a cardboard box.

Board Preference Vector. A set of three boards from which a sheet order may be
produced, listed in order of increasing offcut wastage incurred.

Certainty equivalent control. Inventory replenishment policies under which some
data are observed, the unknown parameters are estimated by maximum likelihood
methods, and inventory policies are chosen, assuming that the demand distribution
parameters equal the estimated values.

Cost of capital rate. The cost of financing an investment, such as the interest paid on
a loan.

Continuous review. An inventory control policy under which replenishment orders
may be placed at any time.

Decision Support System. A computerised system designed to assist managers in se-
lecting and evaluating courses of action, by providing a logical analysis of the rele-
vant factors influencing decisions.

Economic Order Quantity. The optimal replenishment order quantity that minimizes
the holding and order costs of on hand inventory.
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Fill Rate. The percentage of inventory items demanded during a fixed time period that
will be in stock when needed.

Holding cost. The cost per unit of holding stock in inventory. This comprises rental
cost, insurance, and the opportunity cost of tied–up capital investment.

Inventory level. On hand inventory less backorders.

Inventory position. On hand inventory together with stock on order from raw mate-
rials suppliers, less backorders.

ISO9000. Certification Standards created by the International Organization for Stan-
dardizations in 1987 that now play a major role in setting process documentation
standards for global manufacturers. These standards are recognized in over 100
countries. ISO9000 provides general requirements for various aspects of a firm’s op-
erations, including Purchasing, Design Controls, Contracts, Inspection, Calibration,
etc. [2].

K–convexity. A condition used to prove the optimality of the (s, S) policy in the case
of both fixed and variable order costs. A function is said to be K–convex if the
secant line connecting any two points on the graph of the function, when extended
to the right, is never more than K units above the function.

Lead Time. The time span between the placing of a replenishment order and its sub-
sequent arrival into inventory.

Lost Sales. Potential sales that are lost, because there is no stock available in inventory
(if the waiting time for delivery of an order is too long).

Manufacturer. A company involved in a series of interrelated activities and operations
involving the design, material selection, planning, production, quality assurance
and marketing of commercial goods.

Moving Average. The average over the last N points in a set of data is said to be an
“N–period moving average.” This is sometimes used to make forecasts, based on
the most recent data.

Myopic Policy. A policy which does not take future costs as a result of current decisions
into account.

Non–stationary Demand. Demand having a probability distribution that changes
over time.

Obsolescence. Stock that is no longer usable for its intended purpose through expira-
tion, contamination, damage, or change of need.

Offcut Wastage. The wastage incurred when boards are cut into sheets of the required
dimension in order to produce cardboard boxes, resulting in pieces of cardboard
too small for re–use.

On hand inventory. The stock immediately available in inventory.
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Opportunity cost. Potential earnings from an alternative investment, such as the in-
terest which would be earned on capital were it to be placed in a bank account,
instead of being invested in inventory.

Order cost. The costs involved in placing an inventory replenishment order at a supplier.

Order cycle. The length of time between the placement of successive orders to replenish
an inventory.

Order quantity. The number of stock items to be ordered when an inventory replen-
ishment order is placed.

Order–up–to level The on hand inventory level up to which a replenishment order
should bring the stock on hand in an (s, S)–model or under a base–stock policy.

Pallet. A rectangular wooden based support for unitized lots of cardboard, subject to
standards of length and width for storage in pre–determined places. Construction
of the wooden base is such that there is air space between the bottom of the pallet
and the load bearing surface of the pallet sufficient to allow the insertion of lifting
forks so as to transport the pallet by forklift.

Partially Observed Demand. Demand for which the underlying distribution is not
completely observed — it is only partially observed through the demand that has
actually realised.

Periodic Review System. An inventory replenishment or control policy in which the
order cycle is a fixed period of time.

Product Substitution. The use of a non–primary or sub–optimal product or compo-
nent (at a cost), normally when the primary or optimal item is not available.

Purchasing cost. The cost per unit of raw materials purchased from a supplier.

(Q, r) Model. An inventory replenishment or control policy in which an order of mag-
nitude Q inventory units is placed if the inventory level reaches the re–order level
r.

Raw materials. Materials purchased by a manufacturer to be used in the manufactur-
ing of products.

Recyclable Materials. Goods that may be collected for re–use as raw materials to
manufacture new products.

Rental cost. The cost of hiring space used for warehouse and inventory control func-
tions, including office space. For owned buildings a fair market rental value or
depreciation is used instead.

Re–order level. The inventory level at or below which a purchase requisition is initi-
ated. It is a combination of expected usage during the lead time period and a safety
stock buffer.
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Re–order Quantity. The number of stock items to be ordered when a re–order level is
reached.

Safety stock. Inventory which serves to promote continuous supply when unpredictable
demands exceed forecasts, or the delivery of raw materials from a supplier is de-
layed.

Scrap Material. Material that is deemed worthless to a production facility and is only
valuable to the extent to which it can be recycled.

Service Level. The probability of not running short of stock before an inventory replen-
ishment order arrives (i.e., the percentage of order cycles during the year in which
there were no stockouts).

Set–up Cost. The marginal cost of a machine or workstation setup. This generally
includes the labour and the materials cost associated with the scrap material gen-
erated by the setup.

Sheet. A piece of cardboard that has been cut to the exact dimensions required for the
manufacturing of a cardboard box order.

Shortage cost. The cost incurred when a sub–optimal inventory item must be used to
produce an order, due to a stockout of the optimal inventory item.

Simulation. A representation of reality, often used for experimentation. In operations
management, computer simulations of complex systems, such as factories or service
processes, are often utilized in to order experiment with changes in management
decisions. Experimenting with a simulation model may help to identify problems
and opportunities for improvement, without having to actually build (or change) the
physical system in order to evaluate the repercussions of such changes. Computer
simulations of this type are generally discrete event simulation models, as opposed
to continuous simulation models in which quantities have continuous measure.

(s, S) Model. An inventory replenishment or control policy in which an order is placed
if the inventory level is less than or equal to some specified value, s. The size of
the order placed is sufficient to raise the inventory level to the order–to level S.

Stationary Demand. Demand having a single probability distribution that does not
change over time.

Stock. The commodity or commodities on hand in a storeroom or warehouse to support
operations.

Stockout. The condition existing when a supply requisition cannot be filled from stock.

Supplier. A provider of raw materials.
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Chapter 1

Introduction

Inventory is held by manufacturing companies for a number of reasons, such as to allow for
flexible production schedules and to take advantage of economies of scale when ordering
stock [55]. Most importantly, an inventory acts as a buffer between supply and demand,
compensating for variations in demand and safeguarding against variations in delivery
lead time of raw materials. Failure to meet demand compromises customer satisfaction,
and may lead to high costs of emergency production [79]. The efficient management
of inventory systems is therefore a crucial element in the operation of any production
company [19]. Benefits from efficient inventory management to the customers include in-
creased “off the shelf” availability of products, whilst benefits to the management include
reduced tied–up investment capital in the inventory, reduced operating costs associated
with warehousing functions, and a reduction in obsolescence accrual [35].

There are a number of factors that should be taken into account when developing an
inventory model, such as the nature of the demand for the product, customer require-
ments and costs involved. In this thesis, an inventory control model will be developed for a
manufacturing company where the production process is characterised by non–stationary,
partially observed stochastic demand and a cascade of stock substitution during produc-
tion.

The remainder of this chapter is structured as follows: Clickabox, the factory on which
the case study for this thesis is based, is introduced in §1.1, and a brief and informal
description of the research problem to be considered in this thesis is given in §1.2. Finally,
an overview of the structure of the remaining chapters in the thesis is given in §1.3.

1.1 Introduction to Clickabox Factory

Clickabox is a cardboard box manufacturer in the South African Western Cape. It is a
privately owned factory which caters for a niche in the local cardboard packaging industry
characterised by short delivery times, and therefore availability of stock is a high priority
for the company.

1
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1.1.1 Products and Services

Clickabox has become an established manufacturer and supplier of cardboard boxes to
industries in the Western Cape. Its products include cartons (printed with either one
or two colours), creased boards, pads and sheets – all manufactured from corrugated
cardboard bought in from a number of large manufacturers, such as Mondi [52], Nampak
[56], and Atlantic packaging [5], who typically have long delivery response times for orders.

The company’s focus is on the manufacturing of smaller order quantities and delivering
with a shorter response time than its competitors. This is the perceived gap left in the
market by the larger players mentioned above, and it is within this niche that Clickabox
competes.

The activities of Clickabox are divided into two kinds of business: long orders and quick
orders. Customers who are prepared to wait for up to ten working days for their orders
to be met may place a long order. Boxes ordered as such are less expensive, as partially
processed boards are bought in from the supplier (whose lead time is ten days) at no
extra cost to Clickabox and cut to size, so that offcut wastage is minimal. The company’s
focus is, however, on the market for quick orders. For these orders, produced from the
unprocessed boards kept in stock at the factory, Clickabox guarantees product delivery
within two working days. This is significantly faster than deliveries made by larger
companies, which may take up to three weeks to deliver an order to individuals. The
closest competitor to Clickabox, in terms of delivery time, is Cape Town Box [14], which
guarantees a four day lead time [71].

Boxes are made to order; even very small orders are accepted by Clickabox, and free
delivery is offered on large orders. A major part of the service delivery of Clickabox is its
ability to supply quick quotes to customers, and its ability to perform all the transactions
accurately and quickly, in electronic fashion. The company website [57], from which it
derives its name, forms a significant part of its service offering in this regard. Customers
may register, request quotes, and view inventory and product information online. The
website gives the company a competitive advantage in that it makes its products accessible
to inexperienced clients.

1.1.2 The Industry as a Whole

The South African corrugated packaging industy is very competitive and has undergone
a rationalisation phase during the period 1999–2001 [72]. Major players in the industry,
like Mondi [52] and Kohler [41], have rationalised their capacity and have closed some of
their production plants. Other companies, like Corruboard, Smart Packaging and Naledi,
have closed down completely. With steeply rising input costs (due to price increases in the
paper industry) and a slump in the fruit exports from the South African Western Cape
during the period 2000–2001 [46], the capacity still exceeds the demand and there are
very few new entrants in the market. This abundance of competition heightens the need
for Clickabox to remain competitive in its pricing. Direct competitors include Cape Town
Box [14], Boxes for Africa [13], and a host of smaller manufacturers. This cut–throat
competitiveness necessitates streamlining of all processes if companies wish to survive.
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1.2 Informal Problem Description

The goal of this study is to establish a good inventory management policy for Clickabox
factory.

The service offering of Clickabox, namely delivery of quick orders within two working
days, is dependent on the availability of suitable cardboard in stock. Suitability of a
stock board is determined by the amount of off–cut wastage that results when it is used
to meet an order, which, in turn, depends on the dimensions of orders for boxes. The
objective of the model in this thesis will be to minimize stockholding costs, subject to
the following constraints:

I Raw material off–cut wastage is to be limited to at most 15% of the surface area of
a stock board used.

II A service level of 95% is to be achieved for all orders being met with stock boards
in inventory.

The first deliverable of the study is a recommendation as to a suitable set of boards which
should be kept in stock, in order to meet the above mentioned objective, subject to the
constraints. The second deliverable is a computerised decision support system, which,
given certain inputs (such as inventory composition and current inventory levels), will
provide re–order and order–to levels for each of the boards kept in stock.

1.3 Thesis Overview

Apart from this introductory chapter, this thesis comprises a further six chapters. Chap-
ter 2 opens with a very brief survey of the large body of inventory theory literature, and
then examines in more detail the literature related to specific aspects of the inventory
problem at Clickabox. This is followed, in Chapter 3, by an in–depth description of Click-
abox factory, its production and ordering processes and its business objectives. Chapter
4 is devoted to an analysis of the demand for cardboard boxes, in order to determine
which board sizes are ideal to keep in stock, and to derive demand distributions for these
optimal board sizes. A theoretical inventory model is formulated in Chapter 5 and then a
sub–optimal control policy is developed, which is more practical with regards to compu-
tational requirements. The verification and results of the computerised simulation model,
built on the inventory model of Chapter 5, are discussed in Chapter 6. The computerised
decision support system developed for use at Clickabox is based on this simulation model.
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Chapter 2

Literature Review

There is a vast body of literature concerning inventory theory. This chapter is aimed
at briefly tracing the development of inventory theory, in order to place the topic of
this thesis in context, and then exploring, in some detail, specific concepts in inventory
modelling. The relevance of each of these concepts to the situation at Clickabox factory
is explained and utilised in the approach taken in the remainder of this study.

2.1 Brief Overview of Inventory Theory

The goal of inventory modelling is typically to find a policy (usually comprising elements
such as re–order levels and re–order quantities) which minimises total inventory cost,
subject to a given service level. Total inventory cost normally comprises ordering and
setup costs, unit purchase costs, holding costs and shortage costs.

An early Operations Management philosophy, namely the theory of an economic order
quantity (EOQ), where inventory costs are minimised for independent demand, was de-
veloped as early as 1913 [28]. Early works include those of Harris (1913, [30]), and Wilson
(1934, [78]) on the classic economic lot size model, which recommends an optimal produc-
tion batch size by a trade–off of the inventory holding cost against production change–over
costs. This formed the basis of the EOQ model, still used widely today. The objective
of the model is to minimize total cost, assuming continuous review, a known, constant
demand, and a known, constant lead time. As shown in Figure 2.1, the minimum cost is
incurred when the cost of holding stock is balanced with the cost of ordering stock. The
EOQ is given by q∗ =

√
2KD/h, where K is the fixed ordering cost, D is the average

annual demand, and h is the holding cost per unit per year. The re–order point is given
by the demand per period multiplied by the lead time (in number of periods). The reader
is referred to Hadley and Whitin (1963, [29]), Johnson and Montgomery (1974, [34]), and
Winston (1994, [80]) for discussions on the EOQ model and its applications.

The largest body of literature, however, stems from the post World War II period. A
classic work is that of Arrow, et al. (1951, [3]). They derived an optimal inventory policy
for problems in which demand is known and constant, and then for single period problems
in which demand is random, with a known probability distribution. They also analysed

5
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Figure 2.1: A graphical depiction of the concept of an economic order quantity, which
is the order quantity at which the holding and ordering costs are balanced, in order to
minimise total cost.

the general dynamic problem, under the assumption of a fixed setup cost and a unit order
cost, proportional to the order size. Under these assumptions the optimal inventory policy
was suspected to be an (s, S) policy, in which an order is placed if the inventory level is
less than or equal to some specified value, s, at the beginning of a period. The size of the
order placed is sufficient to raise the inventory level to S. The optimality of this policy
was proven in later years for various cases (see Scarf (1960, [64]) and Bensousson, et al.
(1983, [11])). The (s, S) inventory policy is illustrated schematically in Figure 2.2.

A number of important advances were contained in the monograph of Arrow, et al. (1958,
[4]), which provided a foundation for future work in inventory theory. A paper by Karlin
and Scarf (1958, [39]), appearing in this monograph, investigated delivery lags, i.e. cases
in which there is a positive lead time from the supplier, with two major results. The first
result was for the case of backordered sales, where in a stockout situation the customer is
prepared to wait for his order to be delivered. The optimal re–ordering policy was shown
to be a function of the inventory position (the sum of the stock on hand and the stock
on order less backordered stock). The second result was for the case of lost sales, where
in a stockout situation the customer is not prepared to wait and the sale is lost. It was
shown that the simple policy that is optimal for the case of backordering is not optimal
for the lost sales case. A detailed study of optimal policies was presented for the case
of lost sales, delivery lags and a linear purchasing cost. The analysis was conducted by
means of the standard dynamic programming formulation of the inventory problem. For
an on hand inventory of x units, an initial order–up–to quantity of S units, a linear unit
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Figure 2.2: A schematic illustration of stock movement over time under the (s, S) inven-
tory policy. An order is placed, when the inventory level drops below s, for a quantity
sufficient to raise the inventory level to S. The inventory level continues to decrease
during the lead time period, until the arrival of the order. The cycle then repeats itself.

order cost of p monetary units, a single period delivery lag and a random demand of ξ
units per period governed by a probability distribution with density Φ(ξ), the problem
was formulated as follows: Let L(S, x) be the expected period cost (holding and shortage
costs) and ϑ the discount factor. For the case of lost sales, the stock level will not become
negative, so the new inventory level, at the end of the period, is given by max

{
S − ξ, 0

}
,

i.e. x = S − ξ if ξ ∈
{
0, . . . , S

}
, and x = 0 if ξ ≥ S. Then f(x), the discounted expected

costs associated with an optimal decision, satisfies the dynamic programming recursion

f(x) = min
S≥x

{
p(S − x) + L(S, x) + ϑ

[∫ S

0

f(S − ξ)Φ(ξ) dξ + f(0)

∫ ∞

S

Φ(ξ) dξ

]}
.

(2.1)
If delivery is instantaneous, the expected cost becomes L(S), a function of the immedi-
ately available inventory only. For the case of backlogging, the stock level can become
negative, and so the new stock level is given simply by x = S− ξ. Equation (2.1) is then
reduced to

f(x) = min
S≥x

{
p(S − x) + L(S) + ϑ

∫ ∞

0

f(S − ξ)Φ(ξ) dξ

}
. (2.2)

An important result in inventory theory has been the establishment of the optimality
of (s, S) policies under various conditions. Scarf (1960, [64]) introduced the notion of
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K–convexity, a condition he used to prove the optimality of an (s, S) policy in the case
of both fixed and variable ordering costs K. A function f(x) is said to be K–convex if
the secant line connecting any two points on the graph of the function, when extended
to the right, is never more than K units above the function, or in algebraic terms, if

f(x) + a

[
f(x)− f(x− b)

b

]
≤ f(x + a) + K, (2.3)

for a, b > 0 and all x.

Scarf [64] defined fn(x) to be the cost function associated with optimal decisions for an n–
period inventory problem. He showed that the function ps+L(s)+ϑ

∫∞
0

fn−1(s−ξ)Φ(ξ)dξ

is K–convex, and proved, by induction, the optimality of the (s, S) policy in the case
where backlogging is allowed. The only constraint on the parameters of the problem is
that if the setup costs vary over time, they must decrease with increasing time.

Iglehart (1963, [31]) investigated the limiting behaviour of the value function,

fn(x) = min
s≥x

{
p(s− x) + L(s) + ϑ

∫ ∞

0

fn−1(s− ξ)Φ(ξ) dξ

}
, (2.4)

and the optimal policies, (st, St), as t→∞, when the discount factor is ϑ = 1.

The nature of the demand process is an important factor that affects the type of optimal
policy in a stochastic inventory model. The inventory control literature that followed
after 1960 is categorized according to the type of demand studied, i.e. stationary or
non–stationary, and whether the demand is fully or partially observed. In a stationary
demand process, the demand follows a single probability distribution, whilst in a non–
stationary process the probability distribution of the demand varies with time. A fully
observed process is one for which all parameters are known with certainty. A problem
with partial information is one in which the demand distribution possesses one or more
unknown parameters that may be either discrete or continuous. In the case of partial
information, the estimate of the unknown parameters is usually updated as the actual
demand is observed over time.

2.1.1 Stationary Demand, Fully Observed

The inventory problem with fully observed and stationary demand forms the body of
most of the classical theory of inventory control. As discussed above, Scarf (1960, [64])
presented the result that if the demands during successive periods are independent and
identically distributed random variables, and the demand is fully observed, an (s, S)
policy is optimal.

2.1.2 Non–stationary Demand, Fully Observed

Inventory problems with fully observed, non–stationary demand, although more complex,
have also been studied extensively. The dynamic inventory model of Arrow, et al. (1951,
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[3]) mentioned above was extended by Karlin (1960, [38]), who presented an infinite hori-
zon, multi–period inventory model with stochastic non–stationary demands. He assumed
that production decisions are made during each period and, since the time horizon is infi-
nite, disposal is not an issue. He established the optimality of the base–stock policy, and
showed that if demand increases stochastically over time, the optimal base–stock values
also increase. The base–stock policy is a continuous review, one–for–one replenishment
policy which comprises a single parameter, namely an order–up–to level S. An order
for qt = S − ut units is placed at the start of period t to arrive for use at the start of
period t + l, assuming an inventory position ut at the start of period t, a delivery lag l
and a base–stock level S. A typical change in stock levels over time under a base–stock
policy is shown in Figure 2.3. A base–stock policy is suitable when the cost of ordering
is negligible and there is no penalty for small orders, and is inexpensive to implement in
cases when storage allocations cannot be changed without incurring significant costs [21].

Figure 2.3: A schematic illustration of stock movement over time under the base–stock
inventory policy, showing the placement of an order during every period that is sufficient
to bring the inventory position up to the base–stock level S. This order arrives the lead
time number of periods later.

Veinott (1963, [76]) extended the work of Karlin [38] by generalizing his results on the
ordering of base–stock levels. Bensousson, et al. (1983, [11]) formulated the problem
of non–stationary, stochastically independent demands and proved the optimality of an
(s, S) policy for both finite and infinite horizons. Song and Zipkin (1993, [66]) pre-
sented another single–item, continuous review model with non–stationary demand. They
assumed that the demand follows a doubly stochastic Poisson process, with the rate
governed by a Markov process. The demand state of the Markov process represents
randomly changing environmental factors, such as fluctuating economic conditions and
seasonal variability. Demand for each period is a random variable whose distribution
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function is dependent on the demand state (generated by the Markov process) in that
period. They formulated a dynamic program to compute an optimal policy, using modified
value iteration. Modified value iteration is an algorithm for finding optimal policies for
partially observed Markov decision processes, aimed at accelerating the iteration process
by reducing the number of dynamic programming updates to its convergence. Value iter-
ation starts with an initial value function, which represents the expected total discounted
reward for following a certain policy, and iteratively performs dynamic programming up-
dates to generate a sequence of value functions, which converges to the optimal value
function [83]. This typically requires a large number of dynamic programming updates,
so the strategy followed in modified value iteration is to improve the value functions
by means of certain additional steps. After a value function is improved by a dynamic
programming update, it is fed to the additional steps for improvements.

Sethi and Cheng (1997, [65]) presented a more general model than that of Song and Zipkin
[66], including the case of seasonal demand and incorporating service level and storage
constraints. They used the concept of K–convexity, first utilized by Scarf (1960, [64]),
to establish the optimality of the state–dependent (s, S) policy in the case of Markovian
demand and full backlogging. The first assumption they made, under which the optimal
policy is an (s, S) policy, was

Kj
t ≥ K

j

t+1 ≡
n∑

j=1

PjkK
j
t+1 ≥ 0, t ∈ T , j, k ∈ K, (2.5)

where Kj
t is the fixed ordering cost for period t and demand state j, K

j

t+1 is the expected
fixed ordering cost for period t + 1 and demand state j, K = {1, 2, . . . , n} is the finite set
of possible demand states, T =

{
0, 1, . . . , t̂

}
is the planning horizon of the problem, and

Pjk are the transition probabilities of the Markov process, in other words the probability
of the demand state changing from state j to state k, for all j, k ∈ K. This assumption
states that the fixed cost of ordering during a given period with demand state j should
be no less than the expected fixed cost of ordering during the next period. The second
assumption made was that

pj
tx + Ft+1(ft+1)(j, x)→∞ as x→∞, t ∈ T , j ∈ K, (2.6)

where pj
t is the purchasing cost for period t and demand state j, x is the surplus level (of

inventory or backlog) at the beginning of a period and Ft+1(ft+1)(j, x) is the expected
holding cost. This assumption states that either pj

t > 0 or Ft+1(ft+1)(j, x) → ∞ as
|x| → ∞, or both. This generalises the usual assumption that the inventory carrying
cost, h, is positive. Under these and other standard assumptions, they proved that there
exist sequences of numbers sj

t , S
j
t for all t ∈ T , j ∈ K, with sj

t ≤ Sj
t , such that the order

quantity under an optimal policy is given by

qt(j, x) = (Sj
t − x)Γ(sj

t − x), (2.7)

where the step function Γ(•) is defined as Γ(z) = 0 when z ≤ 0, and Γ(z) = 1 when
z > 0.

Graves (1999, [27]) presented a model for a single–item inventory system with a deter-
ministic lead–time, but subject to a stochastic, non–stationary demand process, in which
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the demand process behaves like a random walk. The demand process is an integrated
moving average process, for which an exponential–weighted moving average provides the
optimal forecast. An adaptive base–stock policy, in which the information gained dur-
ing each period is used to update the estimates of an unknown parameter (the optimal
order–up–to quantity) was proposed for inventory replenishment. It was observed that
the safety stock required for the case of non–stationary demand is much greater than for
stationary demand; furthermore, the relationship between safety stock and the replenish-
ment lead–time becomes convex when the demand process is non–stationary, quite unlike
the case of stationary demand.

Kambhamettu (2000, [36]) investigated the problem of parameter estimation when the
observed demand is generated by discrete parametric probability distributions. Demand
was modelled as a partially observed Markov decision process, and it was assumed that
the demand states are characterised by either the Poisson or the Negative Binomial
distribution. The estimation maximization algorithm, developed by Baum, et al. (1970,
[9]), was applied to estimate the parameters, and the model with the best estimates was
selected.

2.1.3 Stationary Demand, Partially Observed

Stationary, partial information problems are more difficult to solve than cases where de-
mand is fully observed. Scarf (1959 [63], 1960 [64]) was a pioneer in the use of Bayesian
techniques for inventory control. Bayesian analysis is a statistical procedure which en-
deavours to estimate the parameters of an underlying distribution, based on the observed
data. It begins with a prior distribution, which may be based on anything, including an
assessment of the relative likelihoods of parameters or the results of non–Bayesian obser-
vations. In practice, it is common to assume a uniform distribution over an appropriate
range of values for the prior distribution. The Bayesian method allows for updating of the
demand distribution as new data become available, while avoiding storage of all historical
data. It provides a rigorous framework for dynamic demand updating when the demand
distribution is not known with certainty.

Scarf (1959, [63]) studied a conventional dynamic inventory problem in which the purchase
cost is strictly proportional to the quantity purchased, so that the optimal policy is defined
in period t by a single critical number S, the order–up–to level. The innovation in the
paper was to allow the density of demand Φ(ξ, ω), where ξ represents the demand, to
depend on an unknown statistical parameter, ω, which describes the demand density. As
time evolves, the sequence of realized demands generates holding, shortage, and purchase
costs, but in addition, more is learnt about the true value of the underlying parameter.
For the analysis to be manageable, the demand distribution is assumed to take the form
Φ(ξ, ω) = β(ω)e−ξωr(ξ), where β and r are functions of the unknown parameter and
the demand respectively. With this specification, if the t–th period is entered with a
knowledge of the current stock level, x, and a history of past demands, ξ1, . . . , ξt−1, the
entire history may be summarized in the sufficient statistic,

ν =

∑t−1
i=1 ξi

t− 1
, (2.8)
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so that the dynamic programming formulation depends only on the variables x and ν. The
monotonicity of St(ν) was demonstrated in (1959, [63]), and the asymptotic behaviour of
St(ν) and ν, as t→∞, was determined.

Karlin (1960, [38]), Scarf (1960, [64]) and Iglehart (1964, [32]) studied dynamic inventory
policy updating when the demand density has unknown parameters and is a member
of the exponential or range families. They showed that an adaptive critical value (or
order–up–to) policy is optimal, where the critical value is determined dynamically.

Conrad (1976, [18]) examined the effect of demand censoring by the inventory level on
Poisson demand estimation. Demand censoring occurs when there are lost sales and no
backordering, resulting in partially observed demand. He proposed an unbiased maximum
likelihood estimate of the Poisson parameter.

Azoury (1985, [7]) and Miller (1986, [51]) generalised and extended the results of Kar-
lin [38], Scarf [64] and Iglehart [32] to other classes of demand distributions. Azoury
(1984, [6]) also investigated the effect of dynamic Bayesian demand updating on optimal
order quantities. She concluded that Bayesian demand updating, compared to the non–
Bayesian method, yields a more flexible optimal policy by allowing updates of the order
quantities in future periods. The Bayesian approach is generally difficult to implement,
because of extensive computational demands. Lovejoy (1990, [47]) showed that a simple
inventory policy based on a critical value (using a myopic parameter adaptive technique)
may be optimal or near–optimal in some inventory models. A myopic policy is a re-
plenishment policy that minimizes the average total cost per product until the inventory
is depleted, ignoring the influence of future costs on the current decision. He also gave
two numerical examples to illustrate the performance of simple myopic policies. Lovejoy
(1992, [48]) further extended this analysis of myopic policies by considering policies that
terminate the myopic behaviour at some point in time, which may be fixed or may be
random.

Lariviere and Porteus (1995, [43]) considered Bayesian techniques for a lost sales problem
in which sales, not true demand, are observed. Because of lost sales, the retailer may
learn more about the true demand process by holding inventory at a higher level initially
to establish quickly a better estimate of the true demand. Gallego, et al. (1996, [26])
demonstrated a so–called Min–Max technique for the analysis of various distribution–
free finite horizon models for which the distribution is specified by a limited number
of parameters, such as the mean and variance, or a set of percentiles of demand. This
Min–Max technique is a linear programming approach, where the objective is to mini-
mize the maximum expected cost over all demand distributions, satisfying a set of linear
constraints.

Ding and Puterman (1998, [20]) investigated the effect of demand censoring on the opti-
mal policy in newsvendor inventory models with general parametric demand distributions
and unknown parameter values. The main result of the paper is that the combined effect
of an unknown demand distribution and unobservable lost sales results in higher optimal
order quantities than in the fully observable demand case. This illustrates the trade–off
between information and optimality, in the sense that it is optimal to set the inventory
level higher during earlier periods in order to obtain additional information about the
demand distribution, so as to allow for better decisions during later periods.
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2.1.4 Non–stationary Demand, Partially Observed

Considerably less work has been done on the more complex inventory problems with
non–stationary demand and partial information. One paper that considers a problem in
this class is by Kurawarwala and Matsuo (1996, [42]). They presented a growth model
to estimate the parameters of a demand process over its entire life cycle. In their base
case, production decisions are made at the beginning of the problem for the entire life
cycle. They presented a technique with which the initial estimation of parameters of their
forecasting model is made. However, they do not thoroughly address the issue of revising
these estimates, using new observations.

Treharne and Sox (2002, [73]) examined several different policies for an inventory control
problem in which the demand process is non–stationary and partially observed. The
probability distribution for the demand during each period is determined by the state
of a Markov chain; this underlying distribution is called the core process. However, the
state of this core process is not directly observed; only the actual demand (defined as wt)
is observed by the decision maker. The inventory control problem is a composite–state,
partially observed Markov decision process. For an inventory position ut, the single–
period expected inventory cost function is defined as

Gt(ut|πt, l) = Eŵt,l|πt [Ψ max {0, ŵt,l − ut}+ h max {0, ut − ŵt,l}] , (2.9)

where ŵt,l =
∑l

n=0 wt+n,l represents the observed demand during the lead time l, πt is
a matrix characterizing the current belief of the demand distribution, Ψ represents the
unit shortage cost, h represents the unit holding cost, p represents the unit purchase cost,
and Eŵt,l|πt [•] denotes the expected value operator, which gives the expected value of the
cost function based on the calculation of lead time demand, which is conditional on the
current belief of the demand distribution. The transition equation, by which the most
recent observation, wt, is used to update πt+1, is

πk,t+1 = Tk(πt|wt = z) =

∑N
j=1 πj,trj,zPj,k∑N

j=1 πj,trj,z

, (2.10)

where rj,z is the probability that the observed demand is z, given a demand state j, and
Pj,k is the transition probability of the Markov decision process between states j and k.

The order quantity in period t was defined as qt, and the dynamic programming recursion

Jt(ut, πt) = −put + min
yt≥ut

{
pyt + Gt(yt|πt, l) + Ewt|πt [Jt+1((yt − wt), T (πt|wt))]

}
, (2.11)

where yt = ut + qt, was then shown to be convex for all ut. This demonstrates that, in
the absence of fixed ordering costs, a state–dependent base–stock policy is optimal for
the problem. In the case of a positive fixed order cost, Treharne and Sox [74] proved that
the optimal policy is a state–dependent (s, S) policy.

Composite–state, partially observed Markov decision process problems are in practice of-
ten solved by means of certainty equivalent control (CEC) policies. Under these policies
some data are observed, the unknown parameters are estimated by maximum likelihood
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methods, and inventory policies are chosen, assuming that the demand distribution pa-
rameters equal the estimated values. However, Treharne and Sox presented results that
demonstrate that there are other practical control policies that almost always provide
much better solutions to this problem than the CEC policies commonly used [73]. The
policies they compared were the myopic, limited look–ahead (LLA), open–loop feedback
control (OLFC), and the CEC policies. Under the OLFC policy it is assumed that feed-
back will not be used in future periods, in other words the policy does not anticipate the
use of future information about the prior distribution. It is implemented on a rolling–
horizon basis, where πt is updated using the prior observations. The LLA policy optimises
the dynamic problem for only a limited number of periods into the future. For the myopic
LLA policy, only the current period costs are minimised, in other words (2.11) is reduced
to

Jt(ut, πt) = −put + min
yt≥ut

{pyt + Gt(yt|πt, l)} . (2.12)

The computational results in [73] also indicate how specific problem characteristics influ-
ence the performance of each of the alternative policies.

2.2 Important Concepts in Inventory Modelling

In this section, an outline is given of literature related to various concepts in inventory
modelling which are relevant to the case study presented in this thesis. One such concept,
the nature of the demand process, has already been dealt with in some detail in the previ-
ous section. The nature of the demand at Clickabox is non–stationary, partially observed
demand. This places it in the class of problems dealt with in §2.1.4. The transition
between demand states at Clickabox will be modelled as a Markov decision process. A
number of papers concerned with Markovian–modulated demand have been mentioned in
§2.1; these and other related papers will be discussed in some detail. Another distinctive
aspect of the inventory at Clickabox is its cascading product substitution. Other concepts
to be discussed in this section are lead time, stockout situations, and advance demand
information.

2.2.1 Modelling of a Markovian Decision Process

The modelling of Markovian–modulated demand was discussed in §2.1.2, in particular
with reference to the study by Sethi and Cheng (1997, [65]). The use of a Markov
decision process in the case of non–stationary, partially observed demand was introduced
in §2.1.4. The methodology behind the adaptive inventory control policy proposed by
Treharne and Sox (2002, [73]) and summarised in §2.1.4 will be followed in this thesis,
with a number of adaptions, for the development of an inventory model for Clickabox.
However, a significant adaption involves the definition of demand states. The approach
taken by Treharne and Sox [73] is that the demand states, determined by the state of
a Markov chain, represent the underlying demand distribution during that time period.
Demand classes are defined, to represent ranges of values. The demand distributions
then represent the probability of a time period demand realisation in each of the demand
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classes. In other words, if the underlying demand distribution is weighted toward large
demand realisations (a distribution which would, for example, be in effect during peak
seasons), it is probable that the time period demand realisation will be for one of the
higher demand classes. It would, however, still be possible that the demand realisation
falls into one of the lower demand classes. This approach was attempted for the Clickabox
application. However, as will be discussed in Chapter 4, the nature of the demand
suggested a modification. The demand states and demand classes are merged in this
thesis, to form just one set of demand classes, each representing a range of potential
demand realisations. The transition between demand classes is determined by the state
of the Markov chain, and the actual demand realisation within the class is modelled by
a set of probability distributions, one for each demand class.

2.2.2 Multiple Products and Stock Substitution

Veinott (1965, [77]) presented the earliest work on an optimal policy for a multi–product
inventory model. This study was generalised by Ignall and Veinott (1969, [33]). They
gave conditions under which the optimal order quantity is a monotone function of the
initial inventory. Bassok, et al. (1999, [8]) followed the approach of Veinott [77] and Ignall
and Veinott [33], and developed a single period, periodic review model with stochastic
demand and downward substitution. They considered N products and N demand classes
with full downward substitution, where excess demand for class i can be substituted, using
product j, for i ≥ j. They showed that a greedy allocation policy, for the allocation of
products to demand classes, is optimal. The algorithm works sequentially from product
1 to product N . Demand for class i is satisfied first with stock of product i, and then if
necessary, leftover stock of product i− 1, i− 2, . . . , 1 is used to satisfy remaining unmet
demand of class i. A similar approach is taken in the inventory model for Clickabox.
However, the situation at Clickabox is more complex in the sense that strict downward
substitution is not appropriate. This is a result of the directional property of cardboard
used in the manufacturing of boxes — each board has two properties, namely length
and width, both of which affect the board’s structural suitability as a substitute, as a
substitute board must have both dimensions at least as large as the board for which it is
a substitute. The length and width of the board are independent of each other, in other
words if board A has a length greater than that of board B, it will not necessarily have
a width greater than that of board B. Boards cannot, therefore, be arranged in a simple
list where product i is smaller than, and therefore can be substituted by, product i + 1.

Drezner, et al. (1995, [23]) considered the substitution problem for a two–product inven-
tory, and established optimal order and substitution quantities, using the standard EOQ
modelling approach. Drezner, et al. (2000, [22]) formulated the problem for an n–product
inventory, where product j can substitute products j + 1, . . . , n, at certain costs. They
used the same approach as Drezner, et al. [23], but found that the total cost function
may not be convex if the number of products exceeds two. They then reformulated the
problem to determine analytically the optimal run–out time for the n products. They
formed a new cost function, which was shown to be convex, and found the optimal deci-
sion parameters (order and substitution quantities) by backward substitution. However,
in both [23] and [22], demand was assumed to be known and deterministic.
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Downs, et al. (2001, [21]) developed a base–stock inventory model which incorporates mul-
tiple products, multiple resource constraints, lost sales and delivery lags. Nonparametric
estimates of the expected holding and shortage costs were developed, and a mathematical
programming approach was taken in determining a near–optimal policy, which compared
favourably with the optimal solution in some numerical experiments. However, a critical
assumption of the model developed is that the cost of placing orders is negligible, which
is not appropriate in the case of Clickabox, as there is a minimum order quantity which
results in a high penalty cost if orders for small quantities are placed frequently.

2.2.3 Stockout Situations

There are two general situations for the demand process in a stockout period — either
the demand is backordered, in other words customers are prepared to wait until their
demand is satisfied, or sales are lost, in other words customers are not prepared to
wait, and consequently go elsewhere to satisfy their needs. The former is more widely
covered in the literature, partly because inventory studies have historic roots in military
applications, where the assumption of backlogging is realistic [15]. Montgomery, et al.
(1973, [53]) investigated a more realistic case — a mixture of lost sales and backorders.
They considered first a deterministic demand model, and then a model with stochastic
demand for a particular case with a time–independent backorder cost and neglecting the
stockout period in computing the expected order cycle length. Kim and Park (1985, [40])
extended their work to allow for time–weighted backorders. This is implemented in a
(Q, r) inventory model, where a fraction β of demand is backordered during a stockout
period, and the remaining fraction of 1− β is lost. The (Q, r) policy states that an order
of a fixed quantity Q should be placed when the inventory level drops to the re–order
point r. This policy is illustrated in Figure 2.4.

The (Q, r) policy is applicable to situations in which demand can only be for a single unit
at a time, as the danger exists that a demand for more than one unit could reduce the
inventory level to below the re–order point r, in which case the computations that led to
the calculation of the optimal re–order quantity Q are invalidated. On the other hand, the
(s, S) inventory model is typically used for situations in which demand for more than one
unit at a time occurs. The model in [40] was developed, based on a heuristic treatment
of a lot–size re–order–point policy. The situation at Clickabox is in essence different to
the two general situations of backordering or lost sales, and to those in [40] and [53], in
the sense that product substitution takes place. If the optimal board to satisfy an order
is not available, the next best board is substituted, at a higher cost to the customer.
The ‘lost sale’ of the optimal board is penalised in the wastage cost incurred when board
substitution takes place. In the case of no board being available to satisfy an order, it
will be assumed that demand is backordered.

2.2.4 Variability of Lead Time

The majority of inventory literature assumes lead time to be a constant. Bookbinder
and Çakanyildirim (1999, [12]) considered a (Q, r) model with constant demand, random
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Figure 2.4: Schematic illustration of the stock movement over time under the (Q, r)
inventory policy. An order for Q units is placed, to arrive the lead time number of
periods later, each time the inventory level reaches a level of r.

lead time, and expedited orders. For expedited orders, a shorter–than–average lead time
may be obtained at a cost. The expediting factor τ is the constant of proportionality
between the expedited lead time and the ordinary lead time. The expected cost function
was shown to be jointly convex in the decision variables Q, r and τ . The dynamics of lead
time variability could be incorporated into an inventory model for Clickabox. However,
due to the already complex nature of the problem considered in this thesis, it will be
assumed that lead time is constant, as is standard practice.

2.2.5 Advance Demand Information

Karaesmen, et al. (2002, [37]) investigated the value of advance demand information in
improving the performance of inventory systems. They discussed two cases with differing
delivery requirements. Firstly, a model was considered in which each customer announces
a future date for delivery and requires a timely delivery (i.e., the delivery may not be early
or late). The second model assumes that the customer submits requirements in advance,
and accepts early deliveries. Karaesmen, et al. [37] identified conditions in each case
under which advance demand information may bring significant benefits. One important
factor was found to be the average system load — the relative benefits of advance demand
information disappear in extremely high system loads. Another factor is the nature of the
delivery requirements — if customers order in advance and accept early deliveries, there
is a significant benefit to the manufacturer. However, if early deliveries are not accepted,
the value of advance demand information is not as significant. This is a topic for potential
further study at Clickabox, in the sense that if the value of advance demand information



18 CHAPTER 2. LITERATURE REVIEW

can be determined, rewards may be offered to regular customers for submitting orders in
advance, or in a more regular fashion. This topic, however, falls outside the scope of this
thesis.

2.3 Chapter Summary

A brief overview of literature concerning inventory theory was given in this chapter. The
inventory control literature considered was broadly divided into categories according to
the nature of the demand process, and work done in each of these categories was discussed.
A number of concepts in inventory theory considered especially relevant to this study were
then explored, and their applications in the inventory model to be developed in this thesis
were discussed. The non–stationary nature of the demand process at Clickabox suggests
the use of a Markovian decision process for the modelling of the demand, following the
approach in a number of works cited in §2.2.1. A core characteristic of the situation
at Clickabox is the existence of multiple products and cascading stock substitution —
various approaches to similar situations were discussed. The issue of the reaction to
stockout situations was raised, as well as that of the variability of lead time. Finally,
the value of advance demand information was discussed, and highlighted as an area of
potential further study at Clickabox.



Chapter 3

Clickabox Factory

In order to develop an appropriate inventory model for Clickabox factory, it is necessary
to have a clear understanding of Clickabox ’s products, business objectives, as well as
administrative and production processes. The objective of this chapter is to provide
the reader with the information necessary to gain this understanding. It is against the
background provided in this chapter that the assumptions made for the development of
the inventory model in Chapter 5 should be understood.

Figure 3.1: View of Clickabox from Parin Street. The office block and parking lot are
visible. To the left of the (white) office block the receiving goods entrance is visible,
whilst the finished goods exit is just off the photograph, to the right.
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3.1 Clickabox : The Business

In this section, the business objectives and business strategy of Clickabox will be dis-
cussed. These are drivers of the company’s operational strategy, of which the manage-
ment of its inventory forms a major part. The financial situation of the company will
also be discussed briefly, in order to give an indication of the growth in business that is
taking place.

3.1.1 Business Objectives

There were two primary business objectives set out by the management of Clickabox for
the 2003 financial year. The first was to achieve a growth in real (after–tax) income of
at least 10% per annum. There were various deliverables associated with this objective,
which included:

1. Achieving ISO9000 accreditation by June 2003, by measuring waste more accu-
rately, reducing waste by 25%, and improving customer loyalty. The ISO9000 ac-
creditation was achieved in May 2003.

2. Achieving a growth of at least 10% in annual turnover in real terms. A growth of
32% was achieved over the 2003 financial year.

3. Optimising the stockholding process, by developing an inventory model, which is
the topic of this thesis.

4. The addition of die–cut capability by June 2003. This would have involved the
purchasing of a new machine, which allows boxes to be made to interlock, instead
of using the current methods of glueing or stitching. There were three options
available: a roller bed die–cutter which costs approximately R100 000, a platten–
type die–cutter which ranges in price from R200 000 to R1 000 000, or a rotary die–
cutter, the high speed machine used by large scale manufacturers such as Nampak
[56], which costs approximately R3 000 000. The decision as to which of these
machines to purchase has been put on hold temporarily, due to uncertain market
conditions and the resultant risk of over–capitalisation.

The second primary objective was to be a recognised leader in e–commerce in the pack-
aging industry in South Africa by December 2004. It was envisaged that this objective
would be met by achieving the following goals:

1. The development of the online quote program by June 2003 to the point where
it is a saleable product on the international market. The internet quote program
expansion was still in progress at the time of writing of this thesis.

2. Selling at least one copy of the online quote program in the financial year ending
February 2004.
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Figure 3.2: The monthly turnover of Clickabox since its foundation in May 1988, with a
moving average line to show the growth in turnover over the 14 year period. The period
during which the company has been under the current ownership is indicated by an arrow
on the graph.

The director of Clickabox is in the process of drawing up a business plan for this project
in conjunction with Mr Leon Swanepoel (a software developer) [69]. The plan involves
the extension of the program to apply to not only the cardboard box industry, but also
to other industries where two dimensional stock selection is required.

3.1.2 Business Strategy

The business strategy of Clickabox involves improving productivity through improved
management and control systems. Consultants were employed to assist in the imple-
mentation of ISO9000 standards during the period May 2001 to May 2003. Additional
future marketing and advertising channels include the company website, commission–
based agents, advertising material, such as calendars and flyers, and targeted fax or
email advertisements to companies that are similar to existing customers. This thesis
forms a part of the stockholding optimization project which is an integral part of the
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business strategy of the company. Another element to the strategy is recapitalisation of
the business, involving replacement of some of the older machinery.

3.1.3 Financial Situation

In the first full financial year of operation as Clickabox Pty Ltd, under the current own-
ership (namely the year ending February 2001), the turnover was R4 516 944 and the
operating profit before other income was R238 075. This represents a 27% growth in
turnover from the previous financial year, the year during which the change in ownership
took place. This growth in turnover continued during the following two years, with a
growth of 23% in the year ending February 2002, and 32% in the year ending February
2003.

The monthly turnover of the company since it was founded in May 1988 is shown graph-
ically in Figure 3.2. The arrow indicates the period during which the company has been
under the current ownership. The continuous line is a moving average, which shows the
steady growth in turnover since the change in ownership in October 1999.

A real growth of 10% per year is targeted for operating profit. The value of stock held
in inventory was approximately R450 000 at the time of writing.

3.2 Clickabox : The Factory

Some important operational aspects of the factory, such as its location, the factory layout,
machinery used and staff employed by Clickabox are introduced in this section.

Figure 3.3: The situation of Clickabox (indicated by the arrow) relative to the City of
Cape Town and some major roads, landmarks and Cape Town International Airport.
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3.2.1 Factory Location and Layout

The factory is located in Parow Industrial Area (12 Parin Street), about 50km from the
city of Cape Town and 15km from Cape Town International Airport (as shown in Figure
3.3).

The factory is divided into five functional areas. A floor plan of the factory is shown in
Figure 3.4. The raw materials store is a 59.3m by 15m area, with access to Parin Street
for the receiving of raw material deliveries from suppliers. Raw materials are stored in
demarcated bays, which run down the length of the raw materials store, on either side
of a walkway down the centre, as shown in Figure 3.5(a). Boards may be stacked to a
height of 3.2m in these demarcated bays.
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Figure 3.4: A floor plan of the factory, showing its division into five functional areas.

Adjacent to the raw materials store is the workshop, a 49.7m by 15m area where man-
ufacturing of the boxes takes place, as shown in Figure 3.6. The equipment used in the
production of the boxes is arranged in two production lines in the workshop, one line
suitable for large batches and the other for small batches, as the setup time and unit
production times differ for the various machines on the two lines.

The finished goods store, shown in Figure 3.5(b), is a 35.9m by 15m area, adjacent to the
workshop and the waste recovery area. Completed boxes are stored on wooden pallets
in this area, awaiting dispatch, as shown in Figure 3.5(b). It holds three categories of
finished goods. The first category consists of boards that have been processed (cut down
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(a) Raw Materials Store (b) Finished Goods Store

(c) Waste Recovery Area (d) Foyer to Office Area

Figure 3.5: The storerooms: The raw materials store, where the stock boards are kept
in bays, the finished goods store, where goods ready for delivery are kept, and the waste
recovery area, where offcuts are kept for re–use or recycling. Also shown is the foyer of
the office block, where administration, receiving of quotes, etc. takes place.

to creased sheets of specified dimensions, which may be folded into boxes) and packed to
fill an order. These boards are generally dispatched as soon as the manufacturing of the
entire order is complete. The second category consists of boards that do not require any
processing which are sold as is. The third category are boards that are bought specifically
for manufacturing of a particular, popular box, for customers who regularly order boxes
of the same type and dimensions. These boards are kept in the receiving area until
processing. They are processed as soon as there is spare capacity, and then transferred
immediately to the finished goods store. The finished goods store has access to Parin
Street for the dispatching of orders.

The waste recovery area, shown in Figure 3.5(c), is a 23m by 15m area which provides
storage space for large offcuts, which are stored for later use, and unusable offcuts, which
are recycled. Offcuts of more than 50cm in each direction are classified as re–usable.
These are entered into the database as raw materials (available for use in production)
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Figure 3.6: The production area, where the manufacturing of boxes takes place. The
machinery is organised in two production lines, on either side of the central aisle. The
production line on the left of the photo is used for small order batches and the line on
the right is used for large order batches.

at half their original cost price. This ensures that they will be the first choice for the
production of boxes when they are of a suitable size. Offcuts of more than 50cm in just
one direction are entered into the database as raw materials, but at a price of zero, and so
will also be used as soon as possible. Other offcuts are put into a bin for recycling. These
scraps are collected weekly by Nampak [56], who pays Clickabox R0.38/kg for the scraps.
This results in an income of approximately R750 per month. The entire waste recovery
operation, including both the recycling and re–using of offcuts, currently generates an
income of approximately R1 875 per month [75].

Finally, there is an office area at the front of the warehouse, approximately 5m by 15m in
dimension, where the administration, receiving of quotes, etc. takes place. This comprises
a separate office for the director, a meeting room, and adjacent offices for the other
administrative staff. This gives a total floor area of approximately 2518.5m2. The foyer
at the entrance to the office area is shown in Figure 3.5(d).
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(a) Slitter/Creaser (b) Beamslotter

(c) Stapler (d) Strapper

Figure 3.7: Machinery used for small order batches, and the strapper. The Slitter/Creaser
cuts the cardboards into sheets, and makes the required creases. The Beamslotter cuts
slots in the boards for folding. The Stapler uses metal staples to join box flaps, and the
strapper bundles the completed boxes together.

3.2.2 Workshop Machinery and Manufacturing Process

As mentioned in §3.2.1, the equipment used for the production of cardboard boxes is ar-
ranged in two production lines in the workshop, one line suitable for large order batches
and the other for small order batches. Machines are set up manually according to specifi-
cations on a so–called works ticket, which is printed for each order. All machines require
the operators to feed through the cardboard manually. Boxes are manufactured according
to a cutting pattern, which specifies the required creases and slots that need to be cut
into the cardboard.

Small order batches are processed by three machines in succession. These machines are
shown in Figure 3.7(a)–(c). The first machine in this sequence is the slitter/creaser
(Figure 3.7(a)), which cuts the cardboards into sheets of the required dimensions, and
makes creases in the cardboard as required for folding. This machine has an average setup
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(a) Printer/Slitter/Creaser (b) Gluer

Figure 3.8: Machinery used for large order batches. The Printer/Slitter/Creaser cuts
boards into sheets, makes the required creases, and prints in one or two colours. The
Gluer joins the folds of boxes.

time of 3 to 10 minutes, depending on the number of creases required, and a production
run time of approximately 400 sheets an hour, for average sheet sizes [24].

The second machine is the beamslotter (Figure 3.7(b)), which cuts slots into the card-
board, as specified on the works ticket. The beamslotter has a setup time of 5 minutes,
and a production run time of approximately 205 sheets an hour [24].

Finally, there are four staplers, which are used to join the box flaps (one is shown in
Figure 3.7(c)). The customer may choose whether to have the boxes stapled or glued,
but in general, when it is not specified, the stapler will be used for the small order batches.

There are also two strapping machines (one is shown in Figure 3.7(d)), which are used
to bundle the completed boxes together, so that bundles may be transported together
conveniently and tidily.

Larger order batches are processed by the printer/creaser/slotter (shown in Figure 3.8(a))
— a single machine which performs all the functions of the slitter/creaser and the beam-
slotter, as well as any printing on boxes, if required by the customer. This machine takes
longer to set up than the other machines, 35 to 200 minutes, depending on the number
of colours to be printed, but it is more efficient for large batch processing, as it has a
shorter unit processing time (approximately 800 sheets per hour) [24].

The boxes in large order batches are then joined by the carton glueing machine, shown
in Figure 3.8(b). The gluer has a 15 minute setup time and a processing time of approx-
imately 800 sheets per hour [24].

There are two forklifts used to transport the boards around the factory (see Figure 3.9(a)).
Completed boxes are delivered to the customer using the delivery vehicle shown in Figure
3.9(b).
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(a) Forklift (b) Delivery Vehicle

Figure 3.9: A forklift is used for moving piles of boards or boxes around the factory, and
a delivery vehicle is used for transportation of the finished goods to the customer.

The stages of the manufacturing process described here are illustrated schematically in
Figure 3.10.

3.2.3 Factory Staff

Piet and Miemie Taljaard are the owners and directors of the company, and it is man-
aged by Piet Taljaard. There are eight other permanent staff members: a supervisor of
quotes and technical issues, an accountant, and six factory staff members, who perform
production tasks in the workshop. When necessary, in periods of high demand, additional
workers are employed (generally up to three) on an hourly basis [70].

3.3 Raw Materials

Most raw materials are ordered from Mondi [52]. Other suppliers, such as Nampak [56],
are used when Mondi cannot meet the demand. Figure 3.11 shows a raw materials
delivery being received at Clickabox.

Cardboard is classified by its type, flute and category. There is a range of cardboard
types available from Mondi. Of these, only two types are kept in stock at Clickabox.
These are the Mondi Liner (single corrugated board) and Double Wall Board (double
corrugated board). The reason for this is that the other types are more expensive and
therefore less popular. If required, these boards may be bought in for special orders. The



3.3. Raw Materials 29

Raw Material Arrival

Sell as is or
process further?

Finished
 Goods
Store

Sell as is

Raw
Material

Store

Process
further

Order Received

Large or
small batch?

Slitter\Creaser

Beam Slotter

StaplerPrinter\Creaser\Slotter

Gluer

Large
batch

Small
batch

Finished
 Goods
Store

Figure 3.10: Manufacturing Process Flow Diagram

single corrugated board is the most common material used. Double corrugated board is
used when stronger boxes and extra padding are required. Cross sections of these two
cardboard types are shown schematically in Figure 3.12.

The flute type describes the structure of the wave shaped cardboard material that makes
up a board’s corrugation. There are a number of flute types, each with a different
thickness and therefore different usages. The flute types used by customers of Clickabox
are described in Table 3.1. Double corrugated board is composed of a combination of a B
and a C flute. The fluting gives the board a directional property, the width of the board is
measured in the flute direction. The directional property is important in the production
process as it determines to a large degree the structural properties and strength of a box.

Cardboards are divided into categories, dependent on their quality and thickness. In
the industry, these are referred to as classes, however the term classes will be used in a
different sense in this thesis. Hence classes of cardboard will be referred to as categories.
The categories allow for a balance between cost and performance for various applications.
Thickness of linerboard increases from Category A (typically 140 or 150g/m) to Category
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Figure 3.11: A truck bringing a delivery of raw materials from a supplier to the delivery
entrance of Clickabox, in Parin Street.

(a) Profile of a Single Corrugated Board (b) Profile of a Double Corrugated Board

Figure 3.12: Profiles of the two cardboard types kept in inventory at Clickabox.

D (typically 250g/m). The fluting is likely to deform the liner of Category A board,
making the back of the board unsuitable for printing or lamination. However the thicker
Category C and D boards may be laminated on both sides.

3.4 Order Classification

There are three classes of orders received by Clickabox, namely:

Standard Orders: These comprise orders for box types, such as “A4”, which can only be
manufactured in one way, or recurring orders for an established customer, such as
Continental China [17], which has a few set box orders. The raw materials used for
these standard orders may therefore be processed as soon as they arrive and there
is spare time in between the production of other orders, as mentioned in §3.2.1, and
need not be kept (unprocessed) in the warehouse. The processed material is then
stored as “Finished Goods Stock”. This produce will always be either on hand or
on order, as it is re–ordered as soon as levels are low. Some raw materials are sold
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FLUTE THICKNESS COMMENTS

C 4.4 mm good stacking strength
good crushing resistance
very common material
typical packaging for glass, furniture, dairy products

B 3.2 mm good puncture resistance
less space consumed in warehouse
typical packaging for canned goods, displays

E 1.6 mm light weight
strong alternative to paper board
superior printing surface
excellent for custom die cut boxes
typical packaging for displays, point of purchase boxes

Table 3.1: The properties and usages of the different flute types available.

as is. Boards currently used for standard orders, at the time of writing, are shown
in Table 3.2.

Reference Type Category Flute Size (in mm)
Stock 600 Mondi Liner A C 600×400×400
Stock 505 Mondi Liner A C 505×350×355
Ref A3 Mondi Liner B C 430×305×290
Ref A4 Mondi Liner B C 305×215×290
P–AD4 Mondi Liner B C 440×360×408
P–EXP Double Wall Board A B and C 526×418×318
P–ONT Double Wall Board A B and C 458×458×254
P–W2 Mondi Liner B C 500×250×250
P 1 Mondi Liner B C 560×334×500
P 3 Mondi Liner B C 560×334×286
P 4 Mondi Liner B C 750×463×200
PTD Mondi Liner B C 750×463×140
PTS Mondi Liner B C 750×463×70

Table 3.2: The properties of the standard order raw materials boards (in other words,
boards used for boxes commonly ordered from Clickabox), which may be manufactured as
soon as the raw materials arrive, when there are spare time lulls in between the production
of other orders.

Special Orders: These are orders for boxes not commonly ordered, such as for boxes of
a flute type not stocked by Clickabox. The cardboard required to produce these
orders is therefore brought in on request and not kept in inventory.

Standard Stock Orders: These are orders that utilise the board sizes most commonly
ordered, as determined from experience. These are the board sizes kept in inventory,
and used by Clickabox ’s quote program in the preparation of a quote and order
form. A section of this thesis will be devoted to determining the ideal dimensions
of standard stock board to be kept in inventory, in order to minimize expected
average wastage. Prior to this study the standard stock profile consisted of 28
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different sizes of Category A, Flute C board (termed AC board) and 18 sizes of
Double Wall Board (termed DWB board). The make–up of the previous stock
profile is given in Table 3.3.

Category Flute Length Width
(in mm) (in mm)

A C 1 000 1 400
A C 1 220 21 00
A C 1 250 1 300
A C 1 360 2 100
A C 1 400 1 300
A C 1 425 1 125
A C 1 500 1 500
A C 1 530 1 300
A C 1 540 910
A C 1 550 1 400
A C 1 555 1 540
A C 1 600 1 300
A C 1 650 1 500
A C 1 700 1 000
A C 1 700 1 200
A C 1 710 1 500
A C 1 850 1 510
A C 1 860 1 200
A C 1 870 1 055
A C 1 920 910
A C 2 000 1 200
A C 2 000 1 500
A C 2 100 1 000
A C 2 200 1 200
A C 2 200 1 500
A C 2 300 1 000
A C 2 300 1 200
A C 2 358 1 062

(a) Dimensions of AC Stock Board

Category Flute Length Width
(in mm) (in mm)

DWB DWB 1200 2 100
DWB DWB 1350 2 100
DWB DWB 1350 2 270
DWB DWB 1440 1 020
DWB DWB 1500 1 050
DWB DWB 1500 1 300
DWB DWB 1500 1 400
DWB DWB 1600 1 000
DWB DWB 1600 1 800
DWB DWB 1700 1 200
DWB DWB 1840 1 200
DWB DWB 1850 1 500
DWB DWB 1920 1 800
DWB DWB 2000 1 200
DWB DWB 2120 1 510
DWB DWB 2200 1 350
DWB DWB 2300 1 600
DWB DWB 2380 1 200

(b) Dimensions of DWB Stock Board

Table 3.3: Standard stock, the board sizes kept in inventory at Clickabox prior to this
case study, from which boxes ordered as ‘quick orders’ were manufactured.

3.5 Processes at Clickabox

The current inventory control processes of Clickabox are described in this section. This
will allow for a meaningful evaluation of the results obtained by the inventory model
developed in Chapter 5, in terms of feasibility of the model, the costs of implementing
the model, and potential savings as a result of the model solution (in Chapter 6). The
processes followed by Clickabox, from providing quotations to the delivery of finished
boxes, are then described.
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3.5.1 Ordering of Stock from Raw Materials Suppliers

The minimum order quantity per raw material board size that Clickabox may order from
its suppliers for each order is 1 000 units. However, orders of 500 boards are taken
subject to a surplus cost of R0.37 per board. Furthermore, Mondi [52] specifies that,
where possible, orders should be deckled to one of two widths in order to fit the width of
their machinery. Orders are processed at the supplier as soon as the deckle width is full.
For punctual delivery, it is optimal to place an order which fills the deckle width. So if,
for example, one orders a type B flute, which is uncommon, one must either wait for a
very long time or pay for the full width of the cardboard from which boards are cut. The
deckle widths are 2 415mm and 2 275mm.

The minimum order quantity policy was, however, under review at the time of writing,
and furthermore, it is possible for Clickabox to use other suppliers who do not impose
minimum order quantities. These restrictions will therefore not be included in the model
when computing the suggested raw material re–order quantities. The concept of minimum
order quantities is, instead, cited as a potential area of future study at Clickabox.

Currently, a continuous review (s,S) inventory policy is followed at Clickabox. Re–
ordering is done daily, when necessary. Two values are defined for this policy:

Re–order level, s: The stock level at which re–ordering of stock should take place.

Order–up–to level, S: The stock level up to which the replenishment order brings the
stock on hand.

Each morning the stock level of each board type used the previous day is taken. If the
level has fallen below the re–order level, an order is placed for the re–order quantity.
Currently the re–order level is 300 for all board types. The order–up–to–level is 800 for
DWB boards and 1300 for AC boards. The lead time for orders to arrive is approximately
two weeks.

3.5.2 Ordering of Boxes from Clickabox by clients

The processes followed by Clickabox when receiving orders from customers during the
generation of a quotation, and during the manufacturing of boxes, are described in this
section.

Box dimensions and types

In the packaging industry, the size of corrugated boxes is expressed by three dimensions:
Length (L), Width (W ) and Depth (D), all in millimeters (mm). These measurements
refer to the inside dimensions of the box. The length, L, is the larger dimension of the
opening, the width, W , is the smaller dimension of the opening and the depth, D, is
the dimension perpendicular to the opening. This differs from the terminology used for
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Figure 3.13: The ‘Regular Slotted Carton’, and the cutting pattern according to which
it is manufactured.
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Figure 3.14: The ‘Tuck–in–Flap’ box, and the cutting pattern according to which it is
manufactured.

cardboard sheets, where the length and width are determined by the directional property
of the fluting, as discussed previously.

There are a number of different box styles that may be ordered by clients, each with
different creasing and cutting requirements. The most commonly ordered box style is the
‘Regular Slotted Carton’. This box is produced from one sheet of cardboard, with very
little manufacturing wastage and is therefore the most economical. The Regular Slotted
Carton is shown schematically, together with its cutting pattern, in Figure 3.13.

Another box style, the ‘Tuck–in–flap’, is shown together with its cutting pattern in Figure
3.14.

Quote Generation

The Clickabox website [57], mentioned in §1.1.2 and from which Clickabox derives its
name, provides customers with access to a computer program which allows the user to
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request an online quotation for a specific box, and to place an order. Before this program
was implemented, pricing was done by means of an excel sheet, manual look–up of stock
on hand in inventory, and then a manual stock reserving process. This was a time–
consuming process, and led to a number of problems. One such problem arose when the
manual stock reserving process was delayed, and completed after the material on which
the quote was based had already been used for another order. The following computerised
process has therefore replaced the manual method.

Figure 3.15: The order screen from the Clickabox Website [57], on which the details of
the box required are entered by the customer.

1. A customer requests a quotation for a certain number of boxes of specific
dimensions. This request may either be entered by a client on the website or may
be received telephonically and then processed on the website by an employee at
the Clickabox office block. The Clickabox website requests input from the client as
to the box style, board specifications (category and flute), box size (length, width
and depth), order quantity required, and whether or not printing is required. The
basic order screen from the website, on which this information is entered, is shown
in Figure 3.15.
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2. The required sheet (cutting pattern) dimensions are calculated. The sheet
dimensions are determined by the box dimensions and style. These dimensions
include an allowance for creasing, which is dependent on the flute and cardboard
type. The creasing allowances are given in Table 3.4.

Type Flute Creases Wall thickness Creases Wall thickness
against flute in flute in flute against flute
direction (a) direction (b) direction (c) direction (d)

SC B 3 2 9 1
SC C 5 3 10 3
SC E 2 2 5 1

DWB B and C 9 6 18 7

Table 3.4: Creasing allowances (in mm), dependent on flute and cardboard type. These
allowances are included in the calculation of the dimensions of the cardboard sheet re-
quired to manufacture the board ordered.

For example, the dimensions of the sheet required to manufacture a Regular Slotted
Carton of length L, width W , and depth D are then (L + a) + (W + a) + (L + a) +
(W + d) by (W/2 + b) + (D + c) + (W/2 + b), as illustrated in Figure 3.16, where
the symbols a, b, c and d are as defined in Table 3.4.

W/2+b

D+c

W+d

L+aW+a W+dL+a

Figure 3.16: The dimensions of the sheet required to manufacture a regular slotted carton
of length L, width W and depth D.

3. The delivery option is selected. The customer must also decide whether to
order from stock, in which case lead time for the order is two working days, or to
take the “buy–in” option. This is the cheaper option for the client: exactly the
right cardboard size is ordered from the suppliers for manufacturing and therefore
there is no wastage. The disadvantage is that the order may take more than seven
working days if this option is executed.

4. A list of boards that may be used in the manufacturing of the required
boxes is compiled. If the “buy–in” option is chosen, a board of the optimal size
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is ordered from the supplier, and it is priced accordingly. If not, the program then
searches through all the boards in the Pastel database (where on hand inventory
data is stored) to obtain a list of viable boards from which the required sheet may be
cut. This list is sorted in order of increasing wastage, and then available quantities
are checked. The result is an array of boards, the on hand inventory of that board,
and the cost of using that board.

5. A quote is compiled. Activity based costing is used. A fixed setup cost is charged,
and divided by the number of boards ordered to give a unit cost per board. This is
the only form of quantity discount given, in that the greater the quantity of boards
ordered, the lower the unit allocation of the fixed cost. This is added to the variable
cost (dependent on the production time for that board type) and raw materials cost
per board, and the full amount is multiplied by a markup. The average markup is
1.45; discounts are given to larger customers.

This costing information is presented to the user in the form of an invoice. A
quotation generated for the “buy–in” option is shown in Figure 3.17, and a quotation
generated for the same order using the stock board option is shown in Figure 3.18.
The price quoted is calculated on the total area used, so the use of sub–optimal
boards is more expensive.

Figure 3.17: The quotation screen from the Clickabox Website [57], giving a quotation
for a buy–in board order — one of the two options available to the customer, including
the price and creasing information.
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Figure 3.18: The quotation screen from the Clickabox Website [57], giving a quotation
for a stock board order, including the price and creasing information for two different
stock board types which would be used to satisfy the order.

Processing of a sales order

If the quote is accepted by the client, a sales order is processed, and a quote number is
generated. This reserves the required raw materials in inventory. If the raw materials are
to be bought in, a board purchasing order is filled out. Once the quote has been issued,
either manually or via the quote program, and accepted, a works ticket is generated,
which details the dimensions of the box, creases required, and any special directives.
This is the document with the specifications used by the machine operators to set up the
machinery during the production process. The number of boxes specified on the works
ticket allows for a percentage wastage, dependent on which machinery is to be used. For
example, the printer has a waste percentage of 2.5%. Wastage from the printer could, for
example, be due to smearing of ink.

3.5.3 Manufacturing Process Protocol

The works ticket issued by the internet quote program, is pinned on the scheduling board
in the workshop. From the specifications on the works ticket, such as batch size and
whether or not printing is required, it is decided on which production line the order is to
be processed — that for small order batches or that for large order batches, as mentioned
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in §3.2.2. This decision, made by the foreman on the floor, may also be influenced by the
current workloads on either production line.

The boards are then cut to size, and the printing, slotting, creasing and joining are
performed, as described in §3.2.2. Once the boxes have been manufactured, it is confirmed
exactly how many boards were used for the order. There are a number of possible causes
for discrepancies in this figure. The works ticket contains an allowance for wastage
— if, for example, 700 boxes are ordered, it may be calculated that 714 need to be
manufactured, taking into account the waste allowance. It is possible, however, that
there may only be raw materials to produce 710 boxes in the warehouse, as a delivery
of raw materials could have been 10 boards short. Then only 710 will be made, so this
needs to be entered on the works ticket and the inventory updated accordingly. There are
daily stock–takes of the raw materials in order to keep inventory information as accurate
as possible.

The completed boxes are finally moved to the finished goods store, where they are stacked
and await dispatching. Offcuts are moved to the Wastage recovery area for re–use or
recycling.

3.5.4 Administrative Manufacturing Process

The accounting package used is Pastel Manufacturing [58]. All information about stock
— raw material and finished goods, clients etc. — is stored in this system. Each raw
materials type is assigned a code, and each box order is associated in Pastel with a set
of raw material codes. This is known as the Bill of Materials. An example of a Bill of
Materials from Pastel is shown in Figure 3.19.

CLICKABOX (PTY) LTD 27/06/2001 14:22 Page: 1
Prepared by: CORRUCAPE (PTY) LTD

Bill of Materials
Code : 505 AC/RSC/505*350*355
Manufactured Item : 505 505 × 350 × 355

Item Description Unit Quantity Average Cost Last Cost
505–AC 1 748 × 717 Cr 176–365–176 1.000 3.277 3.170
Total for Components 3.277 3.170

Cost 1 0.000 0.000
Cost 2 0.000 0.000
Cost 3 0.000 0.000
Total Cost for Manufactured Item 3.277 3.170
Update Manuf. Selling Prices : No
No. of Notes : 0

Figure 3.19: Bill of Materials

When a box is manufactured, it is necessary to perform a process, known as the adminis-
trative manufacturing process, in order to update the inventory. A finished goods code is
generated, representing the type and dimensions of the finished box. The finished goods
inventory is credited with the number of these boxes manufactured. The raw materials
that made up the boxes, as specified in the Bill of Materials, are subtracted from the raw
materials inventory.
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3.5.5 Post Manufacturing Process

Once completed, the boxes are bundled and strapped together so that they are easy to
handle in batches. A delivery note is completed with the totals of boxes to be delivered
and is attached to order bundles; this is signed on delivery. An invoice is sent out to
clients after delivery, and statements are sent at the end of each month.

3.6 Chapter Summary

The various processes of Clickabox factory were described in some detail in this chapter,
in order to provide the reader with an understanding of the environment in which this
study was conducted. The business strategy and objectives of the factory were discussed
in §3.1, as well as its financial situation, highlighting the importance to Clickabox of
an efficient inventory management system. The layout, products and processes of the
factory were described in §3.2–3.5, focussing, in particular, on previous inventory control
practice.



Chapter 4

Analysis of Board Demand

There are a number of factors influencing the demand for cardboard boxes. The cor-
rugated carton industry in the Western Cape is highly dependent on the fruit industry,
and so demand increases notably during the fruit–picking season, May and October to
January. Also, being a small but growing manufacturer, the averages of board size and
quantity ordered from Clickabox may be affected significantly with the acquisition of even
one new, large client [70]. Thus any calculations of optimal board or re–order strategy
must be dynamic. The orders placed over a two year period for boxes from Clickabox
factory1 were analysed in order to answer the first research question formulated in §1.2
(which boards to keep in stock) and to begin the process of answering the second re-
search question (what inventory policy to follow) by examining the nature of the demand
process. The demand data available are described in §4.1, and then the various steps
taken towards determining an optimal set of stock boards to be held in inventory, based
on these historic data, are described in §4.2. Finally, in §4.3, the nature of the demand
process is discussed, and the way in which this demand will be modelled in Chapter 5
is detailed. The notion of board preference vectors is introduced, and a set of demand
distributions for each of these board preference vectors is derived.

4.1 Description of Demand Data

Data from the period 1 February 2001 — 31 January 2003 were used to obtain an impres-
sion of demand at Clickabox. This set of data was extracted from works tickets which are
stored by Clickabox in excel worksheets for each board manufactured. It was analyzed
by means of a program written by the author in Visual Basic [50]2. Data were extracted
from a total of 3 965 works tickets, representing all orders processed during the period
mentioned above. February 2001 is the earliest period for which data were available, as
it is only since then that works tickets have been created electronically and stored by
Clickabox.

1A snapshot of this data is given in Appendix D. The full list of works tickets is included on a CD
inside the back cover of this thesis.

2The relevant Visual Basic source code, as well as the structure of the Microsoft Access database
tables, are given in Appendix C.

41
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The following details of each order were observed:

• Order Date. The date on which the order was placed.

• Board Style. The type, category and flute of cardboard required to process the
order.

• Box Design. The design of the box required, for example a regular slotted carton.
This design influences the dimensions of the board required to manufacture the box.

• Box Dimensions. The length, width and depth of the required box.

• Quantity. The number of boxes ordered.

• Sheet dimensions required. The dimensions of the sheet (length and width)
required to produce the box ordered, calculated from the box dimensions, style and
design, with standard provisions for wastage, etc. For the purposes of establishing
demand distributions in this chapter, and for the inventory model which will be
developed in Chapter 5, customer orders are considered to be sheet orders, i.e.
the box design and dimensions are no longer relevant, only the dimensions and
cardboard type of the sheet are required.

• Board used. A list of the dimensions of the boards actually used to process each
order, is stored. Each sheet may be produced by a number of boards, with varying
amounts of wastage associated with each board type chosen to fulfil an order for a
specific sheet type. Multiple board types may be used to process an order, if there
is not sufficient stock to process the entire order with the optimal board. The works
ticket lists all board types, and the quantity of each board type that was used, in
order of preference (in terms of wastage incurred).

CLICKABOX WORKS TICKET Date: 27/02/2002
Design: RSC Board Type: DWB R/m2: R4.46
Size: 550 × 330 × 430 Printing: Ref only
Quantity: 50 Delivery: 05/03/2002 Joint: Stitch
Delivery address: Reactor Road, Stikland Triangle Farm
Creasings: 35 559 339 559 337 Sheet Length: 1829

171 448 171 Sheet Width: 790
Stock Board Quantity Sheets/board % Waste Board Area
DWB 1920×0900 10 1L×1W=1 18.94% 1 728 000
DWB 1920×1800 15 1L×2W=2 18.94% 3 456 000
DWB 2100×1700 25 1L×2W=2 22.87% 3 570 000

Figure 4.1: Works ticket produced upon a client’s acceptance of a quotation, indicating
the board style, box design and dimensions, delivery details, and the quantity required,
as well as creasing and printing instructions. Also indicated are the stock boards from
which this order will be produced, and the quantities of each board that will be used.

An example of a works ticket is given in Figure 4.1.
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4.2 Determining Suggested Stock Board Profile

The steps taken towards determining an optimal set of stock boards to be kept in inven-
tory, using the historical data described in the previous section, are now described. An
ABC analysis was conducted on the various cardboard types available, and the cardboard
types responsible for the largest percentage of annual profit were determined. The results
of this analysis are given in §4.2.1. The demand data for these cardboard types were then
analysed, and a heuristic was used to determine a set of suitable stock boards (as detailed
in §4.2.2–4.2.4) to be kept in stock. The resulting set of boards recommended to be kept
in inventory is given in §4.2.5, and compared to the previous stock profile.

4.2.1 ABC Analysis of Cardboard Types

Pareto’s law is a concept developed by Vilfredo Pareto, a 19th century Italian economist,
who noticed a common phenomenon that a small percentage of a group of individuals
typically accounts for the largest fraction of the group impact [55]. ABC Analysis is a
form of Pareto analysis, developed by General Electric during the 1950’s, and applied
to a set of products kept in inventory in order to classify them according to financial
impact [81]. The ABC Classification places items into three basic categories, which may
be treated differently in the processes of stock planning and control. These categories
are:

Class A Items: Items that, according to an ABC classification, belong to a small set
of products that represents approximately 75–80%3 of the annual demand, usage
or production volume, in monetary terms, but only some 15–20% of the inventory
items. For the purpose of stock control and planning, the greatest attention is paid
to this category of products. Class A items typically are of strategic importance to
the business concerned.

Class B Items: An intermediate set of products, representing approximately only 15–
20% of the annual demand, usage or production value, but some 20–25% of the
total number of inventory items. Less management attention is paid to this class
than to the Class A items.

Class C Items: Products which, according to an ABC classification, belong to the 60–
65% of inventory that typically represent only approximately 5–10% of the annual
demand, usage or production value. Least attention is paid to this category for the
purpose of stock control and planning.

The first step in an ABC Classification at Clickabox was to determine a ranking, according
to the total profit yielded by each cardboard type per year, termed the annual usage
value4. Profit per board was calculated as the difference between raw material cost and

3These percentages represent typical values, which will vary for different sets of data. In the classifi-
cation process, only the percentage of items is set for each class, the usuage value represented by each
class is then derived [55].

4The profit per board multiplied by the average number of boards of that type sold in a year.
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Figure 4.2: The individual and cumulative usage values of the six cardboard types avail-
able, used for the ABC classification of the cardboard types at Clickabox.

board selling price (per square metre) multiplied by the average board size for that type.
Next, products were ranked in order of decreasing usage value. The cumulative usage
value was then calculated progressively, and expressed as a percentage of the total usage
value. These cumulative usage values are shown in Figure 4.2.

Finally, the cumulative percentage of items was derived, by expressing the rank number
as a percentage of the total number of items (here, cardboard types). In other words
each cardboard type comprises 16.6% of the number of different cardboard types that
may be kept in inventory. The class break points were then set, as shown in Figure 4.3
and Table 4.1, with the top 16.6% of the items (cardboard type AC) being classified as
Class A items, the next 16.6% of the items (cardboard type DWB) being classified as
Class B items, and the remaining 66.6% of the items (cardboard types AB, BC, CC and
BB) being classified as Class C items.

The results of this analysis showed that the cardboard type “AC” is a Class A Item,
accounting for approximately 59% of the profit, the “DWB” boards are Class B Items,
accounting for approximately 35% of the profit, and the other cardboard types are the
Class C Items, collectively accounting for approximately only 6% of the profit. It was
consequently decided that the analysis of Clickabox’s inventory policy would focus on AC
and DWB boards only.
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Rank Cumulative Board % Usage Cumulative % Class
% of Items Type Value Usage Value

1 16.6 AC 58.92 58.92 A
2 33.3 DWB 34.56 93.48 B
3 50.0 AB 3.07 96.55 C
4 66.6 BC 1.83 98.38 C
5 83.3 CC 0.93 99.31 C
6 100 BB 0.69 100.00 C

Table 4.1: Determination of the class break points, in terms of the usage value, for the
different classes of items (cardboard types) in the ABC classification at Clickabox.
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Figure 4.3: Graphical representation of the class breakpoints in the ABC Classification,
showing the cumulative percentage of the total usuage value represented by each class of
products.

4.2.2 Graphical Representation of Data

Given the results of the ABC analysis, it was decided that the demand data will be
analysed as two separate sets, namely Category A — Flute C board (AC cardboard
types) and Double Wall Board (DWB cardboard types). Other grades of board may be
bought in for special orders and should not be kept in stock, as cumulatively they account
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for less than 7% of the annual usage value.

The scatter charts in Figure 4.4 were plotted to give a graphical indication of the distri-
bution of order sizes for sheets of various dimensions of both AC and DWB cardboard
types. They show the considerable range of different sheet dimensions ordered, one of the
properties of the demand profile of Clickabox that makes both the choice of stock boards
and the choice of inventory control policy difficult.
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(b) DWB Board

Figure 4.4: Scatter charts representing all orders placed over the two year period 1
February 2001 — 31 January 2003, for each of the class A and B cardboard types, giving
an indication of the range of sheet dimensions ordered from Clickabox, and the order
quantities involved.
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4.2.3 Restrictions on Stock Boards

Two restrictions are placed on boards under consideration to be made stock boards, for
the purposes of the heuristic described below. The first restriction is on the dimensions
of the board. The maximum length of board that may be kept in stock at Clickabox is
2 490mm, and the maximum width is 2 370mm, due to the capacity of equipment used
during the production process. Boards may be ordered by Clickabox in dimensions of
any integer millimetre measurement from the supplier, but the process described below
will use steps of 10mm for practical reasons.

The second restriction is on the minimum percentage of orders that must be met by
the set of stock boards, in order to satisfy the service level of 95% of orders being met
by boards in inventory (as dictated by the management of Clickabox in thesis objective
II, see §1.2). This is implemented in the heuristic by setting a minimum number of
historical orders which should be met by each stock board5. This criterion is reset at the
beginning of each iteration of the heuristic, dependent on the number of historical orders
that have not yet been filled by boards already selected for stock, and on the number of
stock boards still to be selected. So, for example, if there are five boards to be kept in
stock, each board is expected to fill at least 20% of the historical orders. If then the first
board found by the heuristic fills more than this minumum percentage, say 50% of the
historical orders, the second board will only be required to fill a quarter of the remaining
historical orders, in other words an eighth of the original number of historical orders (in
this case this percentage would be 12.5%). If the second board fills 50% of the remaining
historical orders, the third board will only be required to fill a third of the remaining
historical orders, in other words a twelfth of the original number of historical orders, and
so forth.

4.2.4 Heuristic for Determining a Suggested Stock Profile

Demand data were imported into a database, and an application was written by the
author to analyze the data6. The demand data are represented by a set O of ordered
pairs (LOf

, WOf
), where LOf

and WOf
represent the length and width respectively of the

sheet required to produce entry f in the set of all boxes ordered from Clickabox.

It is assumed, for the purposes of this study, that the number of boards of each cardboard
type will be chosen as the previous values, that is, 28 AC board types and 18 DWB board
types. This is done primarily to allow comparisons between the previous and suggested
stock board profiles. Other assumptions made in the process followed to determine a
suggested stock profile are that the boards are always available, and that the reuse of
off–cuts is ignored.

The heuristic process followed to determine a suggested stock profile, is outlined below.

5This is calculated by dividing the number of historical order dimensions for each cardboard type by
the number of boards of that cardboard type to be kept in stock.

6This was implemented by means of programs written by the author in Microsoft Access and Visual
Basic, and the relevant source code is given in §C.1 of Appendix C.
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1. A two–dimensional grid was created, with the horizontal axis representing the length
of potential stock boards and the vertical axis representing width. The range of
the horizontal axis was defined as [0, 2 490]mm, with values increasing in steps of
10mm, as discussed previously. Values on the vertical axis increase from 0mm to
2 370mm, also in steps of 10mm. This grid is represented by the set G of grid points
(LGj

, WGj
), where LGj

and WGj
represent the length and width respectively of the

j–th potential stock boards. Note that the directional properties of the cardboard
do not allow for board orientation to be changed.

2. The constraint on the minimum number of historical orders to be filled by each
stock board is calculated as described above in §4.2.3.

3. The following procedure was then followed for each data point (LGj
, WGj

) on the
grid, and for each point (LOf

, WOf
) in the set of demand points:

(a) The grid point (LGj
, WGj

) and order (LOf
, WOf

) were compared for each com-
bination of j ∈ {1, . . . , 46} and f ∈ {1, . . . , 3 965}. If LOf

> LGj
or WOf

> WGj

then the box ordered could not be produced from the board investigated at
the gridpoint, and a variable is incremented to store this information.

(b) If LOf
≤ LGj

and WOf
≤ WGj

, the following calculations were made: the
number of sheets that could be produced lengthwise out of the board size being
investigated was calculated as

⌊
LGj

/LOf

⌋
, and similarly the number of sheets

that could be made widthwise out of the board size being investigated was
calculated as

⌊
WGj

/WOf

⌋
. The factor m(j,f), the total number of sheets that

could be produced from a board of this size, was determined as the product
of these factors, m(j,f) =

⌊
LGj

/LOf

⌋
×
⌊
WGj

/WOf

⌋
.

(c) Now the wastage gf,j, when m(j,f) sheets of dimensions (LOf
, WOf

) were to be
produced from boards of dimension (LGj

, WGj
), was calculated as

gf,j = LGj
×WGj

− (m(j,f) × LOf
×WOf

).

Total wastage is then given by wastage per board multiplied by the quantity
ordered, q, i.e. gf,j × q.

Steps (1) and (3) are illustrated graphically in Figure 4.5.

In the figure the point (LGj
, WGj

) is the point on the grid under investigation, and
point (LOf

, WOf
) represents one of the boards in the set of orders, O. Note that

LOf
and WOf

may take on any integer value, whilst LGj
and WGj

are multiples of
10, and thus the point (LOf

, WOf
) will not necessarily lie on the grid.

As illustrated by the dotted lines, the factors for this point are as follows:
⌊
LGj

/LOf

⌋
= 2,

⌊
WGj

/WOf

⌋
= 2, and m(j,f) = 2 × 2 = 4. In other words, two sheets may

be cut out of the board lengthwise, and two sheets widthwise; in total four sheets
of size (LOf

, WOf
) may therefore be produced from board (LGj

, WGj
). The shaded

area represents the wastage per board,
(
LGj
×WGj

−
(
m(j,f) × LOf

×WOf

))
, which

is then multiplied by the number of boards required to obtain the total area of
wastage. The number of boards required to fill an order is obtained by dividing the
number of sheets ordered by the board factor m(j,f).
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Figure 4.5: Illustration of the process followed to find the suggested stock boards, where
each point on a grid is analysed in terms of the wastage incurred in producing each order
within its range.

4. The total wastage for each grid point was then summed over all demand points,
and this value was stored in the database.

5. The board size with the lowest total wastage, which satisfied the constraint (from
step (2)) of the minimum number of orders to be met, was then selected.

6. A subset, O1, of the demand data set O was then created as follows:

(a) For each demand data point, if the sheet ordered could not be produced from
the “optimal board” selected, (the check for validity was conducted as in Step
3(a) above), the length, width and quantity demanded were inserted into the
new demand set O1 (as this order had to be satisfied by another stock board.)

(b) Wastage was calculated for each demand data point, but unlike in Step 3(c),
where total wastage was calculated, here the percentage waste,

g′
f,j = 100× (LGj

×WGj
− (m(j,f) × LOf

×WOf
))/(m(j,f) × LOf

×WOf
),

was considered. If this wastage was more than the threshold value of 15% (as
dictated by the management of Clickabox in thesis objective I), the order was
also inserted into the new demand set O1.

7. Steps (2) to (6) above were then re–executed on the new set O1, to find the second
board to be kept in stock, and in the process creating a new demand set O2. This
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process was repeated until the specified number of stock boards were found, or all
the orders in the data set were satisfied.

4.2.5 Results

The process detailed in §4.2.4 was conducted on the data available, from the period 1
February 2001 — 31 January 2003. The analysis described in §4.2.4 was first conducted
to find the 28 suggested AC boards to keep in inventory. The resultant set of AC boards,
as well as the previous stock boards and all orders placed at Clickabox during the two
year period for which the analysis was conducted, are shown graphically in Figure 4.6.
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Figure 4.6: Depiction of previous and proposed AC stock boards profile against sheet
orders received.

The dimensions of the previous and suggested stock profiles are given in Table 4.2, along
with the average percentage of (retrospective) wastage per board, and the percentage of
total orders during the two year period met optimally by each board.

The performance of the suggested stock profile was compared to that of the previous
stock profile kept in inventory, with respect to the historical data available. This was
achieved by means of a computerised procedure which calculated the optimal board to
be used for each sheet order during the period 31 January 2001 — 1 February 2003, and
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then stored data as to the percentage of wastage incurred for that order7. In other words,
assuming optimal stock boards were always available, various statistics, such as average
and total wastage, were calculated for both the previous and the suggested stock. It is
important to note that the figures do not give the actual performance of the previous
stock boards, but rather an optimistic measure of performance, as in reality there was
not always sufficient optimal stock boards available, and sub–optimal boards had to be
used frequently.

Length Width Avg. % % Orders
(mm) (mm) Waste Met
1 000 1 400 4.06% 0.66%
1 220 21 00 25.92% 5.01%
1 250 1 300 10.86% 2.95%
1 360 2 100 11.86% 5.94%
1 400 1 300 10.85% 3.30%
1 425 1 125 11.87% 3.38%
1 500 1 500 18.19% 6.87%
1 530 1 300 14.01% 5.48%
1 540 910 17.50% 6.72%
1 550 1 400 10.20% 2.72%
1 555 1 540 13.37% 2.52%
1 600 1 300 5.77% 0.50%
1 650 1 500 12.49% 2.29%
1 700 1 000 16.64% 2.8%
1 700 1 200 8.37% 3.18%
1 710 1 500 9.87% 2.33%
1 850 1 510 10.56% 2.72%
1 860 1 200 10.44% 2.56%
1 870 1 055 12.58% 3.11%
1 920 910 15.39% 5.01%
2 000 1 200 12.98% 3.42%
2 000 1 500 8.88% 1.59%
2 100 1 000 18.36% 4.82%
2 200 1 200 10.47% 2.14%
2 200 1 500 11.09% 3.07%
2 300 1 000 17.20% 5.01%
2 300 1 200 5.93% 1.17%
2 358 1 062 12.33% 5.59%

(a) Current AC Stock Boards

Index Length Width Rank Avg. % % Orders
(mm) (mm) Waste Met

1 1 030 2 370 B 12.73% 1.59%
2 1 260 2 300 A 15.30% 5.79%
3 1 280 1 300 B 9.57% 2.45%
4 1 330 2 370 B 5.10% 0.78%
5 1 360 2 300 A 12.93% 5.32%
6 1 380 1 310 B 7.44% 1.40%
7 1 460 2 370 A 13.71% 3.65%
8 1 470 1 480 A 12.27% 2.76%
9 1 500 1 540 B 14.39% 1.20%
10 1 510 1 810 A 18.58% 9.32%
11 1 530 1 380 A 12.67% 5.36%
12 1 550 1 020 B 10.02% 1.55%
13 1 680 1 080 A 12.28% 3.69%
14 1 720 1 210 A 12.78% 4.89%
15 1 800 1 200 B 10.45% 1.55%
16 1 860 1 000 B 8.54% 1.09%
17 1 860 1 490 A 15.96% 8.08%
18 1 910 1 880 A 14.92% 5.09%
19 2 000 1 400 B 6.21% 1.48%
20 2 030 1 240 A 12.47% 3.15%
21 2 110 1 010 A 11.85% 3.30%
22 2 110 1 680 A 17.04% 7.15%
23 2 200 1 200 B 8.79% 1.28%
24 2 260 1 520 A 16.48% 4.50%
25 2 260 2 160 A 13.98% 6.99%
26 2 300 1 220 B 11.30% 2.17%
27 2 300 1 710 A 10.13% 3.42%
28 2 370 1 250 B 10.38% 0.82%

(b) Suggested AC Stock Boards

Table 4.2: The dimensions of the previous and the proposed AC board stock profiles,
indicating the average wastage per board and percentage of orders optimally met by each
board. Also given is the rank of each stock board, an indication of the predicted frequency
of use of each of the stock boards (corresponding to the percentage of historical orders
met optimally with each board).

The average wastage for each order (over all AC stock boards) was 12.43% for the previous
stock profile, and 12.09% for the suggested stock profile. The suggested stock profile also
performs slightly better in terms of total wastage for each order, where the wastage per
board is weighted by the quantity of boards in the order, with an average of 11.98%
wastage compared to the 12.18% wastage using the previous stock profile. The suggested

7This procedure was implemented by means of programs written by the author in Microsoft Access
and Visual Basic, and the relevant source code is given in §C.3 of Appendix C.
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Figure 4.7: Depiction of previous and proposed DWB board stock profile against sheet
orders received.

stock profile affects a reduction in total retrospective waste over the previous stock profile,
during the two year period 31 January 2001 — 1 February 2003, of 9.37%.

The suggested stock boards satisfied 99.81% of the historical demand, compared to the
96.85% attained by the previous stock profile. In terms of the percentage of total orders
met with less than the threshold wastage (15%, as defined in thesis objective I), the
suggested stock profile again performed better, with 65.67% compared to the 59.52% of
the previous stock profile.

Also given in Table 4.2 is the ranking of each proposed stock board, which will be used
in Chapter 5 in the allocation of storage bays. These rankings are determined by the
percentage of historical orders met by each stock board. All stock boards which met
more than a threshold percentage of historical orders optimally were classified as rank A
boards, and the remainder as rank B boards. This threshold percentage was set to 2.5%
for the AC boards, and 5% for the DWB boards, for reasons that will be explained later.
The rankings estimate, given the previous sheet order data, which stock boards are likely
to be used most frequently for sheet orders in the future, if the past data is any indication
of future demand.

A similar analysis was then conducted to find the 18 optimal DWB boards to keep in
inventory. The set of suggested DWB stock boards emanating from the analysis, as well
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as the previous stock boards and all orders placed on Clickabox during the two year
period for which the analysis was conducted, are shown graphically in Figure 4.7.

The dimensions of the previous and suggested stock profiles for the DWB cardboard type
are given in Table 4.3, along with the average percentage of (retrospective) wastage per
board, and the percentage of total orders in the two year period met optimally by each
board.

Results in terms of average wastage per board were again similar. The average wastage
for each order (over all DWB stock boards) was 14.59% for the previous stock profile,
and 14.01% for the suggested stock profile. The average wastage weighted by order
quantity was 13.62% for the previous stock profile and only 12.65% for the suggested
stock profile. The suggested stock profile affects a reduction in total retrospective waste
over the previous stock profile, during the two year period 31 January 2001 — 1 February
2003, of 16.17%.

The suggested DWB stock boards satisfied 98.71% of the historical demand, compared
to the 97.95% attained by the previous stock profile. The suggested stock profile also
performed far better in terms of the percentage of total orders met with less than the
threshold wastage, with 57.31% compared to the 47.13% of the previous stock profile.

Length Width Avg. % % Orders
Waste Met

1 200 2 100 19.24% 5.43%
1 350 2 100 22.09% 5.31%
1 350 2 270 10.85% 1.55%
1 440 1 020 5.84% 2.63%
1 500 1 050 9.24% 1.25%
1 500 1 300 16.01% 10.69%
1 500 1 400 13.57% 2.81%
1 600 1 000 7.09% 0.66%
1 600 1 800 14.93% 4.54%
1 700 1 200 14.68% 6.57%
1 840 1 200 12.98% 3.40%
1 850 1 500 21.50% 13.31%
1 920 1 800 16.51% 6.15%
2 000 1 200 15.52% 6.63%
2 120 1 510 11.38% 4.12%
2 200 1 350 10.88% 3.58%
2 300 1 600 15.86% 8.66%
2 380 1 200 24.52% 12.72%

(a) Current DWB Stock Boards

Index Length Width Rank Avg. % % Orders
Waste Met

29 1 480 1 310 A 14.4% 9.42%
30 1 780 1 620 A 16.23% 7.31%
31 1 820 2 090 A 16.75% 5.67%
32 1 050 1 980 B 12.50% 1.52%
33 1 230 1 420 B 12.72% 4.15%
34 1 270 1 700 B 11.83% 2.11%
35 1 170 1 310 B 13.06% 3.10%
36 1 410 1 940 A 18.42% 6.37%
37 1 530 1 370 B 12.93% 2.63%
38 1 670 1 010 A 15.48% 5.67%
39 2 010 1 460 A 14.33% 5.26%
40 2 150 1 640 A 12.97% 7.66%
41 2 030 1 080 B 12.86% 5.03%
42 2 330 2 000 B 12.5% 4.56%
43 1 870 1 350 A 18.49% 11.70%
44 2 270 1 430 A 12.71% 5.03%
45 2 410 1 690 A 15.22% 6.78%
46 2 300 2 180 B 8.77% 4.74%

(b) Suggested DWB Stock Boards

Table 4.3: The dimensions of the previous and the proposed DWB board stock profiles,
indicating the average wastage per board and percentage of orders optimally met by each
board. Also given is the rank of each stock board, an indication of the predicted frequency
of use of each of the stock boards (corresponding to the percentage of historical orders
met optimally with each board).
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4.2.6 Evaluation of Results

The results in §4.2.5 were presented to the director of Clickabox during a meeting in
February 2003 [70]. The proposed changes in stock profile were accepted by the director,
and have been implemented since March 2003. It was noted by the director that many
of the changes proposed involved increasing the width of boards kept. This seemed
reasonable as previously strict constraints on the width of boards kept in inventory,
imposed by the machinery available at the time, have been relaxed with the procurement
of new equipment. However, since these new acquisitions the stock profile had not been
revised.

The suggested stock boards were entered into the Pastel system, with zero inventory
levels. It was noted over the next month (February 2003) that for most orders placed
the new stock boards were chosen by the quote program, above the previous stock, as
the optimal boards with which to produce the boxes ordered. The new boards in Tables
4.2(b) and 4.3(b) were then phased into stock during March 2003.

4.3 Demand Distributions

In this section, the concept of a board preference vector is introduced, in order to incor-
porate the cascading product substitution that occurs at Clickabox into the modelling of
the demand process. This approach is discussed, and the board preference vectors are
determined in §4.3.1. An analysis is then conducted of the demand for each of these board
preference vectors in §4.3.2. The method of Treharne and Sox [73], outlined in Chapter
2, is further explained, and the modifications made to their approach in this thesis are
discussed. The demand classes are then established, and the probability distributions
of the demand realisation processes are derived in §4.3.2.1 to §4.3.2.3. The Markovian
transition probabilities that govern the transition between demand states are calculated,
in §4.3.2.4, for each board preference vector. Finally, in §4.3.2.5, the sheet–to–board
conversion factors are discussed.

4.3.1 Board Preference Vectors

Out of the 4 285 works tickets containing data of orders placed for AC or DWB boards
during the period 1 February 2001 to 31 January 2003, there were 2 461 different sheet
sizes ordered. This indicates that, for many of the sheet sizes ordered, there were only
one or two orders placed during the period in question. Demand cannot, therefore,
be sensibly modelled by considering the probability distributions of specific sheet sizes
ordered. However, it is also not viable to simply derive a probability distribution of
demand for the stock boards from the historical data of boards actually used, as the ideal
board would not always have been available.

The approach taken in this thesis was therefore the following. For each sheet order,
a vector of the stock boards in Tables 4.2(b) and 4.3(b) that may be used to produce
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that sheet was constructed, and sorted in order of decreasing wastage8. Wastage was
calculated as the difference between the area of the board used and the total board area,
as a fraction of the total board area. This approach resulted in 526 distinct vectors when
applied to the demand data during the period 1 February 2001 to 31 January 2003. The
average wastage was calculated for all orders during the two year period for which data
were available, under the assumption that enough of the board associated with the least
wastage was, in fact, always available. This average wastage was 13.80%. The average
wastage, always using the second best board, was 19.84%, whilst that, always using the
third best board, was 25.40%. Finally, the average wastage resulting from always using
the fourth best board was 28.81%.

Very few sheets (only 1.44%) could be made out of the fourth best board with a wastage
of less than 15%, which is the maximum acceptable percentage of wastage set by the
management of Clickabox (see thesis objective I in §1.2). It was therefore decided that
each sheet order would be associated with a vector of only three stock boards, arranged in
order of decreasing wastage. This vector is termed a board preference vector for the sheet
in question. If there is sufficient stock of the board associated with the lowest wastage
(the first entry in the board preference vector), this board is to be used to produce sheets
ordered. If not, the second, and then third best board is to be used. Should there
be insufficent stock of any of the three board options available to produce the order, a
high cascading shortage cost is incurred. The restriction on the number of boards in
each board preference vector further reduced the number of distributions that had to be
computed from 526 to 386. Two examples of board preference vectors are given in Table
4.4. A complete list of board preference vectors is given in Appendix E.

Sheet Board Board 1 Board 2 Board 3
Index Type

1 AC 1 030 × 2 370 2 030 × 1 240 2 200 × 1 200
29 AC 1 460 × 2 370 1 380 × 1 310 1 720 × 1 210

Table 4.4: The board preference vectors of two of the popular sheet dimensions.

The notation used in conjunction with the board preference vectors in the modelling
process is now formalised. Suppose that there are s possible sheet types that may be
ordered, and let S = {1, . . . , s} index these sheet types. Suppose further that there are
b different board types that are kept in inventory, and let B = {1, . . . , b} index these
board types. Therefore b = 46, according to Tables 4.2(b) and 4.3(b). Each sheet may be
produced from a number of boards, with varying amounts of wastage associated with each
board type chosen to fulfil an order for a specific sheet type. Suppose that a maximum
of m(i,β) sheets of type i ∈ S may be produced from board type β ∈ B.

Now for a sheet i ∈ S ordered, a board preference vector, denoted vi, is defined, containing
the indices of those board types from which that sheet may be produced. As discussed,
these board preference vectors are limited to containing three board types. For example,
vi,k = β indicates that, for the manufacturing of sheet i, the k–th best board to use
is board β, where i ∈ S, β ∈ B and k ∈ X := {1, 2, 3}. The board preference vectors

8This was implemented by means of programs written by the author in Microsoft Access and Visual
Basic, and the relevant source code is given in §C.3 of Appendix C.
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v1, . . . , vs are now relabelled as v1, . . . , vμ, where μ ≤ s, by eliminating duplicates of the
same set of board preference vector entries (i.e. by avoiding vector multiplicities). Let
the set V = {1, . . . , μ} index this new numbering of the board preference vectors.

4.3.2 Board Demands

As discussed in §2.2.1, the Markovian demand modelling approach to be followed in
this thesis is based on that of Treharne and Sox [73]. In their approach to adaptive
inventory control techniques, they defined two core processes. The first was the demand
realisation process, governed by a set of conditional probabilities that give the probability
of a demand occuring within a certain demand class during the current time period, given
that the system is currently in a certain demand state. The demand classes represent
ranges of quantities in which demand may occur, and the demand states represent the
various distributions which may be assumed by the demand process. The second was the
Markov decision process, governed by a set of transition probabilities that determine the
transition between demand states.

The method followed in [73] was modified as follows with respect to the case study at
Clickabox. The notions of demand classes and demand states were merged, and a number
of classes were formulated. The Markov process then determines the transition between
these classes, which are ranges of order quantities which may materialise during a time
period. The demand realisation process determines, given the current demand class,
which quantity within that class will occur.

This modification is motivated by an analysis of the quantities of each board preference
vector ordered during each week in §4.3.2.1. In this subsection the clumpy nature of the
data is shown to prohibit direct use of any standard theoretical distributions to model the
demand. As a result, empirical distributions had to be derived from the historical data.
The clumpy nature of the data also suggest a grouping of potential demand realisations
around certain common order quantities. The demand classes are derived in §4.3.2.2, and
then the distribution to model demand realisation within a class is derived in §4.3.2.3.
The Markov transition probabilities are determined in §4.3.2.4, and finally the modelling
of the sheet–to–board conversion factors is discussed in §4.3.2.5.

4.3.2.1 Probability Distributions

The demand data of the board preference vectors were analysed in Arena Input Analyzer
[60]. The Arena Input Analyzer tests the data against the following theoretical dis-
tributions: Beta, Erlang, Exponential, Gamma, Johnson, Lognormal, Normal, Poisson,
Triangular, Uniform and Weibull. It establishes the minimum square error distribution,
in other words the distribution that has the smallest sum of squared discrepancies between
the histogram frequency and the frequency of the fitted data.

The goodness–of–fit of the minimum square error distribution is then assessed by means
of hypothesis testing. The null hypothesis is that the fitted distribution adequately
represents the data. The results are reported in the form of a so–called p–value, which is
the smallest level of significance at which the null hypothesis is rejected. A larger p–value
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represents a better fit. Two goodness–of–fit tests are conducted, namely the Chi–square
test and the Kolmogorov–Smirnov test. The minimum square error distributions, as well
as the results of both goodness–of–fit tests, for three of the board preference vectors are
given, as examples, in Table 4.5. It was found, for all board preference vectors tested,
that no standard theoretical demand distribution fitted the data at a satisfactory level
of significance, and that the test results became worse as data became more sparse.

Board Pref. Vector 1 Board Pref. Vector 2 Board Pref. Vector 3

Best Distribution Exponential Weibull Weibull
Expression EXPO(136) WEIB(0.0373, 0.176) WEIB(11.9, 0.187)
Square Error 0.006 904 0.005 367 0.015 869
Chi Square Test

Number of intervals 1 1 2
Degrees of freedom -1 -2 -1
Test Statistic 0.558 0.304 37.3
Corresponding p-value < 0.005 < 0.005 < 0.005
Kolmogorov-Smirnov Test

Test Statistic 0.581 0.411 0.159
Corresponding p-value < 0.01 < 0.01 < 0.01

Table 4.5: The results of the distribution analysis, showing the minimum square error
distributions, as well as the outcome of the goodness–of–fit tests for three board preference
vectors.
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Figure 4.8: The quantities ordered over a two year period of board preference vector 1,
showing how demand quantities tend to occur most frequently for certain values such as
100, 500 and 1 000. Here week 0 corresponds to the period 1 — 7 February 2001, week
1 to the period 8 — 14 February, and so on, until week 103, which corresponds to the
period 25 — 31 January 2003.

The unsuitability of any of the above–mentioned standard theoretical distributions to fit
the data is attributed to the clumpy nature of the quantities ordered. The quantities
ordered during the two year period 31 January 2001 — 1 February 2003 of the two
board preference vectors given in Table 4.4 are shown in Figure 4.8 and Figure 4.9 as an
illustration of this phenomenon. It was therefore necessary to model the demand by means
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Figure 4.9: The quantities ordered over a two year period of board preference vector 29,
showing how demand quantities tend to occur most frequently for certain values such as
100 and 1 000. Here week 0 corresponds to the period 1 — 7 February 2001, week 1 to
the period 8 — 14 February, and so on, until week 103, which corresponds to the period
25 — 31 January 2003.

of empirical distributions. The first step in the formulation of empirical distributions for
week demand is to establish the demand classes on which the distributions will be based.

4.3.2.2 Derivation of Demand Classes

Time period demand for board preference vectors is divided into a number of classes,
indexed by the set K = {0, . . . , k}. For example, k = 0 may represent a weekly demand
of orders of between 0 and 100 sheets, which may be produced by boards from a given
board preference vector.

The demand classes in K were established as follows. The frequency of occurrence of each
potential quantity of weekly demand was established from the historical data. The k most
frequently ordered values were taken to each represent a demand class, and the demand
classes were chosen so that each value was the mode (the most frequently occurring value)
of its demand class. The number of demand classes (k) was taken to be the minimum
number of classes for which there is a probability of at least 95% that the realised demand
quantity will be one of these values, if past data is an indication of future demand.

As shown in Table 4.6, the quantities in the set {0, 50, 100, 200, 250, 500, 1 000} occur in
more than 95% of the instances for AC board types, so the value of k for AC board types
is taken as seven. The DWB board types have a slightly wider spread of quantities, the
set of quantities required to meet the above-mentioned specification contains the seven
quantities given for AC boards, as well as the quantities {1, 10, 20, 30}. However, an
increase from seven to eleven demand classes would translate to an increase from 7 497 to
18 513 entries in the transition probability matrix of the resulting Markov process. So in
order to ensure manageability and efficiency of the model, it was decided not to include
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Cumulative
Quantity Frequency Probability

of Occurrence
0 22 098 91.59%

500 199 92.41%
100 148 93.02%

1 000 147 93.63%
50 136 94.20%

200 106 94.64%
250 88 95.01%

1 87 95.36%
20 57 95.60%
30 48 95.80%

150 44 95.98%
60 44 96.16%

...
...

...

(a) AC Boards

Cumulative
Quantity Frequency Probability

of Occurrence
0 14282 89.76%

50 182 90.90%
1 128 91.70%

100 113 92.41%
500 94 93.01%
10 73 93.46%
20 57 93.82%

1000 55 94.17%
250 52 94.49%
200 51 94.82%
30 47 95.11%
40 37 95.34%

...
...

...

(b) DWB Boards

Table 4.6: The frequency of occurrence of order quantities (number of sheets ordered per
week) for each optimal board type, showing the cumulative probability of occurrence, cal-
culated using the ratio of the frequency of occurrence to the total number of occurrences.
The table is truncated at the twelfth demand quantity.

these additional categories for the DWB board types separately, but instead to use the
seven categories determined for the AC board types, into which these four quantities are
incorporated in any case. This decision is justified by the results of the ABC classification
in §4.2.1, which showed the AC board types to be of far more importance in decision
making with regards to inventory control than DWB boards. Furthermore, as will be
described later, the demand realisation within a class is represented by a probability
distribution over the values in the class, so the information pertaining to the frequency
of occurence of the quantities {1, 10, 20, 30} is not lost as a result of their ommission as
individual classes.

The demand class divisions had to be formulated next, in such a way that the values in
the set each form the mode of a class. As the demand classes are required to span all
integer order quantities, the classes are formed as being intervals between the midpoints
from one mode to the next, with the exception of zero, which forms a class of its own.
The classes thus formed are given in Table 4.7, along with the mode, median (value at
the centre of the set) and mean (average) of each class. Figure 4.10 gives a graphical
depiction of these summary statistics for both board types.

Note that there are only two significant discrepancies amongst the values of the summary
statistics for each demand class in Table 4.7. The first is for the class 1 − 75, where the
mean and median are approximately half of the mode for both cardboard types. The
reader is referred to Table 4.6 for an explanation of this observation. Table 4.6 shows
that the next three most frequently ordered quantities for the AC board types are in
fact {1, 20, 30}, which is the reason that the median (and mean) of the class 1− 75 are
weighted away from its mode of 50, towards the lower range of the class. Similarly for the
DWB board types, the values {1, 10, 20, 30} were shown to occur almost as frequently as



60 CHAPTER 4. ANALYSIS OF BOARD DEMAND

Index Class Mode Mean Median
1 0 0 0 0
2 1–75 50 28.66 25
3 76–150 100 110.38 100
4 151–225 200 195.49 200
5 226–375 250 274.92 250
6 376–750 500 525.70 500
7 751+ 1 000 1 826.50 1 050

(a) AC Board Types

Index Class Mode Mean Median
1 0 0 0 0
2 1–75 50 26.81 20
3 76–150 100 108.93 100
4 151–225 200 193.04 200
5 226–375 250 276.31 260
6 376–750 500 510.79 500
7 751+ 1 000 1 410.91 1 000

(b) DWB Board Types

Table 4.7: Summary statistics of the demand classes (for each cardboard type), giving
the range, mean, mode and median of each class.

the value 50, and as mentioned above, this is accounted for in the values of the mean and
median.

The second discrepancy is for the class 751+, where the mean is significantly higher than
the median or mode for both cardboard types. This is a result of the few very high
quantities that occur, albeit infrequently, which weigh the value of the mean away from
the median and mode.

4.3.2.3 Derivation of Demand Realisation Distributions

The weekly order quantities in each demand class within the set K = {1, . . . , 7}, for each
board preference vector, were investigated next, in order to establish a distribution for
this demand. Again, a sample of the board preference vectors were analysed. The normal
distribution was found to fit in the majority of the cases tested, which was to be expected,
considering the closeness of the mean, median and mode, and the method by which the
classes were establised. The exceptions to this observation were cases in which data was
too sparse for the fitting of a distribution. However, in these cases the only quantity that
occured was, in fact, the mean of the class. The demand realisations in each class are
therefore characterised by normal distributions about the mean of the class.

The width of the normal distribution for each class was chosen so that 95% of the values
represented by the normal distribution fall within the range of that class. The value of
the standard deviation, σ, is therefore chosen so that the range spanned by the class is
4σ [54]. The resulting distributions for classes 2 to 6 are shown schematically in Figure
4.11. The distribution for class 7 is shown separately, in Figure 4.12, as it has a much
higher standard deviation, and hence does not display well on the same scale as the other
distributions. Note that class 1 is not represented by a distribution, because demand
realisations in this class always assume a value of zero.



4.3. Demand Distributions 61

4.3.2.4 Derivation of Transition Probabilities

Based on the demand classes established in §4.3.2.2, the following analysis was conducted
for each board preference vector, based on the historical demand data available9. The
number of transitions from each demand class j ∈ K to each other demand class m ∈ K
was calculated. This was expressed as a fraction of the total number of incidents of the
demand in class j. These are conditional probabilities (with the condition being that
demand class m is the current one realised) that quantify the likelihood that demand
class j will be the next one realised. The conditional probabilities therefore determine
the transition between states in the Markov demand process. These computations were
conducted for each initial demand class j of each of the board preference vectors. The
transition probabilities for one of the board preference vectors is given, as an example,
in Table 4.8.

Demand To
State j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7

m = 1 0.49 0.11 0.04 0.09 0.04 0.09 0.13
F m = 2 0.38 0.63 0.13 0.13 0.00 0.63 0.25
r m = 3 0.50 0.00 0.00 0.00 0.00 0.00 0.00
o m = 4 0.25 0.25 0.08 0.42 0.00 0.00 0.00
m m = 5 0.5 0.5 0.00 0.00 0.00 0.00 0.00

m = 6 0.29 0.29 0.14 0.14 0.00 0.00 0.14
m = 7 0.64 0.07 0.00 0.00 0.00 0.14 0.14

Table 4.8: The transition probabilities for board preference vector 6, indicating the prob-
ability of a transition from each state to each other state.

A complete list of the resulting transition matrices is included in a CD inside the back
cover of this thesis.

4.3.2.5 Derivation of Conversion Factor Probabilities

As discussed, each sheet order is converted to an order for a board preference vector.
However, in this process the information as to how many sheets can be produced from
each board is lost. This number may be different for each sheet that is associated with a
specific board preference vector. Hence, each order placed for a certain board preference
vector may be associated with different sheet–to–board conversion factors.

One intuitive way of countering this information loss would be to expand the board
preference vectors, in order to retain this information. This could be achieved by including
a conversion factor for each sheet associated with the board preference vector, for each
board in the vector, so that orders for the same combination of boards, but different
conversion factors, are distinct entries. However, this would increase the number of board
preference vectors from 386 to 781. Such an increase is not desirable, as it greatly reduces
the number of historical demand entries associated with each board preference vector,
thereby decreasing the accuracy of the probabilities derived, based on the historical data.

9This was implemented by means of programs written by the author in Microsoft Access and Visual
Basic, and the relevant source code is given in §C.4 of Appendix C.
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The eventual approach taken was therefore not to include the sheet–to–board conversion
factors in the board preference vectors, but rather to derive a probability distribution for
the sheet–to–board conversion factors. In this way, when a demand for a board preference
vector is realised, the corresponding sheet–to–board conversion factor for each board in
the board preference vector is derived from the probability distribution.

This was achieved, again by analysis of the historical data10, as follows. The average
sheet–to–board conversion factor per week, for each board in each board preference vec-
tor, was calculated. The averages were weighted to take into account the quantity of
each order. The number of occurrences of each of the sheet–to–board conversion factor
averages, for each board in each board preference vector, was then divided by the to-
tal number of demand occurrences for that board preference vector. The probability of
occurrence of the first few sheet–to–board conversion factors for one of the board prefer-
ence vectors is given, as an example, in Table 4.9. A complete list of the sheet–to–board
conversion factor probabilities for all board preference vectors is included on a CD inside
the back cover of this thesis.

The notation of the sheet–to–board conversion factor m(i,β) is amended to m
(i,β)
t , as the

board factor now represents the probable number of sheets, optimally manufactured by
board preference vector vi, that may be produced from board β in week t.

Board Index Factor Probability
1 4.00 0.31
1 5.33 0.03
1 6.00 0.03
1 6.26 0.03
1 6.58 0.03
1 6.67 0.03
1 7.45 0.06
1 7.57 0.03
1 8.00 0.40
2 2.00 0.96
2 4.00 0.04
3 2.00 0.03
3 4.00 0.31
3 5.33 0.03
3 6.00 0.03
3 6.26 0.03
3 6.58 0.03
3 6.67 0.03
3 7.45 0.06
3 7.57 0.03
3 8.00 0.40

Table 4.9: The entries in the board factor matrix for board preference vector 1, giving
the probability of occurrence of some potential factors for the board in each of the three
positions in the board preference vector.

10This was implemented by means of programs written by the author in Microsoft Access and Visual
Basic, and the relevant source code is given in §C.5 of Appendix C.
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4.4 Chapter Summary

The historical data available from Clickabox was analysed in this chapter, in order to
determine an optimal set of stock boards to be kept in inventory, and to characterise
the nature of the demand process for the purposes of inventory modelling. An ABC
classification was conducted in §4.2.1, the results of which showed board types AC and
DWB to be the most important board types to be kept in stock, because of their high
annual usage values. The heuristic used to determine a suitable set of board dimensions
to be kept in inventory was described in §4.2.4, and the results were given and discussed
in §4.2.5. The resulting suggested stock board profile has been accepted and implemented
by the management of Clickabox as of March 2003. The new stock profile has proved
to perform well compared to the old stock profile in terms of a reduction in wastage,
as, when both stock profiles were loaded in the system, the newly suggested stock board
types were consistently chosen over the old stock boards to be the optimal boards in
inventory to satisfy customer orders. The concept of a board preference vector, used
to incorporate the cascading product substitution that takes place at Clickabox, was
then introduced in §4.3.1. In §4.3.2, demand classes for board preference vectors were
defined, and then two core inventory modelling processes were introduced, namely the
demand realisation process and the Markov decision process. Based on the historical
data available, distributions were derived to model these processes. It is upon these
distributions that the inventory model in the following chapter is built.
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(a) AC board types
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(b) DWB board types

Figure 4.10: Graphical depiction of summary statistics for each demand class, showing
the correlation between the mean, mode and median of each class.
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Figure 4.11: The normal distributions of demand classes 2 to 6, indicating the range of
each class. Demand realisations in class 1 assume the value of zero. The demand distri-
bution for class 7 has a much higher standard deviation and so is illustrated separately.
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Figure 4.12: The normal distribution of demand class 7, indicating the range of the class.
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Chapter 5

Inventory Model

The objective in this chapter is to design a strategic mathematical model in order to aid
the inventory manager when replenishing stock at Clickabox. A theoretical optimal control
policy is defined for the case of non–stationary, partially observed demand, modelled as
a finite state Markov Chain. A sub–optimal control policy, which is more practical with
respect to computational requirements, is then developed. The objective of this policy is
the minimization of expected tied–up inventory capital subject to an acceptable level of
offcut wastage costs, whilst satisfying the given service level requirements.

5.1 General Modelling Assumptions

The following modelling assumptions will be assumed to hold throughout this chapter.

1. The financial year is divided into 52 one–week time periods. These week periods are
indexed by the set T = {0, . . . , 51}, with period 0 being the week 1 — 7 February,
period 1 being the week 8 — 14 February and so on, until period 51, which is the
week 25 — 31 January. The planning horizon for the model is one year.

2. Boards are ordered at the start of a one–week time period, and are delivered at
the start of the week, the lead time number of weeks later. Lead time for delivery
of boards from suppliers is constant (l = 2 weeks). The lead time in reality is
variable, but not highly variable (typically between seven and ten working days).
This assumption simplifies the modelling process.

3. Unsold boards at the end of the one–year planning horizon maintain their value for
future periods.

4. Demand for any box type during any given week arises from one of a number of
probability distributions. The distribution changes randomly from one week to the
next. At the beginning of any given week it is not certain from which distribution
the demand will be generated for that week. However, the transition probabilities
for demand from one week to the next are known and fixed.

67
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5. If the optimal board is not available to satisfy an order, the next best board is
used. This is termed stock cascading, as discussed before. The cost of customer
dissatisfaction is represented by the increased wastage cost sustained when using a
sub–optimal board. The wastage cost is in reality sustained by the customer and
not by Clickabox, but for modelling purposes will represent the cost of shortage.

6. In the case of no suitable board being available to produce an order, i.e. not even
a substitute board is available, demand is completely backordered. As discussed in
Chapter 4, this will result in a high shortage cost being incurred.

7. Raw materials are available for production as soon as they arrive at the warehouse.
There are at most two raw materials deliveries to the factory per day [70]. The
deliveries are offloaded directly into the warehouse and the boards are marked
available for use as soon as the delivery is recorded into the system. Under normal
circumstances this will happen immediately.

8. Income that is redeemed through the processing or recycling of offcuts is neglected.
This is justified as the income from recycling is approximately R1 845 per month,
compared to a turnover of R450 000 — R600 000 per month in 2002.

9. Orders are assumed to be fulfilled as soon as production is complete, i.e. delivery
is assumed to take place on the same day that an order is ready. This is normally
the case [70], the exceptions are a result of poor production planning and do not
fall within the scope of this thesis.

10. No raw materials are damaged in storage. Storage damage occurs when piles are
stacked too high and fall over, usually as a result of the warehouse being too full.
It is assumed that, given the cost associated with holding stock included in the
inventory model, the occurrence of this will be minimal. It is, in fact, estimated by
management that less than 0.1% of the stock in inventory at Clickabox is lost due
to damage in storage [70].

11. Fulfillment of orders is dependent only on availability of stock, i.e. machine break-
downs and labour shortages do not influence the production schedule. As in (8)
above, exceptions to this assumption fall beyond the scope of this thesis.

5.2 Spatial Constraints

Spatial constraints for the inventory model will be establised as firstly the volume of
storage space available, and then as an approximate number of boards that can be stored
in the available space.

Available space is calculated in cubic meters. There is a restriction on the height to which
boards may be stacked in the warehouse, for convenience purposes and to prevent the
boards from being damaged due to pressure in the stack. The maximum height to which
boards should be stacked is 3.2 metres. Allowance must also be made for loading and
manoeuvering of forklifts, so 45 metres of the length of the storage area and 11 metres
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of its width are used for storage. Available space in the raw materials store is therefore
1 584m3.

The approximate number of boards that can be stored in this space is now calculated.
The maximum length of boards is 2.49m and the maximum width is 2.38m, due to
constraints on the machinery used to process orders. Hence the available space allows
for 72 bays in which to store different board dimensions, 18 lengthwise and 4 widthwise
in the storeroom. The bays are divided proportionately between the AC and the DWB
boards, according to the number of sizes of each cardboard type kept in stock. This
results in 44 bays for the AC boards, and 28 bays for the DWB boards. Each bay holds
only one type of board; the more popular board dimensions are allocated more than one
bay. As discussed in Chapter 4, the stock boards are ranked according to annual usuage
value. It is assumed that the 16 most popular AC board dimensions (termed the Rank A
board types in Table 4.2) are allocated two bays each, and the remaining 12 AC board
types (termed the Rank B board types in Table 4.2) are allocated one bay each, to make
up the total of 44 bays allocated for storage of the AC board types. Similarly, the ten
DWB Rank A board types are allocated two bays each, and the remaining eight DWB
Rank B board types are allocated one bay each, to make up the total of 28 bays allocated
for storage of the DWB board types.

AC boards are 4.4mm thick, while DWB boards are 7.6mm thick. The number of AC
boards that can be stored in each bay is therefore 3.2m ÷ 0.004 4m = 727 boards, and
the number of DWB boards that can be stored is 3.2m ÷ 0.007 6m = 421 boards. The
constraint on the number of boards of each type that may be stored in the available
space, dependent on board type and rank, is defined as η�

(z), where � is the rank (either

A or B), and z is the board type (either AC or DWB). The current constraints on the
number of each board type and rank that may be held in inventory are given in Table
5.1(a).

If the threshold values given in Table 5.1(a) are exceeded, the viability of renting addi-
tional storage space must be investigated.

ηA
(AC)

1 454

ηB
(AC)

727

ηA
(DWB)

842

ηB
(DWB)

421

(a) Current Position

ηA
(AC)

2 182

ηB
(AC)

727

ηA
(DWB)

1 263

ηB
(DWB)

421

(b) Upper Limit

Table 5.1: Spatial constraint for each board type and rank, given as the number of
boards, that can be stored in inventory. Table (a) gives the constraints based on the
current storage position, and Table (b) gives the so–called upper limit, which represents
the approximate number of boards which could be stored in inventory were all viable
available space to be used for storage.

The current wastage recovery area has a usable area of 11 metres by 23 metres, which
potentially allows for an additional 20 bays for AC boards and an additional 12 bays for
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DWB boards, in other words an additional 14 540 AC and 5 052 DWB boards may be
stored in this area, if required, at an additional cost. It is assumed that any additional
storage space will be occupied proportionally between AC and DWB boards. The ap-
proximate number of boards which could then be kept in storage, based on one bay for
the rank A boards of both board types, are given in Table 5.1(b). These are the values
that will be used in the optimisation model as the upper limit of the order–to level.

5.3 Board Holding costs

Three categories of holding costs (dependent on the quantity of boards kept in the in-
ventory) have been identified. These are the rental cost of floorspace in the factory, the
opportunity cost of tied–up capital, and the cost of insurance.

5.3.1 Rental Cost

The building in which the Clickabox factory is housed is owned by the director of the
factory, and Clickabox pays a monthly rental to him at a market–related rate. This is a
fixed rental charge, independent of inventory levels. However, an increase in the amount
of space utilised results in decreased manoeuvrability of the forklifts in the warehouse,
and therefore an increase in the time required to fetch raw materials for production. The
modelling of rental costs therefore takes into account the positive correlation between the
amount of stock held and the cost of holding the stock. This is done as follows.

The proportion of total rental cost attributed to the storage area is given by

Rs =
As

At
Rp

=
1 584m2

2 518.5m2
R415 400

= R261 264.09,

where At represents the total floor area of the factory, As represents the floor area of the
storage space (as calculated in §3.2), and Rp the total rent paid per annum.

Rental cost for the storage area per volume of stock per week is now calculated as

Rc =
Rs

52Ash′

=
R261 264.09

52 weeks × 1 584m2 × 3.2m

= R0.99 per m3 per week, (5.1)

where h′ represents the height to which boards may be stacked.

This rate applies to the available space in the raw materials store, which can store approx-
imately 31 988 AC boards and 11 788 DWB boards (as calculated in §5.2). If inventory
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levels exceed these thresholds, an additional cost will be incurred, as it will be necessary
to utilize the current waste recovery area for the storage of stock. The waste recovery
area currently generates an income of approximately R1 845 per month, or R461.25 per
week [75]. The additional cost incurred is the opportunity cost of converting the space
utilized for this recovery operation to storage space for inventory. Space available in this
area is sufficient for the storage of a further 14 540 AC and 5 052 DWB boards.

Boards vary in dimension, so rental cost per board is different for each board kept in
stock, and is given by the cost per cubic metre, Rc, multiplied by the volume of the
board. There are 28 AC board types and 18 DWB board types kept in inventory from
which sheets may be produced; let the sets BAC = {1, . . . , 28} and BDWB = {29, . . . , 46}
index these board types respectively, and let B = BAC ∪ BDWB.

The rental cost function for board β ∈ B during week t is given by x
(β)
t Rcv

(β), where x
(β)
t

is the number of boards of type β in inventory during week t, where v(β) is the volume
per board of type β and Rc is the rental cost per volume of stock, as calculated in (5.1).
The total rental cost is therefore given by

RT =

{ ∑46
β=1 x

(β)
t Rcv

(β), if x
(β)
t ≤ η

�β

(zβ) for all β ∈ B∑46
β=1 x

(β)
t Rcv

(β) + R461.25, otherwise,
(5.2)

where �β ∈ {A, B} denotes the rank and zβ ∈ {AC, DWB} denotes the type of the board
indexed by β ∈ B. In other words, the additional rental cost for the waste recovery area
is incurred if the inventory level of any of the stock board types exceeds the limit η

�β

(zβ)

for any board β ∈ B, as shown in Table 5.1.

The values of v(β), the volume of each board β, are listed in Tables A.1 and A.2 of
Appendix A.

5.3.2 Opportunity Cost

The loss due to capital tied up in stock is an opportunity cost, calculated in terms of the
interest that would have been earned, were that money invested in the bank. Tied–up
capital is therefore directly proportional to the cost of the raw materials. For a raw
material purchase price of p(β) [Rands per board of type β] and a cost–of–capital–per–
week rate c, the opportunity cost of keeping one unit of board β in stock for one week is
given by cp(β). The purchase cost p(β) is given by

p(β) =

{
A(β) × 2.54, if zβ = AC
A(β) × 4.46, if zβ = DWB,

(5.3)

where A(β) denotes the surface area of board β.

The total tied–up capital during week t is therefore

P =
46∑

β=1

cp(β)x
(β)
t

= 2.54c
28∑

β=1

A(β)x
(β)
t + 4.46c

46∑
β=29

A(β)x
(β)
t . (5.4)



72 CHAPTER 5. INVENTORY MODEL

5.3.3 Insurance Cost

Insurance costs are calculated on the total value of stock and machinery housed in the
factory. This amount is reviewed annually, and the value of stock insured is calculated
based on the estimated average stockholding for the year to come.

However, it is practically very difficult to link a variation in the number of boards in
stock month by month to monthly insurance costs. The monthly insurance premium is,
in fact, predetermined, and the number of boards insured at any stage depends on the
composition of the inventory (in terms of board sizes, types and numbers) during the
same month of the previous financial year, and the cost price of each board in stock.

This cost variation is negligible compared to the opportunity cost of the capital investment
in the inventory. Insurance cost will therefore be considered a fixed cost for modelling
purposes.

Current insurance rates are approximately R2 280 per month, i.e. R570 per week, for
insurance on a replacement value of R500 0001 of stock in inventory.

5.3.4 Total Holding Costs

The unit holding cost for board β is therefore

h(β) = x
(β)
t

(
Rcv

(β) + cp(β)
)

+
R570.00

46
, (5.5)

and the total holding cost is given by

hT = P + RT + R570.00, (5.6)

where P and RT are given in (5.4) and (5.2) respectively.

5.4 Cascading Shortage Costs

Shortage costs are difficult to estimate, due to the complicated nature of customer senti-
ment. This cost should incorporate bad sentiment if customers’ orders are not met within
the promised lead time, and also if the orders are met, but at a high cost due to the use of
sub–optimal boards, with much wastage. In the case of Clickabox, the cascading shortage
cost s(β) is formulated as the expense incurred due to this wastage (although it is, in fact,
incurred by the customer and not the factory itself).

This cost may be estimated by

s(β) =
A(k) − A(β)

A(β)
p(β), (5.7)

1This replacement value was estimated by the management of Clickabox, after inspection of the
average value of stock in inventory during 2002, for the purposes of determining the insurance premiums
for 2003 [70].
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if board type k is the board type used instead of the optimal board type β, where p(β) is
the purchase cost of board type β, and A(β) is the area of board type β as before.

However, the actual shortage cost depends on the composition of the board preference
vectors and on the inventory levels, and calculation of the actual shortage cost therefore
requires a knowledge of a number of issues not yet addressed. For the purposes of cal-
culating service levels, however, the simplistic cascading shortage cost estimate in (5.7)
is used. This concept will be extended later to comprise a wastage cost defined for each
board in each board preference vector, and a shortage cost dependent on a combination
of these wastage costs and the inventory levels of each board in the board preference
vector.

In the case of no boards being available to satisfy an order, the order is backlogged, and
a fixed stockout penalty cost is incurred.

5.5 Service Level Measures

In this section the choice of service level will be discussed, beginning with a clarification of
the difference between service level and fill rate. A service level is the required percentage
of order cycles during the year, during which there will be no shortages. A fill rate is the
required percentage of units demanded that will be in stock when needed. The fill rate
is generally significantly higher than the service level.

An algebraic computation can be performed to determine an appropriate service level
α(β) for each board type β ∈ B, taking into account the trade–off between holding cost
h(β) and shortage costs s(β), and the frequency at which the factory is exposed to the
possibility of running out of stock [16]. This is calculated individually for each board
type in the four steps outlined below.

Step 1: Computing the optimal number of stockouts each year, S∗(β). This is achieved by
taking the ratio of the annual holding cost h(β) of board type β to the shortage cost s(β)

for board type β, because if the holding cost is relatively high compared to the shortage
cost, the factory should plan on stocking out relatively often, since the cost of carrying
high safety stocks would be prohibitive. Conversely, with relatively high shortage costs,
the factory may plan for a low probability of stocking out by carrying high safety stock.
Therefore the planned number of stockouts per year is given by

S∗(β) =
h(β)

s(β)
, β ∈ B. (5.8)

Step 2: Computing the number, κ(β), of order cycles each year. This is given by the
average annual demand D(β) for boards of type β divided by the quantity ordered during
each cycle, that is

κ(β) =
D(β)

q(β)
, β ∈ B. (5.9)

In the case of a fixed review problem, κ(β) is the number of review periods in a year. This
indicates the potential number of exposures to stockout the factory will experience for
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board β each year.

Step 3: Computing the probability S
(β)

of a stockout during each order cycle given the
optimal number of stockouts computed in (5.8) and the number of exposures to stockouts
given by (5.9). Suppose, as an example, the optimal number of stockouts is one every
two years, and there are five order cycles a year. Then there are ten order cycles in the
two year period. If there is one stock out during these ten order cycles, there is a one in
ten, or 10%, chance of stockout during the order cycle. In general this probability is

S
(β)

=
S∗(β)

κ(β)
, β ∈ B. (5.10)

Step 4: Deriving the service level, α(β), as the probability of not stocking out of board
β during each order cycle, i.e.

α(β) = 1− S
(β)

= 1− S∗(β)

κ(β)

= 1− h(β)q(β)

s(β)D(β)
, β ∈ B, (5.11)

by utilisation of (5.8)–(5.10).

A major assumption of this computation is that holding and shortage costs are linear,
i.e. carrying 100 boards costs twice as much as carrying 50 boards, and a stockout of five
boards costs five times as much as a stockout of one board.

Service levels calculated as above will almost always be lower than intended, as the
calculation does not take into account all the issues that affect customer perceptions,
such as the length of stockout periods. Plossl and Wight (1967, [59]) suggest that the
service level should be inflated to compensate for this phenomenom. However, they do
not suggest by how much.

In view of the above discussion, the specification by the management of Clickabox that
“95% of orders should be met within the specified time” is, in fact, a fill rate.

The above method was used to calculate a theoretically appropriate service level for each
stock board at Clickabox.

A number of additional assumptions are made for the purposes of this calculation:

1. Rental cost and the cost of insurance are assumed to be fixed costs; holding cost is
therefore only the opportunity cost defined in (5.4). Thus the assumption required
for the service level computation, i.e. that the holding cost is linear, is assumed to
hold.

2. The cost–of–capital–per–week rate is derived from the prime interest rate in South
Africa at time of writing, namely 17% per annum [62].

3. The shortage cost, defined in (5.7) are also assumed to be linear for the purpose of
the service level computation.
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4. It is assumed that the sub–optimal board used will be the board type, amongst
those having each dimension greater than or equal to those of the optimal board
type, that is closest in area to the optimal board type. This is a ‘best case’ scenario,
as this ‘second best’ board will not in reality always be available, and a different
board, associated with a higher wastage cost, would have to be used. The reader
should note that this is a simplifying assumption made in order to define a simple
linear shortage cost per board for the purposes of the service level calculations only.
As mentioned in §5.4, the modelling of the total shortage cost in a realistic manner
is more complex and will be discussed in detail later.

The ‘sub–optimal’ board types were determined by means of a program written by the
author in Visual Basic [50] and Microsoft Access [49]2. The program also takes into
account the possibility of using more than one board type, for example board type AC
2 300 × 1 200 cannot be substituted by a single board type, as there is no other stock
board type of length 2 300 or greater. This board is most efficiently substituted by two
boards of type AC1 250 × 1 300, joined lengthwise. The set of board types and their
sub–optimal board types are given in Appendix A.

The optimal service level is now calculated for board type AC 1 260×2 300, as an example.

Step 1: The optimal number of stockouts each year is given by

S∗(β) =
h(β)

s(β)

=
p(β)c

s(β)
(Assumption (1), Equation (5.4))

= p(β)c
A(β)

(A(k) − A(β))p(β)
(Assumption (3), Equation (5.7))

= 0.17× 2.898m2

0.23m2
, (Assumption (3))

= 2.14.

Thus the optimal number of stockouts is approximately two each year.

Step 2: The order quantity during each cycle is 1 000, as discussed in §3.5.1. The number
of order cycles each year is then

κ(β) =
D(β)

q(β)

=
38 315

1 000
= 38.32.

This gives an indication of the number of exposures to stockouts each year.

Step 3: The probability during each order cycle of a stockout is

S
(β)

=
S∗(β)

κ(β)

= 0.055 8.
2The relevant code is given in §C.2 of Appendix C
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Step 4: The probability of not stocking out is therefore

α(β) = 1− S
(β)

= 0.944 2.

Index Board Type Stockouts Order cycles Stockout probability Theoretical
per year per year per order cycle Service Level

1 AC 1 030 × 2 370 0.58 12.21 0.05 95.22%
2 AC 1 260 × 2 300 2.14 38.32 0.06 94.41%
3 AC 1 280 × 1 300 1.97 11.27 0.17 82.54%
4 AC 1 330 × 2 370 1.74 5.93 0.29 70.67%
5 AC 1 360 × 2 300 1.60 31.19 0.05 94.87%
6 AC 1 380 × 1 310 1.01 6.91 0.15 85.36%
7 AC 1 460 × 2 370 0.84 24.55 0.03 96.59%
8 AC 1 470 × 1 480 2.75 9.57 0.29 71.23%
9 AC 1 500 × 1 540 0.93 5.04 0.18 81.60%
10 AC 1 510 × 1 810 0.54 46.06 0.01 98.82%
11 AC 1 530 × 1 380 0.54 34.74 0.02 98.43%
12 AC 1 550 × 1 020 1.15 5.93 0.19 80.59%
13 AC 1 680 × 1 080 1.16 17.08 0.07 93.23%
14 AC 1 720 × 1 210 0.81 33.55 0.02 97.58%
15 AC 1 800 × 1 200 1.03 5.31 0.19 80.64%
16 AC 1 860 × 1 000 1.17 10.48 0.11 88.87%
17 AC 1 860 × 1 490 0.71 52.06 0.01 98.64%
18 AC 1 910 × 1 880 0.47 29.15 0.02 98.38%
19 AC 2 000 × 1 400 0.75 6.48 0.12 88.43%
20 AC 2 030 × 1 240 0.96 25.41 0.04 96.22%
21 AC 2 110 × 1 010 0.71 24.23 0.03 97.06%
22 AC 2 110 × 1 680 1.55 29.78 0.05 94.79%
23 AC 2 200 × 1 200 2.70 4.02 0.67 32.79%
24 AC 2 260 × 1 520 1.17 18.21 0.06 93.56%
25 AC 2 260 × 2 160 0.28 27.65 0.01 98.99%
26 AC 2 300 × 1 220 3.05 10.95 0.28 72.16%
27 AC 2 300 × 1 710 0.44 21.89 0.02 98.01%
28 AC 2 370 × 1 250 1.38 5.17 0.27 73.34%

Table 5.2: The optimal number of stockouts each year (S∗(β)), the number of order cycles

a year (κ), the probability during each order cycle of a stockout (S
(β)

), and the theoretical
service levels for each of the suggested AC Stock Boards to be kept in inventory.

The theoretical service level for board type AC 1 260 × 2 300 is therefore 94.42%. The
theoretical service levels for the other AC boards, calculated by the process detailed
above, are given in Table 5.2.

Note that for the board AC 2 200×1 200 a very close substitute, namely AC2 300×1 220,
is available with only 5.92% wastage. The cost of shortage is therefore quite low, and
so the optimal number of stockouts a year is high. This, along with a low demand and
therefore few order cycles a year, result in a service level of only 32.79%. In contrast,
board AC1 910× 1 880 has a 98.38% service level as the closest substitute is board type
AC2 260× 2 160, with a large wastage of 26.44%.

The average theoretical service level for AC boards is 87.61%, and the average theoretical
service level for DWB boards is 90.68%. The theoretical service levels for the DWB boards
are given in Table 5.3.

The fill rate used in this study is as specified by the factory director. There is currently
no record kept of the factory’s performance in terms of wastage loss and orders being
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Index Board Type Stockouts Order cycles Stockout probability Theoretical
per year per year per order cycle Service Level

29 DWB 1050 × 1 980 0.20 5.67 0.04 96.39%
30 DWB 1170 × 1 310 1.22 5.57 0.22 78.14%
31 DWB 1230 × 1 420 0.72 5.28 0.14 86.37%
32 DWB 1270 × 1 700 0.64 9.07 0.07 92.98%
33 DWB 1410 × 1 940 0.44 14.62 0.03 97.02%
34 DWB 1480 × 1 310 2.10 14.25 0.15 85.30%
35 DWB 1530 × 1 370 0.45 6.04 0.07 92.51%
36 DWB 1670 × 1 010 0.57 10.83 0.05 94.77%
37 DWB 1780 × 1 620 0.76 12.26 0.06 93.77%
38 DWB 1820 × 2 090 0.53 17.88 0.03 97.01%
39 DWB 1870 × 1 350 1.05 21.80 0.05 95.20%
40 DWB 2010 × 1 460 0.84 9.97 0.08 91.54%
41 DWB 2030 × 1 080 0.35 6.29 0.06 94.37%
42 DWB 2150 × 1 640 1.10 9.21 0.12 88.09%
43 DWB 2270 × 1 430 0.67 7.13 0.09 90.64%
44 DWB 2300 × 2 180 0.27 6.10 0.04 95.54%
45 DWB 2330 × 2 000 0.27 4.94 0.05 94.56%
46 DWB 2410 × 1 690 2.82 8.84 0.32 68.06%

Table 5.3: The optimal number of stockouts each year (S∗(β)), the number of order cycles

a year (κ), the probability during each order cycle of a stockout (S
(β)

), and the theoretical
service levels for each of the suggested DWB Stock Boards to be kept in inventory.

met; these figures were estimated by two methods. The first was by consultation with
the director of the factory, who is involved with all the operational aspects of the factory
and is perceived to have a good idea of the situation. The estimates provided by the
factory director were averages for all board types. The second method was by analysis
of data of orders placed and met during the time period 1 February 2001 — 31 January
2003. This was done for AC and DWB board types separately. These estimates are given
in Table 5.4.

Opinion of director Observed values Observed values Required
All AC DWB All

Orders met on time 90% ≥95%
Orders made with ideal board 80% 72.13% 74.27% n\a
Off–cut wastage 30% 29.76% 29.68% ≤15%

Table 5.4: Performance Measures

Note that, due to the nature of the data available, the number of orders processed with
ideal board is underestimated, as it is obtained by a count of only those orders made with
more than one board type, and does therefore not include those orders filled completely
with a sub–optimal board.

5.6 Optimal Control Policy

In this section an inventory model for Clickabox is derived for the case of non–stationary,
partially observed demand with a positive lead time, l. The demand during each week
may be generated by any one of a number of probability distributions. The probability
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distribution for the demand is determined by a Markov decision process. An expression
for the expected inventory cost for each week is derived, and then an optimal control
policy, which minimises this cost subject to the service levels derived in §5.5, is found.

5.6.1 Board Preference Vector Demand

The demand classes were defined in Chapter 4 to be seven ranges of values which may
be assumed by the demand process (see Figure 4.7). For the remainder of this chapter
the terms demand state and demand class will be used interchangeably, as each demand
class represents a state in the Markovian process. The demand state process for each
board preference vector, in other words the sequence of classes that may be taken on by
the demand distribution for each board preference vector vi, is not known with certainty.
It is modelled as a finite state Markov Chain, which may take on any one of a number of
states during each week t, indexed by the set K = {1, 2, . . . , 7}.
The demand class of board preference vector vi during week t is denoted by

d
vi
t , i ∈ V, t ∈ T . (5.12)

The Markov process is governed by a transition probability matrix, Pvi. Each time the
system is in class k (that is, if d

vi
t = k for some time t ∈ T ), there is a fixed probability

P
vi
k,j (the entry in row k and column j of a matrix of probabilities, Pvi) that it will next be

in class j (that is, d
vi
t+1 = j, t ∈ T \ {51}). These values, P

vi

k,j, are known as the transition
probabilities of the Markov chain,

P
vi
k,j = Pr

[
(d

vi
t+1 = j)|(dvi

t = k)
]
. (5.13)

The transition probabilities satisfy the conditions

P
vi
k,j ≥ 0 and

7∑
j=1

P
vi
k,j = 1, k, j ∈ K, i ∈ V. (5.14)

The transition probability matrices Pv1, . . . ,Pvμ are themselves assumed to be stationary.
Stationary demand for the board preference vector vi may be modelled by taking Pvi = I,
the identity matrix, whilst trends in demand for board preference vector vi may be
modelled by taking Pvi as an upper or lower triangular matrix.

The demand state process is partially observed and the observed demand for board pref-
erence vector vi up to the start of week t ∈ T is defined as the measurement process
{wvi

0 , . . . , w
vi
t−1}. The observed demand w

vi
t for board preference vector vi during week t

is the sum of all order quantities of orders placed during week t for sheets in S that may
be produced by boards indexed in vi. It is assumed, for expected optimal replenishment
purposes, that the best board in each board preference vector, that is the board vi,1, will
be used to fulfil an order. However, the inventory cost function will take into account
the shortage cost incurred when the demand must, to some extent, be met by boards vi,2

and vi,3, due to stockout.

As discussed in Chapter 4, the demand realisation process is characterised by a normal
distribution about the mean of each class. The demand realisation during a period
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is conditional on the current demand class. If dt = k, the probability distribution of
demand for board preference vector vi during week t is given by

Pr[(w
vi
t = z)|(dt = k)] = r

vi
k,z, k ∈ K, t ∈ T , z ∈ {0} ∪R

+, i ∈ V. (5.15)

5.6.2 Inventory Position

The quantity of the order placed by Clickabox at its suppliers during week t for board β
is denoted by q

(β)
t . The inventory position for board β at the start of period t is defined

as the net inventory level x
(β)
t (on hand inventory less backorders) added to the stock on

order at the beginning of week t, that is

u
(β)
t = x

(β)
t +

l∑
f=1

q
(β)
t−f , t ∈ T , β ∈ B. (5.16)

Here q
(β)
−1 , q

(β)
−2 , . . . , q

(β)
−l are assumed to represent orders placed during the l weeks immedi-

ately prior to the one year time window for which an optimal inventory policy is sought.
All orders placed within the lead time number of weeks before any week t are included in
the inventory position, as the demand considered in the inventory model is the lead time
demand. Under the assumption of timely delivery of raw materials orders, all these orders
will arrive within that lead time number of weeks, as measured from week t onwards.

The prior distribution, Π
vi
t , is a rectangular matrix characterising the current belief of

the distribution of the demand state d
vi
t , given the information available up to the start

of week t, that is

Π
vi
k,t = Pr[(d

vi
t = k)|It

vi ], t ∈ T , k ∈ K, i ∈ V, (5.17)

where I
vi
t is the vector of information available at the start of week t for board preference

vector vi. The initial prior distribution, Π
vi
k,0, is assumed to be externally specified, based

on market analysis and industry knowledge. The information vector I
vi
t is defined as

I
vi
0 = (Π

vi
1,0, Π

vi
2,0, . . . , Π

vi
7,0), (5.18)

together with

I
vi
t =

⎡
⎢⎢⎣

u
vi,1

0 . . . u
vi,1

t−1

u
vi,2

0 . . . u
vi,2

t−1

u
vi,3

0 . . . u
vi,3

t−1

w
vi
0 . . . w

vi
t−1,

⎤
⎥⎥⎦ , i ∈ V, t ∈ T \ {0} . (5.19)

At the start of any week t, the previous values of the order quantities placed, (q
(β)
t−1, q

(β)
t−2

, . . . , q
(β)
t−l), the current inventory level (x

(β)
t ) and the current inventory position (u

(β)
t ) are

assumed to be known for each board β ∈ B. Also known are the values of the prior
distribution Π

vi
j,t and the previous demand observations in the information matrix I

vi
t .

As discussed, optimal inventory management should allow for the best board associated
with a sheet to be available, on expectation. However, as a result of fluctuations in the
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actual demand this will not always be the case in reality. Observed demand for a board
during a week is the sum of the observed demand for each board preference vector in
which that board is the first choice, referred to as first level demand, added to the sum of
the vector demands where that board was a second choice (which could not be satisfied
by the first choice board), referred to as second level demand, and similarly where it was
the third choice, called the third level demand.

In order to determine the realised demand for a board, it must be decided how available
stock of a board will be allocated to board preference vector demand. In other words, if
there is insufficient stock of a board to fill all the demand for which it is the optimal board,
it must be decided which of the board preference vector demands will be supplied by the
first choice board. The remainder of the demand will be filled by the second or third
choice board. It is necessary to allocate available stock of a board to a specific board
preference vector demand as the sheet–to–board conversion factors differ for different
boards in a board preference vectors. As a result, different quantities of each board in
the board preference vector would be required to fill a demand.

The allocation is based on the wastage cost, associated with each board in each board
preference vector, incurred when a sub–optimal board is used. For the purpose of this
thesis, a greedy algorithm was adopted, which attempts to minimise the wastage cost
incurred by different allocations. Hence board allocation is conducted such that available
stock of the first choice board is first allocated to the board preference vector for which
the wastage cost of using the second choice board is the highest. Similarly, available stock
of the second choice board is first allocated to the board preference vector for which the
wastage cost of using the third choice board is the highest.

Define φi,f as the wastage cost incurred, per board, when the f–th best board in board
preference vector vi is used instead of the optimal board to meet a demand for board
preference vector vi, where f ∈ {2, 3}. This wastage cost is given by

φi,f = (Avi,f − Avi,1)÷ Avi,1 . (5.20)

Now the realised demand for board β during week t is given by

W
(β)
t =

[
W

(β)
t,1 ; W

(β)
t,2 ; W

(β)
t,3

]
, (5.21)

where

W
(β)
t,1 =

∑
vi,1=β

w
vi
t

m
(i,β)
t

(5.22)

W
(β)
t,2 =

b∑
k=1

⎡
⎢⎢⎢⎣
∑

vi,1=k

vi,2=β

⎛
⎜⎜⎜⎝ w

vi
t

m
(i,k)
t

−min

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

w
vi
t

m
(i,k)
t

, max

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x
(k)
t −

∑
φj,2>φi,2

vj,1=k;vj,2=β

w
vj

t

m
(j,k)
t

, 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

⎞
⎟⎟⎟⎠ m

(i,k)
t

m
(i,β)
t

⎤
⎥⎥⎥⎦

(5.23)
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W
(β)
t,3 =

b∑
k=1

⎡
⎢⎢⎢⎣
∑

vi,1=k

vi,3=β

⎛
⎜⎜⎜⎝ w

vi
t

m
(i,k)
t

−min

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

w
vi
t

m
(i,k)
t

, max

⎡
⎢⎢⎢⎣x

(k)
t + max

⎛
⎝x

vi,2

t −
∑

vm,1=vi,2

w
vm
t

m
(m,vi,2)
t

, 0

⎞
⎠

−
∑

φj,3>φi,3

vj,1=k;vj,3=β

w
vj

t

m
(j,k)
t

, 0

⎤
⎥⎥⎥⎦
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

⎞
⎟⎟⎟⎠× m

(i,k)
t

m
(i,β)
t

⎤
⎥⎥⎥⎦ (5.24)

for all t ∈ T , k, β ∈ B, and i ∈ V, where m
(i,β)
t represents the number of sheets, optimally

manufactured by board preference vector vi, that may be produced from board β in week
t.

The rationale behind these expressions is perhaps best explained by means of an example.

Consider the board preference vectors,

v1 =

⎡
⎣ b1

b2

b4

⎤
⎦, v2 =

⎡
⎣ b3

b1

b4

⎤
⎦, v3 =

⎡
⎣ b3

b1

b2

⎤
⎦, v4 =

⎡
⎣ b2

b1

b4

⎤
⎦, v5 =

⎡
⎣ b4

b2

b1

⎤
⎦, v6 =

⎡
⎣ b4

b3

b1

⎤
⎦,

with demands during week t of w
v1
t , w

v2
t , w

v3
t , w

v4
t , w

v5
t and w

v6
t respectively. Let the

inventory levels of the boards b1, b2, b3 and b4 at the start of week t be x
(b1)
t , x

(b2)
t , x

(b3)
t ,

and x
(b4)
t respectively. Now the first level demand for board b1, the sum of all the board

preference vector demands where vi,1 = b1, given by (5.22), is

W
(b1)
t,1 =

∑
vi,1=b1

w
vi
t

m
(i,b1)
t

=
w

v1
t

m
(1,b1)
t

. (5.25)

The second level demand for board b1 is the sum of all the board preference vector
demands where vi,2 = b1 and where the demand is not met by the best board in that
vector. This demand is calculated for each board type k, over all board preference vectors
for which vi,1 = k and vi,2 = b1, as the ‘left over’ demand to be met by board type b1

is dependent on the inventory level of each board k. The sum of all demands for board
preference vector vj where vj,1 = k, vj,2 = b1, and the shortage cost incurred by the
second best board in vj is higher than that incurred by the second best board in vi, is
subtracted from the inventory position of board k. The second level demand for board
b1, given by (5.23), is

W
(b1)
t,2 =

b4∑
k=b1

⎡
⎢⎢⎢⎢⎢⎢⎣
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⎜⎜⎜⎜⎜⎜⎝

w
vi
t

m
(i,k)
t

−min

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

w
vi
t

m
(i,k)
t

, max

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x
(k)
t −

∑
φj,2>φi,2

vj,1=k

vj,2=b1

w
vj

t

m
(j,k)
t

, 0
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⎪⎪⎪⎪⎪⎪⎭
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=
∑

vi,1=b2
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(5.26)

Note that the remaining demand for board k is converted from the number of boards
of board type k required to the number of board preference vectors vi required, by

multiplying by the factor m
(i,k)
t , and then to the number of boards of board type b1

required, by dividing by the factor m
(i,b1)
t .

The third level demand for board b1 is the sum of all the board preference vector demands
where vi,3 = b1 and the demand is not met by the best or second best board in the board
preference vector. A summation is performed for all boards k, over all board preference
vectors having vi,1 = k and vi,3 = b1. In this example, this applies to board b4, in

vectors v5 and v6. Available stock of the first choice board (x
(k)
t ) is added to the available

stock of the second choice board (given by the difference of the inventory position of
that board and the sum of all first level demand for that board). The sum of all board
preference vector demands incurring a higher shortage cost than that incurred by the
board preference vector under consideration is then subtracted, as this demand would be
given preference in being supplied. Finally, this is subtracted from the total demand for
that board preference vector, and converted to demand for board b1. Third level demand
is therefore given by
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(5.27)

Now suppose the inventory positions of the boards b1, b2, b3 and b4 at the start of week t
are as follows: x

(b1)
t = 10, x

(b2)
t = 12, x

(b3)
t = 8, and x

(b4)
t = 10, and the board factor and

demand realisation data for week t are as given in Table 5.5.
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v1 m
(1,β)
t v2 m

(2,β)
t v3 m

(3,β)
t v4 m

(4,β)
t v5 m

(5,β)
t v6 m

(6,β)
t

b1 1 b3 1 b3 2 b2 1 b4 1 b4 1
b2 2 b1 1 b1 2 b1 1 b2 4 b3 1
b4 1 b4 1 b2 1 b4 3 b1 3 b1 1

w
v1
t = 8 w

v2
t = 14 w

v3
t = 21 w

v4
t = 10 w

v5
t = 2 w

v6
t = 12

Table 5.5: Sheet–to–board conversion factors and board preference vector demand data
for an example of the calculation of realised demand for a board preference vector.

Furthermore, let the shortage costs φi,k for each of the second and third choice boards in
each board preference vector be as given in Table 5.6.

i → 1 2 3 4 5 6
k = 2 5 2 6 1 2 6
k = 3 8 3 8 5 4 10

Table 5.6: Shortage costs φi,k, representing the cost incurred when the k–th best board
in board preference vector i is used instead of the best board, for use in the example of
the calculation of realised demand.

Now the first level demand for board b1, given by (5.25), is

W
(b1)
t,1 =

w
v1
t

m
(1,b1)
t

= 8.

The second level demand, given by (5.26), is

W
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1
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1
+
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1
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1
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{
8− 21

2
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}})
× 1

1

+

(
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2
−min

{
21

2
, 8

})
× 2

2
= 16.5.

Note that there was sufficient stock of board b2 to fill the demand for board preference
vector v4, so there is no second level demand for board b2 for v4. However, there was
insufficient stock of board b3 to meet the combined demand for board preference vectors
v2 and v3, so the outstanding quantity must be met by board b1. The demand for board
preference vector v3 is met first, as it incurrs a higher shortage cost than board preference
vector v2. The sheet–to–board conversion factor indicates that two sheets of v3 may be
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produced from each board b3, so 10.5 boards are required. There is an on hand inventory
of 8, leaving a shortage of 2.5 boards to meet demand for board preference vector v3.
There is no remaining stock of board b3 to fill any of the demand for board preference
vectors v2, so the entire quantity of 14 becomes second level demand for board b1. Note
also that non–integer demand quantities are allowed, as values such as the sheet–to–board
conversion factors are averages over a week.

The third level demand, given by (5.27), is

W
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.

Note that of the demand of 14 for the two board preference vectors with b1 in third
position, a quantity of 10 was met by the optimal board b4, 2 by one of the second
best boards, b2, and none by the other second best board (b3). The remaining demand
quantity of 2 is the third level demand (in number of sheets) for board b1.

5.6.3 Shortage Cost Revisited

The total shortage cost Ψ(β) is given by the quantity of sheets that have to be manu-
factured by the second best board, if there is not a sufficient quantity of the best board
to fulfil an order, multiplied by the corresponding wastage, added to the quantity of
sheets that must be manufactured by the third best board, if there is not a sufficient
quantity of the second best board to fulfil the shortage, multiplied by the corresponding
wastage, added to the quantity of sheets that is backordered, multiplied by the cost of
backordering. The cost of backordering is represented by the shortage cost φj,4. It is
assumed that boards are first used to supply demand for the orders where they are the
first choice, then, if there are any remaining boards of this type in stock, they are used to
supply demand for orders for which they are the second choice, and finally for orders for
which they are the third choice. Priority is given to the supply of the first choice boards
for the board preference vectors which incur the highest wastage penalty when using the
second best board. Similarly, the demand for second best boards is prioritised in terms
of descending wastage costs, where the wastage cost refers to the cost of using the third
best board instead for that order.

The total shortage cost for board β is calculated, in view of equations (5.23) and (5.24),
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as
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for all t ∈ T , i ∈ V, β ∈ B. (5.28)

The calculation of realised demand and total shortage costs was implemented by means
of a greedy algorithm, which is described in detail in Appendix B.

5.6.4 Optimal Inventory Policy

The inventory control process begins with the information vector I
vi
t , and proceeds as

follows. The order placed the lead time l periods previously, if an order was placed,
is received. The demand w

vi
t occurs and inventory costs are incurred. The time index

advances to t + 1, and the demand state process advances from d
vi
t to d

vi
t+1, according

to the transition matrix Pvi . The posterior distribution, Π
vi
k,t+1, which will become the

prior distribution for week t + 1, is now computed. The likelihood of occurence of the
observed distribution is calculated as Pr[(w

vi
t = z)|(dvi

t = k)]Pr[(d
vi
t+1 = m)|(dvi

t = k)].
The likelihood function is multiplied by the prior distribution, and then the function is
normalized to obtain a unit probability over all possible demand states. This results in a
so–called transition function which is applied to determine the transition from the prior
distribution to the posterior distribution. The transition function Tm is given by

Π
vi
m,t+1 = Tm(Π

vi
k,t|I

vi
t )

=

∑N
k=1 Π

vi
k,tPr[(w

vi
t = z)|(dvi

t = k)]Pr[(d
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t+1 = m)|(dvi

t = k)]∑N
k=1 Π

vi
k,tPr[(w

vi
t = z)|(dvi

t = k)]
,

(5.29)
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for t ∈ T \ {51} , z ∈ N , k, m ∈ K, i ∈ V. This is written, using the notation in (5.14)
and (5.16), as

Π
vi
m,t+1 =

∑N
k=1 Π

vi
k,tr

vi
k,zP

vi
k,m∑N

k=1 Π
vi
k,tr

vi
k,z

, t ∈ T \ {51} , z ∈ N , k, m ∈ K, i ∈ V. (5.30)

The inventory position, defined in (5.16), follows the transition equation

u
(β)
t+1 = u

(β)
t + q

(β)
t −W

(β)
t,1 , t ∈ T \ {51} , β ∈ B, i ∈ V, (5.31)

where W
(β)
t,1 is the first level demand for board β in week t, as defined in (5.22). For an

inventory position u
(β)
t , a shortage cost Ψ(β) and a holding cost h(β), the single period

expected inventory cost function for board β is defined in [73] as

G
(β)
t (u

(β)
t ) = E

[
Ψ(β) + h(β) max

{
0, u

(β)
t − Ŵ

(β)
t,1

}]
, t ∈ T \ {51} , β ∈ B, (5.32)

where the first level demand for the lead time from week t onwards is given by Ŵ
(β)
t,1 =∑l

n=0 W
(β)
t+n,1, t ≤ 51 − l, and E[•] denotes the expected value operator. Only the first

level demand is considered as the model allows for the best board associated with a sheet
to be available, on expectation.

The total single period inventory cost function is defined as

H
(β)
t (u

(β)
t ) = G

(β)
t (u

(β)
t ) + p(β)q(β). (5.33)

Let ζt be the set of all possible lead time demand state sequences σ
vi
t = (d

vi
t , d

vi
t+1, . . . d

vi
t+l),

and define ζ
(i,k)
t =

{
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t = k, for all k ∈ K, t ∈ T , i ∈ V

}
. The probability

distribution for weekly demand for board preference vector vi was defined in (5.15) as
r

vi
k,z = Pr[(w

vi
t = z)|(dvi

t = k)]. The probability distribution for the lead time demand for
board preference vector vi is calculated over all possible demand state sequences, as the
probability of that sequence occuring, multiplied by the probability of an observed lead
time demand of z, given that sequence, i.e.
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∑
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vi
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t

Pr[σvi]Pr[(ŵ
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t ] for all t ∈ T \ {51} , i ∈ V, k ∈ K, (5.34)

where ŵ
vi
t is the lead time demand observations of board preference vector vi, i.e.

ŵ
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t+f for all t ≤ 51 − l, and Pr[σvi] = Pd
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is

the probability of demand state sequence σvi occurring.

Now let nk(σ
vi
t ) be the number of times that state k occurs in the sequence σ

vi
t , and

let χn
k denote the sum of n independent, identically distributed random variables with

distribution r
vi
k,z in state k ∈ K.

From these definitions, the lead time demand distribution, given the state sequence σ
vi
t ,

is given by

Pr[(ŵ
vi
t = z)|σvi] = Pr

[
k′∑

k=1

χ
nk(σvi )
k = z

]
for all t ∈ T , i ∈ V, k ∈ K, (5.35)
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which is calculated as a simple convolution of l + 1 independent random variables.

For example, given a lead time of 2 weeks, and two possible demand states, say k1 and
k2, the set of possible demand state sequences for k = k1 is ζ

(i,k1)
t = {(k1, k1), (k1, k2)}

and for k = k2 is ζ
(i,k2)
t = {(k2, k1), (k2, k2)}. Then
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k,z = Pr[(k1, k1)]Pr[(ŵ
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for all t ∈ T \ {51} , i ∈ V, k ∈ K. The demand realisation probabilities are given by
Pr[(ŵ
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t = z)|(k1, k1)] = Pr[χ2

k1
= z] and Pr[(ŵ

vi
t = z)|(k1, k2)] = Pr[χ1

k1
+ χ1

k2
= z].

If p(β) is the linear procurement cost per board of type β, as before, and y
(β)
t = u

(β)
t +q

(β)
t ,

then the total period cost to be minimised is the sum of the purchase cost p(β)q(β) and
the single period cost G

(β)
t (y

(β)
t ) defined in (5.32).

The dynamic programming recursion for the optimal inventory control policy is therefore

J
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}
(5.36)

for t = 0, . . . , T, where t = 0 indexes the first period and the sequence of calculations
occurs over T, T − 1, . . . , 1, 0 as noted in (2.11). The terminal cost function is defined as

J
(β)
T+1(u

(β)
T+1,ΠT+1) = −p(β)u

(β)
T+1.

Treharne and Sox [73] proved that the function Jt(ut,Πt) is nonincreasing and convex for
ut < St(Πt) and nondecreasing and convex for ut ≥ St(Πt), and therefore is convex for
all ut. This demonstrates the optimality of a state–dependant (s, S) policy in the case of
a positive ordering cost, and a base–stock policy in the absence of fixed ordering costs.

Hence there exists a pair of values
(
s
(β)
t (Πt), S

(β)
t (Πt)

)
that minimise the cost function

such that the optimal policy is

q
(β)
t =

{
S

(β)
t (Πt)− u

(β)
t , if u

(β)
t < s

(β)
t (Πt)

0, otherwise.
(5.37)

5.7 Sub–optimal Control Policy

Due to the intense computational requirements for determining an optimal solution to
the model developed in §5.6, it is necessary to consider sub–optimal control policies,
as alternatives. As discussed in §2.1, Treharne and Sox [73] compared a number of
sub–optimal policies, applicable to non–stationary, partially observed demand situations,
that may be computed more easily than the optimal policy, and found them to perform
relatively well. They made recommendations as to which sub–optimal policy should be
utilised, based on the trend and correlation of the demand data.

The trend of the demand data is calculated as

Trend(Pvi,Πvi) =
N∑
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N∑
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Π
vi
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kj υ
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j , k, j ∈ K, i ∈ V, (5.38)
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where υ
vi
j =

∑
k kr

vi
j,k is the mean of distribution j and P

(4)vi
ij is the four–step transition

probability from state i to state j, derived from the transition matrix defined in (5.12),
given by

P
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)
. (5.39)

The correlation of the demand data is given by
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Cov(w

vi
0 , w

vi
1 |Πvi)√

Var(w
vi
0 |Πvi)

√
Var(w

vi
1 |Πvi)

. (5.40)

This is found by the calculation of the covariance,
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for k, j ∈ K, i ∈ V, and of the variances,
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for k, j ∈ K, i ∈ V, where υ
vi(2)
j denotes the second moment of distribution j, i.e. υ

vi(2)
j =∑

k k2r
vi
j,k.

The trend and correlation of the board demand data were calculated for a number of the
board preference vectors. The results were varied for the trend, although the trend was
predominately positive. The correlation, however, was negative for all board preference
vectors tested. The results for five of the cases tested are given in Table 5.7. According
to Treharne and Sox’s study [73], this suggests the use of a myopic policy, as it is faster
than the other strategies, and almost always optimal for this class of problems.

Statistic B.P.V. 2 B.P.V. 6 B.P.V. 10 B.P.V. 11 B.P.V. 12
Trend −32.4 61.41 −217.39 −25.74 0.49
Covariance −4 056.41 –32 013.84 −2 853.15 −21 159.39 −0.56
Variance 1 32 576.86 623 853.81 198 827.48 154 340.59 31.16
Variance 2 19 251.29 590 892.87 7 025.28 91 157.74 60.92
Correlation −0.16 −0.05 −0.08 −0.18 −0.01

Table 5.7: Partial results of the trend and correlation analysis conducted on a sample
of board preference vectors, indicating the suitability of a myopic policy for adaptive
inventory control.

The myopic policy is a special case of the Limited Look–ahead Strategies. These control
policies find an optimal solution to the problem for a limited number of weeks into the
future, say ρ weeks, instead of for the whole future. The myopic policy minimises only
the current period costs, i.e. ρ = 0.
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For all limited look ahead policies, the transition equation Πt = T (Πt−1|wt−1) updates
the prior distribution at the beginning of week t. For the myopic policy, the objective is
defined as

Jt
L0

(ut,Πt) = minSt≥ut {c(St − ut) + Gt(St|Πt, l)} . (5.43)

5.8 Chapter Summary

A strategic mathematical model was developed in this chapter, aimed at assisting man-
agement at Clickabox in inventory replenishment decision making. The assumptions and
constraints under which the model was developed were discussed in §5.1 and §5.2 respec-
tively, and the costs incorporated in the model were defined in §5.3 and §5.4. Service
levels for the stock board types were derived in §5.5. A theoretical optimal control policy
was then derived in §5.6, based on the approach by Treharne and Sox, and finally a more
practical, sub–optimal control policy was described in §5.7.



Chapter 6

Model Results

The inventory model described in Chapter 5 was implemented in Visual Basic1 in the
form of a number of programs. These programs form a logical unit which is referred to
throughout this chapter generically as the simulation model, for the purposes of validation
and generation of results. The practical implementation of the simulation model is a
decision support system, in which an interface allows a user to select from a number of
possible simulations, based on the output required. The two principal outputs sought
from the simulation model were (i) a single set of static replenishment parameters, i.e.
a re–order and order–to level for each stock board that minimises expected one–period
costs and (ii) a dynamic set of re–order and order–to levels for each stock board that
minimises total expected cost each week for a given number of weeks.

The structure and basic elements of the simulation model are outlined in §6.1. In §6.2,
the model is shown to be reasonable by presentation of the results of testing the model
on four key conditions. The existence of a transient phase, before the system reaches a
steady state, is discussed in §6.3, and the Welch method is followed in order to determine
a truncation point for this transient phase. In §6.4 and §6.5 the results of the simulation
model are presented and discussed. Section 6.4 is devoted to the static single period
optimisation solution, giving the desired output outlined in (i) above. In §6.5 the dynamic
multiple period optimisation results are given, that is the desired output discussed in (ii)
above. Finally, in §6.6, the results of the model are compared and evaluated.

6.1 Structure of the Simulation Model

The simulation model developed consists of three basic elements, each of which will be
described in some detail in this section. These are an Access database, containing a
number of tables which store data and are updated dynamically during a simulation run;
a set of programs written in Visual Basic, based on the assumptions and logic established
in Chapter 5, which process the data in the database; and an interface to the programs,
which allows a user to select the type of simulation required.

1The relevant source code is given in Section C.6 of Appendix C.
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Figure 6.1: Decision Support System Initial Option Screen

6.1.1 Decision Support System Interface

The initial option screen of the decision support system developed for interactive use at
Clickabox is shown in Figure 6.1.

The basic options are to administer the stock profile — this includes adding or removing
stock board types and changing values such as the purchase cost of stock board — or to
run either a single or multiple period optimisation simulation.

6.1.2 Simulation Database

The data used by the simulation model are the matrices and distributions derived in
Chapter 4, that is the demand realisation distribution (given in §4.3.2.2), the transition
probabilities and sheet–to–board conversion factors (given in §4.3.2), as well as required
information about the stock, such as the board dimensions and unit purchase price. The
dimensions and ranks of boards kept in inventory are given in Tables 4.2 and 4.3, and
purchase and holding costs for each board were computed in (5.3) and (5.5) respectively.
This information is stored in tables in the Access database and referenced by the Visual
Basic code. The structure of the main tables in the database is given in Appendix C.

6.1.3 Program Code

The program code is included, with commentary, in Appendix C. The basic stages of the
single period optimisation are illustrated in Figure 6.2. Each of these stages represents a
program which is executed in sequence, reading and ammending the database.

The simulation model calculates the total cost incurred for each board type for all po-
tential values of the re–order level s and the order–to level S. For practical2 and com-

2It was decided, by consultation with the director of Clickabox [70], that orders from the supplier
should be placed in multiples of 100, so as not to complicate practical issues such as bundling and stock
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Initialise ←− ←− ←− ←−
↓

Determine Stock on Order←− ↑
↓ ↑ Loop until Repeat
Demand Realisation ↑ Steady State ↑ for each
↓ ↑ Reached potential

Advance Demand State −→ ↑ (s,S)
↓ pair

Calculate Costs −→ −→ −→

Figure 6.2: Stages of the Single Period Optimisation Simulation

putational purposes, these calculations were performed in steps of 100 for both values.
Potential values for the order–to level S range from the quantity (s + 100) to the upper
limit of the spatial constraint for the board type and rank in question, as given in Table
5.1(b). The cost incurred by each potential pair of replenishment parameters, for each
stock board type, is written to a table in the database, and the least cost solution is
extracted by means of a query. Each repetition of the entire process is referred to as an
iteration.

The basic stages of the multiple period optimisation are illustrated in Figure 6.3. Note
that, due to its different application as a planning device to be used in a specific situation,
compared to the single period model which minimises costs on average, the model begins
in a specified demand state. It is not necessary to bring the dynamic model into a steady
state. The stages illustrated in Figure 6.3 are repeated for the number of weeks for which
the projection is required, for each stock board.

Initialise → Calculate Costs →Repeat for each (s, S) pair
↓
Select Minimum Cost Alternative
↓

Determine Stock on Order
↓
Demand Realisation
↓

Advance Demand State

Figure 6.3: Stages of the Multiple Period Optimisation Simulation

6.1.4 Decision Support System Output

The output generated by the single period model is a list of suggested replenishment
parameters for each of the board types investigated. An example of the output generated

checking.
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Figure 6.4: Decision Support System Output Screen: Single Period Optimisation

Figure 6.5: Decision Support System Output Screen: Dynamic Optimisation

by the decision support system for the single period optimisation is shown in Figure 6.4.
An option is available to store the results obtained in the stock table for future use or
application in the dynamic model.

The output generated by the dynamic model, namely a list of the suggested (s, S) pairs
for each of the specified number of weeks, for each board type selected, is illustrated in
Figure 6.5.

6.2 Model Validation

A simulation model may be validated against the following factors [10]:

• Continuity: Small changes made to input parameters should be reflected by corre-
spondingly small changes in the model output.

• Consistency: Model output should not vary significantly if the model is run through
a number of iterations under slight changes (such as a change in the random number
generator seed).
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• Degeneracy: The model should be shown to perform differently with the removal
of one or more features of the model, such as resources. If, for example, one of
two output–generating resources is removed, the output of the system should be
reduced, and overloading of the remaining resource could occur.

• Absurd conditions: Absurd conditions introduced to the model should not neces-
sarily produce absurd results; variables should always remain within their range
definition.

A number of tests were conducted to ensure that the model developed conforms to all
of the above mentioned conditions. These tests were conducted against the single period
model, as it generates results which can more easily be evaluated against these conditions
than those generated from the dynamic model. The validation applies, however, to both
models, as the components of and logic behind the programs are the same.

6.2.1 Continuity

The continuity of the model was tested by varying the initial stock level used in the
simulation, and confirming that the ouput converges to similar results. The initial stock
level in the simulation model was assumed to be a half of the order–to value, and the
initial stock on order was taken to be zero. This approximation is compensated for in
the model by discarding the output from the first few steps in the simulation, until the
situation stabilizes, as will be discussed in some detail later. The single period simulation
model, which determines the optimal replenishment parameters for each board, was run
five times, each time altering the parameters of the model by making a small change to
the initial stock level. The initial stock levels used were 0.9I, 0.95I, I, 1.05I and 1.1I,
where I represents half of the order–to value. The resulting holding and purchase costs
for each of 52 successive weeks for each of the five simulations, are shown in Figure 6.6.

Figure 6.6 illustrates that the holding and purchase cost curves for each simulation run
fall within the same range. This establishes continuity in the model.

6.2.2 Consistency

The consistency of the model was verified by an analysis of the output of the single
period optimisation, in which the model was run through 1 000 iterations, and the random
number generator seed was changed at each iteration. In each iteration, the simulation
model was brought to a steady state, and then the minimum total single period cost was
calculated. The minimum total costs for the first 100 iterations3 for two of the board
types are shown in Figure 6.7(a). The holding cost over all boards for the first 100
iterations is shown to be consistent in Figure 6.7(b).

The mean of the holding cost over all boards for the 100 iterations shown in Figure 6.3(b)
is 20 202.41, and the standard deviation is 352.107. The mean is therefore two orders of

3For practical reasons only the first 100 of the 1 000 iterations are shown on the graph.
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(a) Holding Cost as a function of time over all boards

(b) Purchasing Cost as a function of time over all boards

Figure 6.6: Holding and purchasing costs for five different initial stock levels: 0.9I, 0.95I, I,
1.05I and 1.1I, where I represents half of the order–to value. This demonstrates continuity
in the simulation model.
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(a) Minimum total period cost for 100 iterations of the simulation model for
boards 30 and 32

(b) Holding Cost over all boards for 100 iterations

Figure 6.7: The consistency of the model is shown in that the minimum total period
costs for boards and the total holding cost fluctuate within a restricted range, over 100
iterations in which only the random generator seed was changed.
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magnitude larger than the standard deviation, which indicates that the expected value
is a good measure of expectation, and demonstrates the consistency of the model.

6.2.3 Degeneracy

The non–degeneracy of the model was verified by the observation that a reduction in
the number of different board types kept in stock results in an increase in the shortage
cost incurred. This was tested by progressively decreasing the number of boards kept
in inventory (achieved programatically by setting the stock level of certain stock boards
to zero), and running the single period optimisation model to calculate the single period
shortage costs incurred each time. The results, illustrating the non–degeneracy of the
model, are shown in Figure 6.8.

Figure 6.8: Illustration of the non–degeneracy of the simulation model. Note that the
single period shortage cost increases with the reduction of the number of board types
available.

6.2.4 Absurd Conditions

Conditions were set in the programming of the model to ensure that variables were not
permitted to vary outside of their defined range. Particularly, the probability realisations
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are strictly controlled by “if. . .then” statements4 so that only the values specified may
occur. All variables are initialised to zero, or an appropriate initial value, and terminating
conditions are set on all loops. Furthermore, data types are specified in the Access tables,
so all data stored or retrieved is done so in a set format (i.e. integer, decimal with a set
number of decimal places etc.).

6.3 Determination of Simulation Truncation Point

An important feature of a non–terminating stochastic model is the presence of a transient
phase, which introduces bias into the statistics [10]. This phenomenon is accommodated
by determining a truncation point, at which the transient phase ends and the steady state
behaviour of the system begins. All data that had been collected up to the truncation
point was discarded to eliminate bias. The truncation point was determined by means of
the well–known Welch method, which is outlined below.

1. Perform n replications (n > 5) of length m of the simulation, where the length
represents the number of periods into the future for which costs are calculated.
Define Xji as the i–th observation in replication j for all j = 1, 2, . . . , n and all
i = 1, 2, . . . , m.

2. Determine the averages Xi =
∑n

j=1
Xji

n
for i = 1, 2, . . . , m. The averaged process

reduces the variance to 1
n

of the original variance.

3. Determine the moving average X i(w), where w is the window length such that
w ≤ m

2
, as

X i(w) =

⎧⎨
⎩

∑w
s=−w Xi+s

2w+1
if i = w + 1, . . . , m− w∑i−1

s=−(i−1)
Xi+s

2i−1
if i = 1, . . . , w.

(6.1)

4. Plot X i(w) for i = 1, 2, . . . , m−w, and choose the truncation point to be the value
of i beyond which Xi(w) appears to have converged.

The Welch method was applied to the simulation model, where the values of Xji represent
the value of the total cost function (5.33) in each observation i (made in subsequent weeks)
of each replication j of the model. Step 4 of the Welch method is illustrated in Figure
6.9, showing the system to enter into a steady state in week four. The simulation model
was therefore run for four time periods before the calculation of period costs, for both
the single and multiple period solutions.

4The program code referenced is contained in Appendix C.6.
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Figure 6.9: Determination of the truncation point, at which the system enters into a
steady state, by means of the Welch method. The total cost function in (5.33) is shown
to converge to a steady state, for both a window period of one and two weeks, by week
four.

6.4 Single Period Optimisation Results

The simulation model was run for 1 000 iterations. An iteration is a simulation of demand
for a four week time period. In each iteration the total cost incurred in the fourth week
of the simulation was calculated (for each stock board), for each set of re–order point
and order–to levels. The fourth week was used as it was shown in §6.3 that it is in the
fourth period that the system enters into a steady state. The steady state was attained
by stepping four times through the inventory control process, updating data pertaining
to demand state, inventory levels etc., as described in §5.6.4, by application of equations
(5.29), (5.30) and (5.36). The expected period cost for the fourth week was then calculated
by equation (5.32). The expected period cost for each set of re–order point and order–to
levels was averaged over all iterations, and those parameters that minimise, on average,
the expected total cost in the fourth week were selected. The results of this simulation,
presented as a suggested re–order point and order–to level pair for each stock board, are
shown in Table 6.1. The simulation was run on a Pentium I, with a processing speed
of 400MHz and 32MB of RAM, and each iteration took approximately 15 minutes to
execute.
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Board Type Re–order Order–to
Point Level

AC 1 030 × 2 370 800 1 200
AC 1 260 × 2 300 900 1 600
AC 1 280 × 1 300 900 1 500
AC 1 330 × 2 370 800 1 100
AC 1 360 × 2 300 1 000 1 600
AC 1 380 × 1 310 1 000 1 700
AC 1 460 × 2 370 800 1 600
AC 1 470 × 1 480 1 000 1 500
AC 1 500 × 1 540 900 1 100
AC 1 510 × 1 810 100 200
AC 1 530 × 1 380 900 1 700
AC 1 550 × 1 020 1 000 1 500
AC 1 680 × 1 080 1 400 1 800
AC 1 720 × 1 210 900 1 200
AC 1 800 × 1 200 1 000 1 200
AC 1 860 × 1 000 900 1 700
AC 1 860 × 1 490 800 1 100
AC 1 910 × 1 880 800 1 300
AC 2 000 × 1 400 800 1 600
AC 2 030 × 1 240 1 000 1 400
AC 2 110 × 1 010 1 100 1 600
AC 2 110 × 1 680 1 200 1 600
AC 2 200 × 1 200 800 1 700
AC 2 260 × 1 520 800 1 500
AC 2 260 × 2 160 1 000 1 400
AC 2 300 × 1 220 1 000 1 400
AC 2 300 × 1 710 800 1 000
AC 2 370 × 1 250 200 900

(a) AC Boards

Board Type Re–order Order–to
Point Level

DWB 1480 × 1 530 100 200
DWB 1780 × 2 150 700 900
DWB 1820 × 2 300 600 800
DWB 1050 × 1 820 300 700
DWB 1230 × 1 270 600 900
DWB 1270 × 1 410 200 600
DWB 1170 × 1 230 500 600
DWB 1410 × 1 820 400 800
DWB 1530 × 1 780 700 900
DWB 1670 × 2 030 100 200
DWB 2010 × 2 150 300 700
DWB 2150 × 2 410 400 900
DWB 2030 × 2 270 500 600
DWB 2330 × 1 820 200 700
DWB 1870 × 2 010 100 200
DWB 2270 × 2 410 400 800
DWB 2410 × 1 270 100 700
DWB 2300 × 2 410 400 900

(b) DWB Boards

Table 6.1: Results of the single period optimisation, showing the re–order point and
order–to level for each stock board that minimises total cost in (5.32).

6.5 Multiple Period Optimisation Results

The second objective was to provide a facility by which to obtain a dynamic set of replen-
ishment parameters for each board, for multiple periods into the future. The model takes
as input the current inventory position and the number of look–ahead periods required.
The results presented in this section were obtained from a simulation run for a four week
period. The output of the simulation run is a set of replenishment parameters for each
stock board which minimises the one period look ahead cost function in (5.32) for each
of four successive weeks. These calculations are based on the assumption that the other
boards are replenished according to the stationary replenishment parameters calculated
for each board in §6.4. This assumption was necessary as a result of the computational
complexity of the problem, as the expected cost of each set of replenishment parameters
for each board type is dependant on the replenishment parameters for all other board
types. The viable alternatives were to calculate a set of replenishment parameters for
each week to be applied uniformly to all board types, or to calculate the optimal dynamic
replenishment parameters for each board type individually, whilst assuming some static
re–order and order–to values for all other board types. The latter option was selected
as being more practical, and the static re–order and order–to values taken to be the
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parameters calculated in §6.4.

The initial inventory positions and demand states were set, and then the set of replen-
ishment parameters that minimise the one period look ahead cost function was selected.
The system then advanced to the next demand state, and inventory levels were adjusted,
based on these optimal replenishment parameters. Expected cost for the following period
was then calculated for all potential replenishment parameters. The replenishment pa-
rameters that minimise expected total cost for the following week were selected, and the
cycle was repeated for four weeks. The simulation was again run on a Pentium I, with
a processing speed of 400MHz and 32MB of RAM, and each step (generating the results
for one board type) took approximately 3.5 hours to execute.

The resulting set of suggested weekly replenishment parameters for one AC stock board
type and one DWB stock board type are given in Table 6.2(a) and (b), and illustrated
in Figure 6.10(a) and (b). The results for all board types are given in Appendix F.

Week Re–order Point Order–to Level
1 500 900
2 700 1 200
3 600 1 400
4 700 1 000

(a) Board Type 11 (AC)

Week Re–order Point Order–to Level
1 200 500
2 100 200
3 200 300
4 100 200

(b) Board Type 46 (DWB)

Table 6.2: Results of the multiple period optimisation, showing the optimal re–order
point and order–to level for each of four successive weeks for board types 11 (an AC
stock board) and 46 (a DWB stock board).

This model can be run for any time period from any given week. Data from the previous
week’s demand — that is inventory levels, stock on order, and demand state — may be
provided as input to the model, and then the model may be solved to generate a set of
suggested replenishment parameters for the selected number of periods ahead. This is
done for each board under the assumption that the other boards are replenished according
to the stationary replenishment parameters given in Table 6.1 (a) and (b).

6.6 Evaluation of Results

The average theoretical service levels established in §5.5 were 87.61% for AC boards
and 90.68% for DWB boards. The expected service levels, based on the single period
optimisation, are 99.67% for AC boards and 91.61% for DWB boards. These service
levels represent the percentage of orders expected to be met by stock boards with less
than 15% wastage. The expected average service level over all board types is 96.52%.
The model results therefore conform to the objectives specified in §1.2, for the set of
random orders generated in the simulation.

Two estimates of the expected value of stock in inventory were used to gauge the difference
in expected stockholding between the previous and suggested replenishment policies. The
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(a) Board Type 7 (AC)

(b) Board Type 29 (DWB)

Figure 6.10: Suggested dynamic replenishment parameters for one AC and one DWB
stock board, giving the re–order and order–to value for each of four successive weeks.

first was the midpoint between the re–order point and the order–to level, measuring
the average expected stock level, and the second was the order–to level, measuring the
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maximum stock levels. The expected stockholding based on the stationary replenishment
values given in Table 6.1 (a) and (b) was then compared to the expected stockholding
based on the previous replenishment policy discussed in §3.5.1. The results were a 38%
reduction in average stock levels for AC board types and a 22% reduction in the average
stock levels for DWB board types.

6.7 Chapter Summary

The implementation of the inventory model derived in Chapter 5 was described in this
chapter. The components of the model were discussed in §6.1, and the validation of
the model under four key conditions was detailed in §6.2. The determination of the
truncation point of the transient phase of the simulation by means of the Welch method
was discussed in §6.3. The results of the model, comprising a stationary suggested set
of replenishment parameters for each board type, and a dynamic, multiple period, set of
replenishment parameters to be used for each board type, were then given in §6.4 and §6.5
respectively. The results of the model were evaluated in §6.6 with respect to previous and
current practice at the factory. The model inventory was found to perform at an average
expected service level of 96.52% and at a reduction in stockholding of approximately 28%.



Chapter 7

Conclusion

The problem of inventory control in an environment characterised by non–stationary,
partially observed demand and cascading product substitution was considered in this
thesis. This is a combination of factors which, to the author’s knowledge, has not yet
been dealt with in the literature. The inventory model developed was implemented at
Clickabox, a cardboard box manufacturing company in the South African Western Cape.
The objective of this model was to minimise stock holding costs, subject to a service level
of 95% of orders being met by suitable stock boards in inventory, and to a maximum
raw material offcut wastage of 15% of the stock board ordered. The deliverables of the
study were a suggested stock profile to be kept in inventory, and a computerised decision
support system to aid in future replenishment decisions at Clickabox.

7.1 Summary of What Has Been Achieved

Apart from the introductory chapter, in which Clickabox factory was introduced infor-
mally and an informal problem description given, and this chapter (the conclusion) this
thesis comprises a further five chapters.

Chapter 2 contains a brief overview of the vast body of inventory control literature avail-
able, paying particular attention to the nature of the demand process in models. The
inventory control literature stemming from the foundational work of Arrow, et al. (1951,
[3]) and Karlin and Scarf (1958, [39]) is categorized according to the type of demand
studied, that is stationary or non–stationary, and whether it is fully or partially ob-
served. A number of important concepts in inventory modelling, related to the situation
at Clickabox, were also discussed. These are the concept of Markovian–modulated de-
mand, cascading product substitution, lead time, the handling of stockout situations, and
the value of advance demand information.

Chapter 3 contains a detailed examination of Clickabox factory. The layout, products and
processes followed at the factory were described, in order to provide the reader with an
understanding of the environment in which the study was conducted. The financial situ-
ation and business objectives of the company were discussed, highlighting the importance
of efficient inventory control practices at the factory.
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The focus of Chapter 4 was on the demand process at Clickabox. The demand data
available were described, and then, based on these historical data, an investigation was
conducted into a suitable stock profile to be kept in inventory. This was acheived by
conducting an ABC analysis on the different cardboard types, through which the two
cardboard types of the highest financial importance were identified. Restrictions on
the dimensions of stock board types were established, and a heuristic was developed
to obtain a suitable set of stock boards to be kept in inventory, based on historical
demand. This suggested stock profile has been implemented with success at Clickabox.
The concept of a board preference vector was then introduced, in order to incorporate
the cascading product substitution that occurs at Clickabox into the modelling of the
demand process. The board preference vectors were determined, and an analysis of the
demand for each of these board preference vectors was conducted. Based on this analysis,
demand was categorised into classes, and the various probability distributions required
for the modelling of the demand process were derived.

Chapter 5 opened with the introduction of a number of general modelling assumptions,
a description of the spatial constraints at the warehouse, and a discussion of the various
inventory costs. A separate section was devoted to an investigation into service level
measures, in which theoretically appropriate service levels were calculated for each stock
board at Clickabox. A theoretical optimal control policy was then derived for the case
of non–stationary, partially observed demand, modelled as a finite state Markov Chain.
Finally, a sub–optimal control policy, which is more practical with respect to computa-
tional requirements, was developed. The objective of this policy is the minimization of
expected tied–up inventory capital subject to an acceptable level of offcut wastage costs,
whilst satisfying the given service level requirements.

The inventory model derived in Chapter 5 was then implemented in the form of a simula-
tion model. The structure and results of the simulation model were described in Chapter
6. A number of conditions were tested in order to establish the validity of the simulation
model. The truncation point, at which the simulation enters into a steady state, was also
determined. Two major results obtained by the simulation model were presented.

The first was a stationary set of suggested replenishment parameters for each board
type. These suggested replenishment parameters were obtained by repeatedly bringing
the system into a steady state and calculating the expected single period cost of each
potential set of replenishment parameters, for each board. The result is, for each board,
the re–order level and order–to point that obtain, on average, the lowest expected single
period total cost. These results are given in Table 6.1.

The second result was a dynamic, multiple period set of replenishment parameters, for
each board type. These are the re–order levels and order–to points for each stock board
which minimise the one period look–ahead cost function for each of four successive weeks.
The model takes as input the current inventory position and the number of look–ahead
periods required. The results, as presented in Table 6.2 and Figure 6.5, were obtained
from simulation runs for a four week period.

These results allow for two possible implementations. Implementation of the stationary
replenishment policy, where the re–order level and order–to point for each board calcu-
lated in §6.5 are used during each period, is a simple option, which minimises expected
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total cost on average. The parameters may be re–calculated, say on a bi–annual basis,
to allow for changes in customer requirements. The second option is the dynamic re-
plenishment policy, in which the replenishment parameters are calculated for a specified
number of periods in advance, such as for a month in advance. This policy may also be
re–calculated as new customer requirements become known.

Finally, the results obtained were evaluated, in terms of the objectives specified in §1.2,
and the effect of the suggested replenishment policy on expected inventory levels was
discussed. The inventory model was found to perform at an average expected service
level of 96.52% of orders met with a raw material offcut wastage of less than 15% of the
board ordered, and at a reduction in stockholding of approximately 28%, based on data
for the period 1 February 2001 — 31 January 2003.

7.2 Further Work

In view of current levels of inflation, it would be valuable to consider its effect on inventory
policies. Wirth (1987, [82]) discussed a model in which the cost of capital is reduced by
the rate of inflation to give a more accurate discount rate to be used in the calculation
of the optimal re–order quantity.

The approach taken in this thesis was to determine a single, static, stock profile, and
then a replenishment policy based on this profile. Due to the cyclical behaviour of certain
sources of demand, such as demand for the packaging of agricultural produce, it would
be beneficial to consider a policy that allows for dynamic stock board selection. Such a
strategy would involve determining an optimal stock board profile at any stage, and then
selecting a replenishment policy based on that stock board profile. It would, however,
also be necessary to take into account the logistical issues arising from a changing stock
profile.

Another area of potential study, an investigation into the expected value of advance
demand information, was mentioned in §2.2.5. This is, in fact, an area that has been
highlighted by the director of Clickabox as a business need [70], as it would enable the
company to develop an appropriate reward scheme for customers with regular ordering
patterns.

The existence of supplier–imposed minimum order quantity specifications was mentioned
in §3.5. These restrictions are specific to the current supplier and subject to change, and
so were not included in the model. However, it is noted as an area of potential further
study, particularly as a means to compare the benefits of two or more suppliers with
different restrictions, in terms of expected penalty costs and stockholding.
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Appendix A

Suggested Stock Boards

Stock Sub–optimal Board Wastage Board
Board Type Board Type factor Percentage Volume (m3)
AC 1 030 × 2 370 AC 1 330 × 2 370 1 22.56% 1.074×10−3

AC 1260 × 2 300 AC 1 360 × 2 300 1 7.35% 1.275×10−3

AC 1280 × 1 300 AC 1 380 × 1 310 1 7.95% 7.322×10−4

AC 1330 × 2 370 AC 1 460 × 2 370 1 8.90% 1.387×10−3

AC 1360 × 2 300 AC 1 460 × 2 370 1 9.60% 1.376×10−3

AC 1380 × 1 310 AC 1 530 × 1 380 1 14.38% 7.954×10−4

AC 1460 × 2 370 AC 1 720 × 1 210 2 16.87% 1.522×10−3

AC 1470 × 1 480 AC 1 500 × 1 540 1 5.82% 9.573×10−4

AC 1500 × 1 540 AC 1 510 × 1 810 1 15.48% 1.016×10−3

AC 1510 × 1 810 AC 1 910 × 1 880 1 23.89% 1.203×10−3

AC 1530 × 1 380 AC 1 860 × 1 490 1 23.81% 9.290×10−4

AC 1550 × 1 020 AC 1 680 × 1 080 1 12.86% 6.956×10−4

AC 1680 × 1 080 AC 1 720 × 1 210 1 12.82% 7.983×10−4

AC 1720 × 1 210 AC 2 030 × 1 240 1 17.32% 9.157×10−4

AC 1800 × 1 200 AC 2 030 × 1 240 1 14.19% 9.504×10−4

AC 1860 × 1 000 AC 2 110 × 1 010 1 12.72% 8.184×10−4

AC 1860 × 1 490 AC 2 260 × 1 520 1 19.32% 1.219×10−3

AC 1910 × 1 880 AC 2 260 × 2 160 1 26.44% 1.580×10−3

AC 2000 × 1 400 AC 2 260 × 1 520 1 18.49% 1.232×10−3

AC 2030 × 1 240 AC 2 370 × 1 250 1 15.03% 1.108×10−3

AC 2110 × 1 010 AC 2 200 × 1 200 1 19.28% 9.377×10−4

AC 2110 × 1 680 AC 2 300 × 1 710 1 9.87% 1.560×10−3

AC 2200 × 1 200 AC 2 300 × 1 220 1 5.92% 1.162×10−3

AC 2260 × 1 520 AC 2 300 × 1 710 1 12.66% 1.511×10−3

AC 2260 × 2 160 AC 2 300 × 1 710 2 37.94% 2.148×10−3

AC 2300 × 1 220 AC 2 370 × 1 250 1 5.28% 1.235×10−3

AC 2300 × 1 710 AC 1 510 × 1 810 2 28.05% 1.731×10−3

AC 2370 × 1 250 AC 1 280 × 1 300 2 10.98% 1.304×10−3

Table A.1: AC Stock Boards and the corresponding sub–optimal board types, which
would be used to meet orders for that board type if there were no stock available of the
optimal board type, for the purposes of the calculation of theoretical service levels in §5.5.
Also given are the board–to–board conversion factors, i.e. the number of the sub–optimal
board type that are required to produce a board of the optimal board type dimensions,
and the wastage incurred when the sub–optimal board type is used.
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Stock Sub–optimal Board Wastage Board
Board Type Board Type factor Percentage Volume (m3)
DWB 1480 × 1 530 DWB 1530 × 1 370 1 7.50% 1.720×10−3

DWB 1780 × 2 150 DWB 2150 × 1 640 1 18.22% 2.908×10−3

DWB 1820 × 2 300 DWB 2300 × 2 180 1 24.14% 3.181×10−3

DWB 1050 × 1 820 DWB 1820 × 2 090 1 45.34% 1.452×10−3

DWB 1230 × 1 270 DWB 1270 × 1 700 1 19.10% 1.187×10−3

DWB 1270 × 1 410 DWB 1410 × 1 940 1 21.07% 1.360×10−3

DWB 1170 × 1 230 DWB 1230 × 1 420 1 12.25% 1.093×10−3

DWB 1410 × 1 820 DWB 1820 × 2 090 1 28.09% 1.950×10−3

DWB 1530 × 1 780 DWB 1780 × 1 620 1 27.31% 2.069×10−3

DWB 1670 × 2 030 DWB 2030 × 1 080 1 23.07% 2.576×10−3

DWB 2010 × 2 150 DWB 2150 × 1 640 1 16.77% 3.284×10−3

DWB 2150 × 2 410 DWB 2410 × 1 690 1 13.43% 3.937×10−3

DWB 2030 × 2 270 DWB 2270 × 1 430 1 32.46% 3.502×10−3

DWB 2330 × 1 820 DWB 1820 × 2 090 2 38.75% 3.222×10−3

DWB 1870 × 2 010 DWB 2010 × 1 460 1 13.97% 2.856×10−3

DWB 2270 × 2 410 DWB 2410 × 1 690 1 20.30% 4.157×10−3

DWB 2410 × 1 270 DWB 1270 × 1 700 2 5.68% 2.326×10−3

DWB 2300 × 2 410 DWB 2410 × 1 690 2 38.45% 4.212×10−3

Table A.2: DWB Stock Boards and the corresponding sub–optimal board types, which
would be used to meet orders for that board type if there were no stock available of the
optimal board type, for the purposes of the calculation of theoretical service levels in §5.5.
Also given are the board–to–board conversion factors, i.e. the number of the sub–optimal
board type that are required to produce a board of the optimal board type dimensions,
and the wastage incurred when the sub–optimal board type is used.



Appendix B

Realised Demand and Shortage Cost

This appendix contains the algorithm used in the calculation of realised demand and
shortage costs, as referenced in §5.6.3. This procedure is followed each week for each
board β for which the following condition holds:

∑
vi,1=β w

vi
t /m

(i,β)
t < u

(β)
t . In other

words, the shortage cost is calculated for each board for which there is not sufficient
stock on hand in the current period to fulfil all demand for the board preference vectors
in which it is the optimal board.

The following procedure is conducted for each board β, during each week t.

Step 1 : Determine the demand to be met with the best board, that is, the orders that would
incur the highest cost should the second best board be used instead of the optimal
board. Select the board preference vector vi for which the following conditions hold:

vi,1 = β,

φi,2 = max {φj,2 : j ∈ V} ,
w

vi
t > 0.

Now set wvi ← max
{

w
vi
t −m

(i,β)
t u

(β)
t , 0

}
and u

(β)
t ← max

{
u

(β)
t − w

vi
t /m

(i,β)
t , 0

}
.

Repeat this sequence until u
(β)
t = 0 or

∑
vi,1=β w

vi
t /m

(i,β)
t = 0.

Step 2 : Determine the demand to be met with the second best board, that is, the orders
that would incur the highest cost should the third best board be used instead of the
second best board. This step is executed for each of the second best boards, in board
preference vectors with a positive demand, which have β as the optimal board. In
other words, each board j is selected for which the following conditions hold:

vi,1 = β,
vi,2 = j,
w

vi
t > 0.

⎫⎬
⎭ (B.1)
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Execute the following for each such board j:

a. Set u
(j)
t ← max

{
u

(j)
t −

∑
vi,1=j w

vi
t /m

(i,β)
t , 0

}
, as board j is first used to sat-

isfy its first level demand before satisfying the second level demand of board β.

b. If
∑

vi,1=β,vi,2=j w
vi
t /m

(i,β)
t ≤ u

(j)
t , all demand can be met with the second best

board. Therefore the quantity of unmet demand is reduced, the inventory level
of board k is reduced, and the shortage cost is set. Therefore set

w
vi
t ← wvi −

∑
vi,1=β,vi,2=j

w
vi
t /m

(i,β)
t ,

u
(j)
t ← u

(j)
t −

∑
vi,1=β,vi,2=j

w
vi
t /m

(i,β)
t ,

Ψ(β) ← Ψ(β) + φi,2

⎧⎨
⎩

∑
vi,1=β,vi,2=j

w
vi
t /m

(i,β)
t

⎫⎬
⎭ .

c. If
∑

vi,1=β,vi,2=j wvi/m
(i,β)
t > u

(j)
t , not all demand can be met with the second

best board. It must now be decided which of the demands to fill by using
the second best board. This is done, as in step one, by selecting those orders
which would incur the highest shortage cost, should it be neccesary to use the
third best board. The board preference vector vi for which the conditions in
(B.1) hold, and φi,3 = max {φi,3 : i ∈ V}, is selected. The unmet demand and
inventory levels are reduced accordingly, and the shortage cost set:

w
vi
t ← max

{
w

vi
t −m

(i,β)
t u

(j)
t , 0

}
,

u(k) ← max
{
u(j) − w

vi
t /m

(i,β)
t , 0

}
,

Ψ(β) ← Ψ(β) + φi,2 min
{

w
vi
t /m

(i,β)
t , u

(j)
t

}
.

Step 2(c) is repeated until u
(j)
t = 0, at which stage the third best board must

then be used to satisfy the remainder of the demand, or

∑
vi,1=β,vi,2=j

w
vi
t /m

(i,β)
t = 0, (B.2)

in which case the demand for all board preference vectors where vi,1 = β and
vi,2 = j has been filled.
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Step 3 : Determine the wastage from the demand met with the third best board. This
is done following the approach outlined in step 2, but using the third level
wastage cost φ(i,3) instead. In order to avoid repetition the formulaes will not
be given here again, but the procedure is similar to that of step 2.
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Appendix C

Program Code

This appendix contains the code from the Visual Basic [50] programs written by the
author for the analysis of demand data. The program references and ammends data stored
in a Microsoft Access [49] database. Each section of this chapter contains a procedure or
set of procedures written for a specific purpose, as referenced in the body of the thesis.

The program written to find the optimal set of stock boards is given in §C.1. In this
procedure a loop through all possible board dimensions is executed, in order to find a
board that could produce the required percentage of historical orders, with the minimum
wastage. The board is then added to the table of stock boards, and the loop executed
again, until the required number of stock boards has been found. The following section,
§C.2, contains the program used to determine the set of sub–optimal stock boards used
in the service level calculation in Chapter 5. The code written to calculate the optimal
board to use for a sheet order is given in §C.3. This is used in determining retrospective
wastage over all the historical data for a given set of boards, in order to compare the
performance of different sets of boards in terms of wastage and the number of orders met.
It is also used to determine the board preference vector for each sheet order. An iterative
process, similar to that in §C.1, is followed, looping through each board and calculating
the values of certain decision parameters.

Section C.4 contains the code written to extract the values of the transition probabili-
ties required for the inventory model, as detailed in §4.3.2.4. The code used to deter-
mine sheet–to–board conversion factor probabilities, according to the process detailed in
§4.3.2.5, is given in §C.5.

The code behind the single and multiple period simulation models is then given in §C.6.

A number of tables in the database are referenced in the code. Two tables store the
historical data of orders placed (each cardboard type stored in a separate table), which is
updated to indicate the board used to produce each order. A further two tables store the
suggested stock boards, and two store the current stock boards, again each board type is
stored in a separate table. The structure of the two tables containing orders is identical,
they are separated to reduce processing time, and similarly for the four tables containing
the suggested stock board dimensions. The tables are therefore referred to in the code as
‘Orders’ and ‘Stock’, this was adapted when necessary to refer to the specific tables, i.e.
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‘ACOrders’ or ‘DWBOrders’ and ‘SugACStock’, ‘SugDWBStock’, ‘CurACStock’, and
‘CurDWBStock’. A further two tables are the ‘ACVectors’ and ‘DWBVectors tables,
containing the information pertaining to the board preference vectors of each board type,
referred to in the code as ‘Vectors’. Another tables referenced frequently is the transition
probability table. The structure of these tables are given in Figure C. Various other
tables, in which results are stored, are introduced in the code, and described where
necessary.

C.1 Determination of an Optimal Stock Profile

This program determines the set of optimal stock boards, for either the ‘AC’ or ‘DWB’ board type. It
takes as a parameter the number of stock boards to be found.

Private Sub FindStock(numstock)

‘Define the connection to the Access database.
strcon = "DSN=Boards;"
Set conndb = CreateObject("ADODB.Connection")
conndb.Open strcon
Set rst = CreateObject("ADODB.recordset")

‘Set the parameters of the search.
‘Get the number of boards already found.
strsql = "SELECT count(id) AS cnt FROM SugStock"
rst.Open strsql, conndb
brdsfound = rst("cnt")
rst.Close
‘The maximum length and width of a stock board are predetermined constants.
maxl = 2 490
maxw = 2 370
‘The search is started at 0 length and width, and increased in steps of 10.
minl = 0
minw = 0
step = 10

‘Repeat this loop until the required number of stock boards have been found.
Do While brdsfound < numstock ‘Count the number of orders in the set for which no suitable stock
board from which the order can be produced has been found.

strsql = "SELECT count(*) AS unmade FROM Orders WHERE board1 is null"
rst.Open strsql, conndb
unmade = rst("unmade")
rst.Close

‘Calculate the approximate number of orders that must be met by each stock board. From this number,
a threshold is set to represent the maximum number of ‘un–makeable’ orders for each stock board. An
order is termed ‘un–makeable’ if either dimension of the order is greater than those of the potential stock
board. Once this threshold is exceeded, the potential stock board is rejected, as it is impossible to produce
the required allocation of board orders.

NumPerBoard = unmade / (numstock - brdsfound)
‘Initialise the wastage measure

wastemin = -1
‘Loop through the grid of co–ordinates representing potential stock boards, incrementing each dimension
progressively from the minimum to the maximum values.
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Do While lboard ≤ maxl
wboard = minw
Do While wboard ≤ maxw

‘‘Initialise the variables representing cumulative wastage and number of un–makeable orders for this po-
tential stock board.

WasteSum = 0
unmade = 0

‘Get a list of all the orders in the set for which there are not yet suitable stock boards, from which the
orders can be produced.

strsql = "SELECT l,w,q FROM Orders WHERE board1 is null"
rst.Open strsql, conndb

‘Initialise the boolean variable used to stop the loop if the maximum number of un–makeable orders has
been reached.

continue = True
‘The performance of this potential stock board is now calculated against the historic data, in terms of
total wastage and number of un–makeable orders.

Do While Not rst.EOF And continue
lsheet = rst(‘‘l") ‘The length of the sheet ordered.

wsheet = rst(‘‘w") ‘The width of the sheet ordered.

qsheet = rst(‘‘q") ‘The quantity of sheets ordered.

If lsheet > lboard Or wsheet > wboard Then
‘The order cannot be made from this potential stock board, so increase the number of un–makeable orders

invalid = invalid + 1
wasteboard = 0

Else
‘Call the GetFactor function (detailed below), in order to calculate the number of sheets that can be made
out of each board.

m(L) = GetFactor(lsheet, lboard)
m(W ) = GetFactor(wsheet, wboard)
m = m(L) ∗m(W )

‘Calculate the total wastage incurred when the board under investigation is used to produce this sheet.
g = (q / m) * (lboard * wboard - m * lsheet * wsheet)

End If
‘Sum the total waste for this board.

WasteSum = WasteSum + g
‘Test the conditions that determine whether the loop through all orders should be continued.

If invalid > maxinvalid Then
‘The maximum number of un–makeable sheets has been exceeded and the loop is terminated.

continue = False
ElseIf wastemin > -1 And WasteSum > wastemin Then

continue = False

‘It is not the first board being investigated, where wastemin = -1, and the cumulative wastage so far has
exceeded a preceeding boards’ wastage, in other words a better board has already been found, so the loop
testing this board should be terminated.

Else
continue = True ‘Continue the loop

End If
rst.MoveNext ‘Get the details of the next order in the set.

Loop
‘All entries in the set have been examined, or a terminating condition has been reached, so the set is
closed.

rst.Close
If (continue = True And (wastemin = -1)) Or ((WasteSum < wastemin) And
(invalid < maxinvalid)) Then
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‘Either it is the first board being investigated or no better board has yet been found. The temporary pa-
rameters, representing the optimal board, are updated with the length, width, and cumulative wastage of
this board.

wastemin = WasteSum
templ = lboard
tempw = wboard

End If
‘The width of the board being investigated is increased by 10

wboard = wboard + step
‘The loop is executed again, until the maximum width has been reached.

Loop
‘The length of the board being investigated is increased by 10

lboard = lboard + step
‘The loop is executed again, until the maximum length has been reached.

Loop

‘Add the best board found into the set of stock boards.
res = AddStock(templ, tempw)

‘Increase the number of boards found.
brdsfound = brdsfound + 1

Loop
End Sub

This function, called by the above procedure, includes the board with the specified dimensions as a
suggested stock board.

Private Function AddStock(L, W) As Integer

‘Define the connection to the database
strcon = ‘‘DSN=Boards;"
Set conndb = CreateObject(‘‘ADODB.Connection")
conndb.Open strcon
Set rst = CreateObject(‘‘ADODB.recordset")
Set rst2 = CreateObject(‘‘ADODB.recordset")

‘Add the specified board to the table containing the stock board dimensions.
strQuery = "INSERT into Stock (l,w) values (" L "," W ")"
rst.Open strQuery, conndb

‘Get the id of the newly entered board.
strQuery = ‘‘SELECT id FROM Stock WHERE L= " L ‘‘ and w =" W
rst.Open strQuery, conndb
Id = rst(‘‘id")
rst.Close

‘Update the table containing orders to indicate which orders should be produced by this
board.
strsql = "SELECT l,w,q FROM Orders WHERE board1 is null"
rst.Open strsql, conndb

‘Loop through all orders not yet allocated to a board and test whether each order can be
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produced with the new stock board.
Do While Not rst.EOF

lsheet = rst("l")
wsheet = rst(‘‘w")
If lsheet > lboard Or wsheet > wboard Then

‘If either dimension of the order is greater than that of the grid point (board) then the order cant be made
with this board.

Else
‘Calculate the wastage.

boardfactor = GetFactor(lsheet, lboard, wsheet, wboard)
percentagewaste = 100 * (lboard * wboard - boardfactor * lsheet * wsheet) /
(lboard* wboard)
wasteboard = (q / boardfactor) * (lboard * wboard - boardfactor * lsheet *

wsheet)
‘Check against the threshold percentage waste, set at 30%

If percentagewaste ≤ 30 Then
strsql = "UPDATE Orders SET made = " Id , waste = " percentagewaste
"WHERE l = " lsheet " and w = " wsheet
rst2.Open strsql, conndb

End If
End If
rst.MoveNext

Loop
rst.Close
AddStock = 1
End Function

This function, also called by the FindStock procedure, determines the number of sheets that can be
produced using the board investigated.

Private Function GetFactor(Lsheet, Lboard, Wsheet, Wboard) As Integer

‘The number of sheets that can be produced lengthwise from each board is calculated, round-
ing up to the nearest even number from 2 to 10, a process specified by the management at
Clickabox.
Lfactor = Lboard / Lsheet
If Lfactor < 2 Then Lfactor = 1
ElseIf Lfactor < 4 Then Lfactor = 2
ElseIf Lfactor < 6 Then Lfactor = 4
ElseIf Lfactor < 8 Then Lfactor = 6
ElseIf Lfactor < 10 Then Lfactor = 8
Else Lfactor = 10 End If

‘Similarly, the number of sheets that can be produced widthwise from each board is calcu-

lated.

Wfactor = Wboard / Wsheet

If Wfactor < 2 Then Wfactor = 1

ElseIf Wfactor < 4 Then Wfactor = 2

ElseIf Wfactor < 6 Then Wfactor = 4

ElseIf Wfactor < 8 Then Wfactor = 6

ElseIf Wfactor < 10 Then Wfactor = 8

Else
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Wfactor = 10

boardfactor = Lfactor * Wfactor

End If

GetFactor = boardfactor

End Function

C.2 Determination of the Sub–optimal Board Types

This program determines the set of sub–optimal stock boards, for either the ‘AC’ or ‘DWB’ board type,
to be used in the service level calculation.

Private Sub GetSubOptBoard()

‘Define the connection to the database
strcon = "DSN=NewBoard;"
Set conndb = CreateObject("ADODB.Connection")
conndb.Open strcon
Set rst = CreateObject("ADODB.recordset")
Set rst2 = CreateObject("ADODB.recordset")

‘Repeat this procedure for each stock board.
strsql = "SELECT * FROM Stock"
rst.Open strsql, conndb
Do While Not rst.EOF

optboard1 = rst(‘‘id")
lopt = rst(‘‘l")
wopt = rst(‘‘w")
tempwaste = 9999999
strsql = "SELECT * FROM Stock WHERE id =" optboard "and l ≥" lopt "and w ≥" wopt
rst2.Open strsql, conndb
Do While not rst2.eof

’Get the waste incurred when this board is used instead of the optimal board.
waste = (lopt - rst2("l"))(wopt - rst2("w"))
if waste ≤ tempwaste then

tempid = rst2(‘‘id")
tempwaste = waste

end if
rst2.movenext

loop
rst2.close

if tempwaste=9999999 then
’No suitable board has been found with both dimensions greater than those of the optimal board.

strsql = "SELECT * FROM Stock WHERE id =" optboard "and (l ≥" lopt "or w ≥
" wopt )
rst2.Open strsql, conndb

‘Find sub–optimal board where one join is required.
Do While not rst2.eof

’Get the waste incurred when this board is used instead of the optimal board.
if l ≥ lopt then waste = (lopt - rst2(‘‘l"))(2* rst2(‘‘w") - wopt)
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elseif w ≥ wopt then waste = (2*rst2(‘‘l") - lopt)(wopt - rst2(‘‘w"))
endif
if waste ≤ tempwaste then

tempid = rst2(‘‘id")
tempwaste = waste

end if
rst2.movenext

loop
rst2.close
if tempwaste=9999999 then

’A sub--optimal board must be found that requires a join in more than one direction.

strsql = "SELECT * FROM Stock WHERE id = " optboard
rst2.Open strsql, conndb
Do While not rst2.eof

waste = (2* rst2(‘‘l") - lopt)(2* rst2(‘‘w") - wopt)
if waste ≤ tempwaste then

tempid = rst2(‘‘id")
tempwaste = waste

end if
rst2.movenext

loop
rst2.close

end if
end if
strsql = "INSERT into SubOpt values (" optboard1 "," tempid ")"
rst2.open strsql, conndb
rst.movenext

loop
rst.close

C.3 Calculation of the Optimal Board to use for a

Sheet Order

This procedure finds the optimal stock board with which an order should be produced. There are two
similar implementations of this procedure. The first, ‘GetBestBoard’, is used to compare the wastage
and number of orders met for the current and suggested stock profiles. The second, ‘GetVectors’ is to
find the board preference vectors for each order.

Private Sub GetBestBoard()

‘Define the connection to the database
strcon = "DSN=NewBoard;"
Set conndb = CreateObject("ADODB.Connection")
conndb.Open strcon
Set rst = CreateObject("ADODB.recordset")
Set rst2 = CreateObject("ADODB.recordset")

‘Get the set of sheets for which the optimal board must be found. This statement is adapted
as required.
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strsql = "SELECT * FROM Orders WHERE board1 = 0 or board1 is null"
rst.Open strsql, conndb
Do While Not rst.EOF

lsheet = rst("l")
wsheet = rst("w")

‘Select all valid stock boards (from either the current or suggested stock board table)
strsql = "SELECT * FROM Stock WHERE L ≥ " lsheet " and W ≥ " wsheet
rst2.Open strsql, conndb
continue = True
First = True
tempwaste = 0
made = 0

‘Test each valid stock board.
Do While continue And Not rst2.EOF

lboard = rst2("L")
wboard = rst2("W")
board1 = rst2("id")

‘Calculate the number of sheets that can be made out of this board
lFactor = GetFactor(lsheet, lboard)
wfactor = GetFactor(wsheet, wboard)
boardfactor = lFactor * wfactor

‘Calculate the percentage wastage incurred when this sheet is made out of this board.
percentagewaste = 100 * (lboard * wboard - boardfactor * lsheet * wsheet) /
(lboard * wboard)
If First Or percentagewaste < tempwaste Then

made = board1
tempwaste = percentagewaste
tempfact = boardfactor
First = False

End If
rst2.MoveNext

Loop
rst2.Close
strsql = "UPDATE Orders SET board1 = " made ", waste1 = " tempwaste " , factor1 = "
tempfact " WHERE l = " lsheet " and w= " wsheet
rst2.Open strsql, conndb
rst.MoveNext

Loop
rst.Close
End Sub

This procedure is run to find the entries in the board preference vector for each order. It takes as a
parameter the index of the board to be found, i.e. the first, second or third board.

Private Sub GetVector(index)

‘Define the connection to the database
strcon = "DSN=NewBoard;"
Set conndb = CreateObject("ADODB.Connection")
conndb.Open strcon
Set rst = CreateObject("ADODB.recordset")
Set rst2 = CreateObject("ADODB.recordset")
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‘Get the set of sheets for which the optimal board must be found.
strsql = "SELECT * FROM Orders WHERE board"index "= 0 or board"index "is null"
rst.Open strsql, conndb

Do While Not rst.EOF
lsheet = rst("l")
wsheet = rst("w")
b1 = rst("board1")
b2 = rst("board2")
b3 = rst("board3")

‘Select all valid stock boards (from either the current or suggested stock board table)
strsql = "SELECT * FROM Stock WHERE L ≥ " lsheet " and W ≥ " wsheet " and id <>"
b1 " and id <> " b2 " and id <> " b3
rst2.Open strsql, conndb
continue = True
First = True
tempwaste = 0
made = 0

‘Test each valid stock board.
Do While continue And Not rst2.EOF

lboard = rst2("L")
wboard = rst2("W")
board1 = rst2("id")

‘Calculate the number of sheets that can be made out of this board
lFactor = GetFactor(lsheet, lboard)
wfactor = GetFactor(wsheet, wboard)
boardfactor = lFactor * wfactor

‘Calculate the percentage wastage incurred when this sheet is made out of this board.
percentagewaste = 100 * (lboard * wboard - boardfactor * lsheet * wsheet) /
(lboard * wboard)
If First Or percentagewaste < tempwaste Then

made = board"index "
tempwaste = percentagewaste
tempfact = boardfactor
First = False

End If
rst2.MoveNext

Loop
rst2.Close
strsql = "UPDATE Orders SET board"index " = " made ", waste"index " = " tempwaste ",
factor"index " = " tempfact " WHERE l = " lsheet " and w= " wsheet
rst2.Open strsql, conndb
rst.MoveNext

Loop
rst.Close
End Sub



124 APPENDIX C. PROGRAM CODE

C.4 Calculation of Transition Probabilities

This procedure calculates and stores the probabilities that govern the transition from one demand state
to the next, from the historical data.

Private Sub TransitionProb()

‘Define the connection to the database
strcon = "DSN=NewBoard;"
Set conndb = CreateObject("ADODB.Connection")
conndb.Open strcon
Set rst = CreateObject("ADODB.recordset")
Set rst2 = CreateObject("ADODB.recordset")

‘Initialise the table, inserting an entry for each demand state and each board preference
vector.
cntvec = 1
Do While cntvec < NumVectors

state = 1 Do While state < 8 strsql = "INSERT into TransitionProb values
(" cntvec "," state "," 0,0,0,0,0,0,0)"

rst.Open strsql, conndb
state = state + 1

Loop
cntvec = cntvec + 1

Loop

‘Find the probability of a demand realisation in each demand class, given the current de-
mand state, for each board preference vector.
cntvec = 1
‘Loop through all board preference vectors.
Do While cntvec < NumVectors
‘Initialise the variables

count1 = 0
count2 = 0
count3 = 0
count4 = 0
count5 = 0
count6 = 0

‘Loop through all Demand Classes (1 to 7).

strsql = "SELECT * FROM States"
rst2.open strsql, conndb
Do While not rst2.eof

‘Loop through all historical orders for this board preference vector in this state.

strsql = "SELECT * FROM Orders WHERE vector =" cntvec "and weekstate ="
rst2("weekstate")
rst.open strsql, conndb
Do While not rst.eof

‘Determine the demand class this order falls in to, dependant on the order quantity,

and increment the relevant counter.

if rst("q") < 76 then count1 = count1 +1
elseif rst("q") > 75 and rst("q") < 151 then count2 = count2 +1
elseif rst("q") > 150 and rst("q") < 226 then count3 = count3 +1
elseif rst("q") > 225 and rst("q") <376 then count4 = count4 +1
elseif rst("q") > 375 and rst("q") < 756 then count5 = count5 +1
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elseif rst("q") > 750 then count6 = count6 +1
end if
rst.movenext

loop
‘Sum these counters to get the total number of instances of this demand state for this

board preference vector.

countall = count1 + count2 + count3 + count4 + count5 + count6
‘Update the RealisationProb table with these probabilities.

strsql = "UPDATE TransitionProb SET k1=" count1/countall ",k2="
count2/countall ",k3=" count3/countall ",k4=" count4/countall ",k5="
count5/countall ",k6=" count6/countall "WHERE vector=" cntvec "and weekstate="

rst2("weekstate")
rst.Open strsql, conndb

rst2.movenext
Loop
cntvec = cntvec + 1

loop
End Sub

C.5 Calculation of Board Factor Probabilities

This procedure calculates the probability of the occurrence of each potential board factor,
which represents the number of sheets that can be made out of a stock board.

Private Sub FactorProb()

‘Define the connection to the database
strcon = "DSN=NewBoard;"
Set conndb = CreateObject("ADODB.Connection")
conndb.Open strcon
Set rst = CreateObject("ADODB.recordset")
Set rst2 = CreateObject("ADODB.recordset")

‘Initialise the table, inserting an entry for each board in each board preference vector.
cntvec = 1
Do While cntvec < NumVectors

cntbrd = 1
Do While cntbrd < 4

strsql = "INSERT into factorprob values (" cntvec "," cntbrd ",0,0,0,0,0,0)"
rst.Open strsql, conndb
cntbrd = cntbrd + 1

Loop
cntvec = cntvec + 1

Loop

‘Find the probability of the occurrence of each board factor, for each board in each board
preference vector.
cntvec = 1
‘Loop through all board preference vectors.
Do While cntvec < NumVectors
‘Count the number of instances of each board preference vector.

strsql = ”SELECT count(weekid) AS weeks FROM finalacorders WHERE vectorid = ” cntvec
rst.Open strsql, conndb
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total = rst(”weeks”)
rst.Close
cntbrd = 1

‘Loop through all boards in each board preference vector.
Do While cntbrd < 4

‘Select each possible board factor.
strsql = "SELECT * FROM factors"
rst.Open strsql, conndb
Do While Not rst.EOF

‘Count the number of occurrences of each board factor.
strsql = "SELECT count(weekid) AS wks FROM finalacorders WHERE vectorid
= " cntvec "and board =" cntbrd "and factor" cntbrd "= " rst("factor")
rst2.Open strsql, conndb
bfactor = rst2("wks")
rst2.Close

’Calculate the probability of each factor, and round off to two decimal places.
bfactor = 100 * (bfactor / total)
bfactor = Int(bfactor)
bfactor = bfactor / 100
strsql = "UPDATE factorprob SET f" rst("factor") "= " bfactor " WHERE
vector = " cntvec " and board = " cntbrd
rst2.Open strsql, conndb
rst.MoveNext

Loop
rst.Close
cntbrd = cntbrd + 1

Loop
cntvec = cntvec + 1

Loop
End Sub

C.6 Implementation of the Inventory Model

These procedures constitute the simulation model, and the application of the model into a decision sup-
port system for implementation at Clickabox.

This is the code that executes the single period simulation model.

Private Function SinglePeriodOpt()

‘Define the connection to the database
strcon = "DSN=NewBoard;"
Set conndb = CreateObject("ADODB.Connection")
conndb.Open strcon
Set rst = CreateObject("ADODB.recordset")
Set rst2 = CreateObject("ADODB.recordset")
Set rst3 = CreateObject(”ADODB.recordset”)

it = 1
Do While it < 1 000



C.6. Implementation of the Inventory Model 127

Randomize (it)
reorder = 100
Do While reorder < OrderMax - 100 ’orderto max set by board type and rank

orderto = reorder + 100
Do While orderto < OrderMax

Initialise(reorder, orderto)
‘Step through the model four times to get the system into a steady state.

count = 1
Do While count < 5

res = DetermineSOO(reorder, orderto)
res = CalculateWaste()
res = AdvanceDemand()
count = count + 1

loop
res = DetermineSOO(reorder, orderto)
strsql = "UPDATE Stock SET shortcost = 0"
rst.open strsql, conndb
res = CalculateWaste()
brd = 1
Do While brd < NumBrds

‘Calculate service level attained by each board, as the percentage of board preference vectors where that
board is the optimal board that have no unfilled demand.

strsql = "SELECT count(*) AS cnt FROM Vectors WHERE UnfilledDemand
= 0 and board1 = " brd
rst.open strsql, conndb
cnt = rst("cnt")
rst.Close
strsql = "SELECT count(*) AS cnt2 FROM Vectors WHERE UnfilledDemand
<> 0 and board1 = " brd
rst.open strsql, conndb
If cnt + rst("cnt2") = 0 Then sl = 100
Else sl = 100 * cnt / (cnt + rst("cnt2")) End If
rst.Close
strsql = "SELECT shortcost, Sorder1*Cost*L*W*10−6 AS purchase,
([hold]*[Stock]![StockLevel]) AS holding FROM Stock WHERE id = "
brd
rst.open strsql, conndb
strsql = "INSERT into Stationary values (" it "," brd ","
rst("holding") "," rst("shortcost") "," reorder "," orderto "," sl
"," rst("purchase") ")"
rst3.open strsql, conndb
rst.Close
brd = brd + 1

Loop
orderto = orderto + 100

Loop
reorder = reorder + 100

Loop
it = it + 1

Loop
End Function

This procedure initialises the model, by generation random numbers and applying the for-
mulae of Chapter 5 to calculate initial demand states and update the relevant tables in the
database.
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Private Function Initialise(reorder As Integer, orderto As Integer)

‘Define the connection to the database
strcon = "DSN=NewBoard;"
Set conndb = CreateObject("ADODB.Connection")
conndb.Open strcon
Set rst = CreateObject("ADODB.recordset")
Set rst2 = CreateObject("ADODB.recordset")
Set rst3 = CreateObject("ADODB.recordset")

’Initialise the random number generator
Randomize (brd)
’Set the initial demand states (see §5.6.2) from table pi.
vec = 1
Do While vec < NumVectors

strsql = "SELECT * FROM pi WHERE vector = " vec
rst2.open strsql, conndb
prob = Rnd
If prob ≤ rst2("to1") Then nextdem = 1
ElseIf prob ≤ (rst2("to1") + rst2("to2")) Then nextdem = 2
ElseIf prob ≤ (rst2("to1") + rst2("to2") + rst2("to3")) Then nextdem = 3
ElseIf prob ≤ (rst2("to1") + rst2("to2") + rst2("to3") + rst2("to4")) Then

nextdem = 4
ElseIf prob ≤ (rst2("to1") + rst2("to2") + rst2("to3") + rst2("to4") +
rst2("to5")) Then

nextdem = 5
ElseIf prob ≤ (rst2("to1") + rst2("to2") + rst2("to3") + rst2("to4") +
rst2("to5") + rst2("to6")) Then

nextdem = 6
ElseIf prob ≤ (rst2("to1") + rst2("to2") + rst2("to3") + rst2("to4") +
rst2("to5") + rst2("to6") + rst2("to7")) Then

nextdem = 7
Else nextdem = 1
End If
strsql = "UPDATE Vectors SET demandstate = " nextdem " WHERE vectorid = " vec
rst.open strsql, conndb
rst2.Close
vec = vec + 1

Loop

’Set the initial Stock levels
strsql = "UPDATE Stock SET StockLevel = orderto, Sorder1 = 0, Sorder2 = 0"
rst.open strsql, conndb
’Update a field containing unfilled demand for each board preference vector, based on the demand state
strsql = "UPDATE Vectors SET UnfilledDemand = 0"
rst.open strsql, conndb
vec = 1
Do While vec <NumVecs

strsql = "SELECT DemandState.Median FROM DemandState INNER JOIN Vectors
ON DemandState.DemandState = Vectors.DemandState WHERE vectorid = " vec

‘The DemandState table stores the median of each demand class.

rst3.open strsql, conndb
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If Not rst3.EOF Then
prob = Rnd
q = NormDist(prob,rst3("Median"))
rst3.Close

‘Update the Vectors table with the outstanding demand on that board preference vector.

strsql = "UPDATE Vectors SET UnfilledDemand = " q " WHERE
vectorid = " vec
rst3.open strsql, conndb

Else rst3.Close End If
vec = vec + 1

Loop
End Function

Private Function DetermineSOO(reorder As Integer, orderto As Integer)

‘Define the connection to the database
strcon = "DSN=NewBoard;"
Set conndb = CreateObject("ADODB.Connection")
conndb.Open strcon
Set rst = CreateObject("ADODB.recordset")
Set rst2 = CreateObject("ADODB.recordset")

’Update stock levels
strsql = "SELECT * FROM Stock"
rst.open strsql, conndb
Do While Not rst.EOF

StockLevel = rst("stocklevel") + rst("sorder1") + rst("sorder2")
’Stock that has been on order for two weeks arrives and is received into stock

strsql = "UPDATE Stock SET stocklevel = stocklevel + Sorder2 WHERE id = " rst("id")
rst2.open strsql, conndb

’Stock on order for one week moves to ”Sorder2”
strsql = "UPDATE Stock SET Sorder2 = Sorder1 WHERE id = " rst("id")
rst2.open strsql, conndb

’Determine the quantity to be ordered this period
If stocklevel ≤ reorder Then

q = orderto - rst("stocklevel") - rst("Sorder1") - rst("Sorder2")
strsql = "UPDATE Stock SET Sorder1 = " q " WHERE id = " rst("id")
rst2.open strsql, conndb

Else
strsql = "UPDATE Stock SET Sorder1 = 0 WHERE id = " rst("id")
rst2.open strsql, conndb

End If
rst.movenext

Loop
rst.Close
End Function

Private Function CalculateWaste() As Double

‘Define the connection to the database
strcon = "DSN=NewBoard;"
Set conndb = CreateObject("ADODB.Connection")
conndb.Open strcon
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Set rst = CreateObject("ADODB.recordset")
Set rst2 = CreateObject("ADODB.recordset")
Set rst3 = CreateObject("ADODB.recordset")

shortcost = 0
brd = 1
Do While brd < numbrds

‘Determine the stock level of the board being investigated. Randomize (brd)
strsql = "SELECT Stock.StockLevel FROM Stock WHERE id = " brd
rst2.open strsql, conndb
If Not rst2.EOF Then stock = rst2("stocklevel")
Else stock = 0 End If
rst2.Close

‘Get a list of board preference vectors, in order of descending first level wastage, for which
the optimal board is the board being investigated.

strsql = "SELECT * FROM Vectors WHERE board1 = " brd " And ((UnfilledDemand) > 0)
ORDER BY wcost1 DESC"
rst.open strsql, conndb

‘While there is outstanding demand and stock available of the optimal board, allocate the
stock to the board preference vector.

Do While Not rst.EOF And stock > 0
maxwaste = rst("wcost1")
demand = rst("unfilleddemand")
vec = rst("vectorid")
prob = Rnd
cumprob = 0
fac = 1

‘Generate a factor representing the number of sheets that can be made from each board from the factor
probability table.

strsql = "SELECT * FROM FactorProb WHERE vector =" vec "and board = 1 "
rst2.open strsql, conndb
Do While cumprob < prob And Not rst2.EOF

cumprob = cumprob + rst2("probability")
fac = rst2("factor")
rst2.movenext

Loop
rst2.Close
demand = demand / fac
If demand ≤ stock Then ’update all, met with 1st level

strsql = "UPDATE Stock SET Stock.StockLevel = [Stock]![StockLevel] -"
demand " WHERE id = " brd
rst3.open strsql, conndb
strsql = "UPDATE Vectors SET UnfilledDemand = 0 WHERE
vectorid = " vec
rst3.open strsql, conndb

Else
’Fill this demand with optimal board because of the high potential shortage cost

strsql = "UPDATE Stock SET Stock.StockLevel = 0 WHERE id = " brd
rst3.open strsql, conndb
strsql = "UPDATE Vectors SET UnfilledDemand = UnfilledDemand - "
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stock " WHERE vectorid = " vec
rst3.open strsql, conndb

End If
strsql = "SELECT Stock.StockLevel FROM Stock WHERE id = " brd
rst2.open strsql, conndb
stock = rst2("stocklevel")
rst2.Close
rst.movenext

Loop
brd = brd + 1
rst.Close

Loop
’repeat until there is no more stock of the optimal board or no more outstanding demand
brd = 1
Do While brd < numbrds

brd2 = 1
shortcost = 0
Do While brd2 < numbrds

’Second level demand: select the boards with the greatest shortage costs.
strsql = "SELECT * FROM Vectors WHERE (((Board1) = " brd ") And
((Board2) = " brd2 ") And((UnfilledDemand) > 0)) OrDER BY wcost2 DESC"
rst.open strsql, conndb
If rst.EOF Then
Else

vec = rst("vectorid")
strsql = "SELECT Stock.StockLevel FROM Stock WHERE id = " brd2
rst2.open strsql, conndb
stock = rst2("stocklevel")
rst2.Close
Do While Not rst.EOF And stock > 0

waste1 = rst("wcost2")
demand = rst("unfilleddemand")
vec = rst("vectorid")
prob = Rnd
cumprob = 0
fac = 1
strsql = "SELECT * FROM FactorProb WHERE vector =" vec "and board =2"
rst2.open strsql, conndb
Do While cumprob < prob And Not rst2.EOF

cumprob = cumprob + rst2("probability")
fac = rst2("factor")
rst2.movenext

Loop
rst2.Close
demand = demand / fac
If demand ≤ stock Then

’Update tables with all orders met with first level
strsql = "UPDATE Stock SET StockLevel = StockLevel - " demand
"WHERE id = " brd2
rst3.open strsql, conndb
strsql = "UPDATE Vectors SET UnfilledDemand = 0 WHERE vectorid = "
vec
rst3.open strsql, conndb
shortcost = shortcost + (waste1 * demand)
strsql = "UPDATE Stock SET shortcost = shortcost + " waste1 *
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demand " WHERE id = " brd
rst3.open strsql, conndb

Else
’Fill this demand with optimal board because of the high potential shortage cost

strsql = "UPDATE Stock SET Stock.StockLevel = 0 WHERE id = " brd2
rst3.open strsql, conndb
strsql = "UPDATE Vectors SET UnfilledDemand = UnfilledDemand - "
stock " WHERE vectorid = " vec
rst3.open strsql, conndb
shortcost = shortcost + (waste1 * stock)
strsql = "UPDATE Stock SET shortcost = shortcost + " waste1 *
stock " WHERE id = " brd
rst3.open strsql, conndb

End If
strsql = "SELECT Stock.StockLevel FROM Stock WHERE id = " brd2
rst2.open strsql, conndb
stock = rst2("stocklevel")
rst2.Close
rst.movenext

Loop
End If

’Repeat until no more stock of the optimal board or that there is no more unfilled demand
rst.Close
brd2 = brd2 + 1

Loop
brd = brd + 1

Loop

’Investigate third level demand
strsql = "SELECT * FROM Vectors WHERE UnfilledDemand > 0"
rst.open strsql, conndb
Do While Not rst.EOF

maxwaste = rst("wcost2")
demand = rst("unfilleddemand")
vec = rst("vectorid")
prob = Rnd
cumprob = 0
strsql = "SELECT * FROM FactorProb WHERE vector = " vec " and board = 3 "
rst2.open strsql, conndb
Do While cumprob < prob And Not rst2.EOF

cumprob = cumprob + rst2("probability")
fac = rst2("factor")
rst2.movenext

Loop
rst2.Close
demand = demand / fac
brd = rst("board3")
strsql = "SELECT Stock.StockLevel FROM Stock WHERE id = " brd
rst2.open strsql, conndb
If rst2.EOF Then stock = 0
Else stock = rst2("stocklevel") End If
rst2.Close
If demand ≤ stock Then

strsql = "UPDATE Stock SET StockLevel = StockLevel - demand " WHERE id = " brd
rst3.open strsql, conndb
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strsql = "UPDATE Vectors SET UnfilledDemand = 0 WHERE vectorid = " vec
rst3.open strsql, conndb
shortagecost = shortagecost + demand * maxwaste
strsql = "UPDATE Stock SET shortcost = shortcost + " demand * maxwaste
"WHERE id = " brd
rst3.open strsql, conndb

Else
strsql = "UPDATE Stock SET Stock.StockLevel = 0 WHERE id = " brd
rst3.open strsql, conndb
strsql = "UPDATE Vectors SET UnfilledDemand = UnfilledDemand - " stock
"WHERE vectorid = " vec
rst3.open strsql, conndb
shortagecost = shortagecost + stock * maxwaste
strsql = "UPDATE Stock SET shortcost = shortcost + " stock * maxwaste " WHERE
id = " brd
rst3.open strsql, conndb

End If
rst.movenext

Loop
End Function

Private Function AdvanceDemand()

‘Define the connection to the database
strcon = "DSN=NewBoard;"
Set conndb = CreateObject("ADODB.Connection")
conndb.Open strcon
Set rst = CreateObject("ADODB.recordset")
Set rst2 = CreateObject("ADODB.recordset")
Set rst3 = CreateObject("ADODB.recordset")
strsql = "SELECT * FROM Vectors"
rst.open strsql, conndb
Do While Not rst.EOF

vec = rst("vectorid")
From = rst("demandstate")
prob = Rnd
strsql = "SELECT * FROM TransitionProb WHERE vector = " vec " and FROM = " From
rst2.open strsql, conndb
If prob ≤ rst2("to1") Then nextdem = 1
ElseIf prob ≤ (rst2("to1") + rst2("to2")) Then nextdem = 2
ElseIf prob ≤ (rst2("to1") + rst2("to2") + rst2("to3")) Then nextdem = 3
ElseIf prob ≤ (rst2("to1") + rst2("to2") + rst2("to3") + rst2("to4")) Then

nextdem = 4
ElseIf prob ≤ (rst2("to1") + rst2("to2") + rst2("to3") + rst2("to4") + rst2("to5"))
Then

nextdem = 5
ElseIf prob ≤ (rst2("to1") + rst2("to2") + rst2("to3") + rst2("to4") + rst2("to5")
+ rst2("to6")) Then

nextdem = 6
ElseIf prob ≤ (rst2("to1") + rst2("to2") + rst2("to3") + rst2("to4") + rst2("to5")
+ rst2("to6") + rst2("to7")) Then

nextdem = 7
Else nextdem = 1 End If
rst2.Close
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strsql = "UPDATE Vectors SET demandstate = " nextdem " WHERE vectorid = " vec
rst2.open strsql, conndb
rst.movenext

Loop
rst.Close
vec = 1
Do While vec < numvectors

strsql = "SELECT DemandState.Median FROM DemandState INNER JOIN Vectors ON
DemandState.DemandState = Vectors.DemandState WHERE vectorid = " vec
rst3.open strsql, conndb
If Not rst3.EOF Then

q = rst3("Median")
rst3.Close
strsql = "UPDATE Vectors SET UnfilledDemand = " q " WHERE vectorid =" vec
rst3.open strsql, conndb

Else rst3.Close End If
vec = vec + 1

Loop
End Function

The following programs form the code that executes the multiple period simulation model.

Private Sub DynamicModel()

‘Define the connection to the database
strcon = "DSN=NewBoard;"
Set conndb = CreateObject("ADODB.Connection")
conndb.Open strcon
Set rst = CreateObject("ADODB.recordset")
Set rst2 = CreateObject("ADODB.recordset")
Set rst3 = CreateObject("ADODB.recordset")

’Loop through all stock board types
boardid = 1
Do While boardid < numbrds

weekid = 1
’Initialise the data in the Vectors and Stock tables.

res = Initialise(boardid)
’Repeat for each week Do While weekid < NumWeeks
’Loop through all potential sets of replenishment parameters

orderto = MinOrderTo
Do While orderto < MaxOrderTo

reorder = MinReorder
Do While reorder < orderto

’Evaluate the total cost function
res = CalculateCosts(reorder, orderto, weekid, boardid)
reorder = reorder + 100
Loop
orderto = orderto + 100

Loop
’Select the re–order and order–to levels that minimise total expected costs.

strsql = "SELECT min(shortcost) AS mincost FROM TempResults WHERE week = "
weekid " and brd = " boardid
rst.open strsql, conndb
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strsql = "SELECT * FROM TempResults WHERE week = " weekid " and brd = "
boardid " and shortcost = " rst("mincost")
rst2.open strsql, conndb

rst.Close
tmpreorder = rst2("reorder")
tmporderto = rst2("orderto")
rst2.Close

‘Write the re–order and order–to levels incurring the lowest cost into the results table ”Dynamic”
strsql = "INSERT into Dynamic values (" boardid "," weekid "," tmpreorder ","
tmporderto ")"

rst.open strsql, conndb
res = DetermineSOO(tmpreorder, tmporderto, boardid)
res = CalculateWaste()

‘Invoke a procedure to advance the demand state for each board preference vector according to the tran-
sition probabilities.

res = AdvanceDemand()
weekid = weekid + 1

Loop
boardid = boardid + 1

Loop
End Sub

Private Function CalculateCosts(reorder As Integer, orderto As Integer, wk As Integer,
tstboard As Integer)

‘Define the connection to the database
strcon = "DSN=NewBoard;"
Set conndb = CreateObject("ADODB.Connection")
conndb.Open strcon
Set rst = CreateObject("ADODB.recordset")
Set rst2 = CreateObject("ADODB.recordset")
Set rst3 = CreateObject("ADODB.recordset")

total = 0
loopbrd = 1
Do While loopbrd < numbrds

k = 1
Do While k < numbrds

If k = loopbrd Then
Else

’Determine the cost of the second level demand
’Get the stock level of the optimal board

strsql = "SELECT * FROM Stock WHERE id = " k
rst2.open strsql, conndb
stock = rst2("stocklevel") + rst2("sorder1")
rst2.Close

’Get a list of board preference vectors with “loopbrd” as the second best board and “k” as the optimal
board

strsql = "SELECT * FROM Vectors WHERE board1=" k "and board2=" loopbrd
" and demandstate > 1"
rst.open strsql, conndb
Do While Not rst.EOF
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waste = rst("wcost1")
demand = rst("unfilleddemand")

‘Calculate the total outstanding demand from all of these board preference vectors that have a first level
wastage cost greater than that of the current board preference vector

strsql = "SELECT sum(unfilleddemand) AS sumdem FROM Vectors WHERE
board1=" k "and board2=" loopbrd "and wcost1 > " waste
rst2.open strsql, conndb

’Determine a sheet per board conversion factor for the optimal board
prob = Rnd
cumprob = 0
fac = 1
strsql = "SELECT * FROM Factorprob WHERE vector = " rst("vectorid")
" and board = 1"
rst3.open strsql, conndb
Do While cumprob < prob And Not rst3.EOF

cumprob = cumprob + rst3("probability")
m = rst3("factor")
rst3.movenext

Loop
rst3.Close

’Determine a sheet per board conversion factor for the second best board
prob = Rnd
cumprob = 0
fac = 1
strsql = "SELECT * FROM Factorprob WHERE vector =" rst("vectorid")
" and board = 2"
rst3.open strsql, conndb
Do While cumprob < prob And Not rst3.EOF

cumprob = cumprob + rst3("probability")
n = rst3("factor")
rst3.movenext

Loop
rst3.Close

’If there is sufficient stock to fill all outstanding demand with a greater wastage cost than that of the
current board preference vector then the remaining stock (A) is set to the difference between the stock
level and the total demand, otherwise it is set to zero

If stock > rst2("sumdem") Then A = stock - rst2("sumdem")
Else A = 0 End If

’If the remaining stock is sufficient to fill the demand for the current board preference vector than the
quantity (B) that must be filled by the second best board is zero, else it is the demand less the remaining
stock

If A > demand / m Then B = 0
Else B = demand / m - A End If
rst2.Close
total = total + waste * m * B / n
rst.movenext

Loop
rst.Close

’Calculate third level demand
strsql = "SELECT * FROM Vectors WHERE board1=" k "and board3=" loopbrd

rst.open strsql, conndb
Do While Not rst.EOF

waste = rst("wcost2")
demand = rst("unfilleddemand")
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prob = Rnd
cumprob = 0
fac = 1
strsql = "SELECT * FROM Factorprob WHERE vector = " rst("vectorid")
" and board = 3 "
rst3.open strsql, conndb
Do While cumprob < prob And Not rst3.EOF

cumprob = cumprob + rst3("probability")
n = rst3("factor")
rst3.movenext

Loop
rst3.Close

strsql = "SELECT * FROM Vectors WHERE board1=" k "and board3=" loopbrd
"

and wcost2 > " waste
rst2.open strsql, conndb
tempsum = 0
Do While Not rst2.EOF

strsql = "SELECT unfilleddemand FROM Vectors WHERE vector = "
rst2("vectorid")
rst3.open strsql, conndb
tempdem = rst3("unfilleddemand")
rst3.Close
prob = Rnd
cumprob = 0
fac = 1
strsql = "SELECT * FROM Factorprob WHERE vector = " rst2("vectorid")
" and board = 1"
rst3.open strsql, conndb
Do While cumprob < prob And Not rst3.EOF

cumprob = cumprob + rst3("probability")
p = rst3("factor")
rst3.movenext

Loop
rst3.Close
tempsum = tempsum + tempdem / p
rst2.movenext

Loop

strsql = "SELECT * FROM Stock WHERE id = " rst("board2")
rst3.open strsql, conndb
stock2 = rst3("stocklevel") + rst3("sorder1")
rst3.Close

prob = Rnd
cumprob = 0
fac = 1
strsql = "SELECT * FROM FactorProb WHERE vector = " rst("vectorid")
" and board = 1 "
rst3.open strsql, conndb

Do While cumprob < prob And Not rst3.EOF
cumprob = cumprob + rst3("probability")
q = rst3("factor")



138 APPENDIX C. PROGRAM CODE

rst3.movenext
Loop
rst3.Close

strsql = "SELECT sum(unfilleddemand) AS demand2 FROM Vectors WHERE
board1=" rst("board2")
rst3.open strsql, conndb
If stock2 > rst3("demand2") Then D = stock2 - rst3("demand2")
Else D = 0 End If
C = demand + D
If C > tempsum Then A = C - tempsum
Else A = 0 End If
If A > demand Then B = demand
Else B = A End If
rst3.Close
rst2.Close
total = total + waste * (demand - B) / n
rst.movenext

Loop
rst.Close

End If
k = k + 1

Loop
loopbrd = loopbrd + 1

Loop
strsql = "SELECT * FROM Stock WHERE id = " tstboard
rst.open strsql, conndb
If Not rst.EOF Then

StockLevel = rst("stocklevel") + rst("sorder1") + rst("sorder2")
If StockLevel ≤ reorder Then q = orderto - StockLevel
Else q = 0 End If
purchase = q * Cost * rst("L") * rst("W")*10−6

holdcost = rst("hold") * rst("StockLevel")
End If
rst.Close
strsql = "INSERT into TempResults values (" reorder "," orderto "," total "," wk ","
tstboard "," holdcost "," purchase ")"
rst2.open strsql, conndb
End Function

This function is an adaptation of the ‘DetermineSOO()’ function in the single period
optimisation model, with the only difference being the use of the variables ‘orderto’ and
‘reorder’ for the stock board currently being investigated and the values stored in the Stock
table for the other boards, compared to the single period model which uses the variables for
all board types.

Private Function DetermineSOO(reorder As Integer, orderto As Integer, brd As Integer)

‘Define the connection to the database
strcon = "DSN=NewBoard;"
Set conndb = CreateObject("ADODB.Connection")
conndb.Open strcon
Set rst = CreateObject("ADODB.recordset")
Set rst2 = CreateObject("ADODB.recordset")
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’Update stock levels
strsql = "SELECT * FROM Stock"
rst.open strsql, conndb
Do While Not rst.EOF

StockLevel = rst("stocklevel") + rst("sorder1") + rst("sorder2")
’Stock that has been on order for two weeks arrives and is received into stock

strsql = "UPDATE Stock SET stocklevel = stocklevel + Sorder2 WHERE id = " rst("id")
rst2.open strsql, conndb

’Stock on order for one week moves to ”Sorder2”
strsql = "UPDATE Stock SET Sorder2 = Sorder1 WHERE id = " rst("id")
rst2.open strsql, conndb

’Determine the quantity to be ordered this period
If rst("id") = brd Then

If StockLevel ≤ reorder Then
q = orderto - rst("stocklevel") - rst("Sorder1") - rst("Sorder2")
strsql = "UPDATE Stock SET Sorder1 = " q " WHERE id = " rst("id")
rst2.open strsql, conndb

Else strsql = "UPDATE Stock SET Sorder1 = 0 WHERE id = " rst("id")
rst2.open strsql, conndb

End If
rst.movenext

Else
‘Use the reorder and orderto values resulting from the single period optimisation, as stored in the Stock
table.

If StockLevel ≤ rst("reorder") Then
q = rst("orderto") - rst("stocklevel") - rst("Sorder1") - rst("Sorder2")
strsql = "UPDATE Stock SET Sorder1 = " q " WHERE id = " rst("id")
rst2.open strsql, conndb

Else
strsql = "UPDATE Stock SET Sorder1 = 0 WHERE id = " rst("id")
rst2.open strsql, conndb

End If
rst.movenext

End If
Loop
rst.Close
End Function
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Field Description
WeekId Week id, from the set {0, . . . , 51}
WeekState Week state, from the set {L, I, H}
L Sheet Length
W Sheet Width
Q Order Quantity
Board1 Id of optimal board
Waste1 Wastage when this order is produced from board 1
Factor1 The number of sheets of this order that can be produced by board 1
Board2 Id of second–best board
Waste2 Wastage when this order is produced from board 2
Factor2 The number of sheets of this order that can be produced by board 2
Board3 Id of third–best board
Waste3 Wastage when this order is produced from board 3
Factor3 The number of sheets of this order that can be produced by board 3
Vector The id of the board preference vector for this order

(a) Orders

Field Description
Id Board Id
L Board Length
W Board Width
StockLevel On Hand Inventory Level

(b) Stock

Field Description
Vector Vector Id
DemandState Initial Demand State
k1 Probability of a transition from the initial demand state to demand state k = 1
k2 Probability of a transition from the initial demand state to demand state k = 2
k3 Probability of a transition from the initial demand state to demand state k = 3
k4 Probability of a transition from the initial demand state to demand state k = 4
k5 Probability of a transition from the initial demand state to demand state k = 5
k6 Probability of a transition from the initial demand state to demand state k = 6
k7 Probability of a transition from the initial demand state to demand state k = 7

(c) TransitionProb

Field Description
Vector Vector Id
Board1 Board Id of optimal board
Board2 Board Id of second–best board
Board3 Board Id of third–best board
DemandState Current demand state of board preference vector
UnfilledDemand Outstanding demand on this board preference vector
wcost1 Wastage cost when the second–best board is used instead of the optimal board
wcost2 Wastage cost when the third–best board is used instead of the second–best board

(d) Vectors

Figure C.1: Structure of the tables referenced in the code. The Orders table contains the
demand history, and various calculated values such as the id of the board preference vector
used to make each order. The Stock table contains the dimensions of stock boards. The
TransitionProb table contains the demand state transition probabilities and the Vectors
table contains information pertaining to the board preference vectors.



Appendix D

Snapshot of Demand Data

Date Style Box Size Qty Board Board Board Board
Type Class Flute L W D Used 1 Used 2 Length Width

06/03/01 RSC A C 145 145 205 2 500 2 000×1 500 628 365
06/03/01 RSC A C 145 145 210 2 500 2 000×1 500 628 370
07/03/01 RSC A C 415 285 260 1 000 1 530×1 300 1 448 560
07/03/01 RSC A C 415 285 260 1 000 1 458×560 1 448 560
07/03/01 RSC A C 510 348 225 25 1 860×1 200 1 764 589
12/03/01 FOLF A C 995 240 750 250 1 400×1 300 1 530×1300 1 275 1 240
12/03/01 FOLF A C 995 240 750 250 1 285×1 240 1 275 1 240
12/03/01 FOLF A C 995 240 750 500 1 285×1 240 1 275 1 240
12/03/01 FOLF A C 995 240 750 1 000 1 285×1 240 1 275 1 240
19/03/01 RSC A C 1108 460 380 250 1 795×0910 1 700×1 000 1 608 856
19/03/01 RSC A C 1108 460 380 500 1 795×0910 1 700×1 000 1 608 856
20/03/01 RSC A C 564 485 325 250 2 358×1 062 2 146 825
20/03/01 RSC A C 1108 460 380 250 1 795×0910 1 700×1 000 1 608 856
20/03/01 RSC A C 1108 460 380 250 1 618×856 1 608 856
20/03/01 Sleeve DWB – 1400 650 850 4 2 380×1 200 2 103 850
20/03/01 Lid DWB – 1420 670 150 8 1 840×1 200 1 758 1 000
20/03/01 RSC A C 620 504 454 250 2 358×1 062 2 296 974
20/03/01 RSC A C 620 252 454 500 1 850×1 510 1 792 722
20/03/01 RSC A C 454 252 620 500 1 540×910 1 795×910 1 460 888
20/03/01 RSC A C 460 360 210 5000 1 700×1 200 1 860×1 200 1 688 586
22/03/01 RSC A C 620 252 454 500 1 850×1 510 1 792 722

Table D.1: Snapshot of the works tickets stored by Clickabox, containing all information
necessary for the production of an order, such as the dimensions, cardboard type, and
box design required.
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Appendix E

Board Preference Vectors

Index Board 1 Board 2 Board 3

1 AC 1 030 × 2 370 AC 2 030 × 1 240 AC 2 200 × 1 200
2 AC 1 030 × 2 370 AC 2 110 × 1 680 AC 1 910 × 1 880
3 AC 1 030 × 2 370 AC 2 200 × 1 200 AC 2 300 × 1 220
4 AC 1 030 × 2 370 AC 2 260 × 1 520 AC 2 110 × 1 680
5 AC 1 030 × 2 370 AC 1 550 × 1 020 AC 2 110 × 1 680
6 AC 1 260 × 2 300 AC 1 360 × 2 300 AC 1 330 × 2 370
7 AC 1 260 × 2 300 AC 1 360 × 2 300 AC 2 110 × 1 680
8 AC 1 260 × 2 300 AC 2 300 × 1 710 AC 1 360 × 2 300
9 AC 1 260 × 2 300 AC 2 370 × 1 250 AC 1 360 × 2 300
10 AC 1 280 × 1 300 AC 1 380 × 1 310 AC 1 260 × 2 300
11 AC 1 280 × 1 300 AC 1 380 × 1 310 AC 1 530 × 1 380
12 AC 1 280 × 1 300 AC 1 380 × 1 310 AC 1 720 × 1 210
13 AC 1 280 × 1 300 AC 2 260 × 1 520 AC 1 380 × 1 310
14 AC 1 330 × 2 370 AC 1 280 × 1 300 AC 1 460 × 2 370
15 AC 1 330 × 2 370 AC 1 460 × 2 370 AC 1 380 × 1 310
16 AC 1 330 × 2 370 AC 1 460 × 2 370 AC 1 510 × 1 810
17 AC 1 360 × 2 300 AC 1 330 × 2 370 AC 1 280 × 1 300
18 AC 1 360 × 2 300 AC 1 330 × 2 370 AC 1 460 × 2 370
19 AC 1 360 × 2 300 AC 1 330 × 2 370 AC 1 470 × 1 480
20 AC 1 360 × 2 300 AC 1 330 × 2 370 AC 1 530 × 1 380
21 AC 1 360 × 2 300 AC 1 330 × 2 370 AC 1 550 × 1 020
22 AC 1 360 × 2 300 AC 1 460 × 2 370 AC 1 380 × 1 310
23 AC 1 360 × 2 300 AC 1 530 × 1 380 AC 1 470 × 1 480
24 AC 1 360 × 2 300 AC 1 550 × 1 020 AC 1 460 × 2 370
25 AC 1 380 × 1 310 AC 1 360 × 2 300 AC 1 330 × 2 370
26 AC 1 380 × 1 310 AC 1 530 × 1 380 AC 1 470 × 1 480
27 AC 1 380 × 1 310 AC 1 720 × 1 210 AC 1 530 × 1 380
28 AC 1 380 × 1 310 AC 2 370 × 1 250 AC 1 530 × 1 380
29 AC 1 460 × 2 370 AC 1 380 × 1 310 AC 1 720 × 1 210
30 AC 1 460 × 2 370 AC 1 500 × 1 540 AC 1 510 × 1 810
31 AC 1 460 × 2 370 AC 1 510 × 1 810 AC 1 720 × 1 210
32 AC 1 460 × 2 370 AC 1 530 × 1 380 AC 1 470 × 1 480
33 AC 1 460 × 2 370 AC 1 680 × 1 080 AC 1 510 × 1 810
34 AC 1 460 × 2 370 AC 1 680 × 1 080 AC 1 720 × 1 210
35 AC 1 460 × 2 370 AC 1 720 × 1 210 AC 1 530 × 1 380
36 AC 1 460 × 2 370 AC 2 300 × 1 710 AC 2 200 × 1 200
37 AC 1 460 × 2 370 AC 1 550 × 1 020 AC 1 380 × 1 310
38 AC 1 460 × 2 370 AC 1 550 × 1 020 AC 1 680 × 1 080
39 AC 1 460 × 2 370 AC 1 550 × 1 020 AC 1 910 × 1 880
40 AC 1 470 × 1 480 AC 1 460 × 2 370 AC 1 500 × 1 540

Table E.1: A list of the preference vector index and composition of all AC board preference
vectors.
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Index Board 1 Board 2 Board 3

41 AC 1 470 × 1 480 AC 1 500 × 1 540 AC 1 510 × 1 810
42 AC 1 470 × 1 480 AC 1 860 × 1 490 AC 1 500 × 1 540
43 AC 1 470 × 1 480 AC 2 200 × 1 200 AC 2 260 × 1 520
44 AC 1 500 × 1 540 AC 1 510 × 1 810 AC 1 260 × 2 300
45 AC 1 500 × 1 540 AC 1 510 × 1 810 AC 1 360 × 2 300
46 AC 1 500 × 1 540 AC 1 510 × 1 810 AC 1 860 × 1 490
47 AC 1 500 × 1 540 AC 1 510 × 1 810 AC 1 550 × 1 020
48 AC 1 510 × 1 810 AC 1 260 × 2 300 AC 1 360 × 2 300
49 AC 1 510 × 1 810 AC 1 260 × 2 300 AC 2 370 × 1 250
50 AC 1 510 × 1 810 AC 1 360 × 2 300 AC 1 330 × 2 370
51 AC 1 510 × 1 810 AC 1 360 × 2 300 AC 1 460 × 2 370
52 AC 1 510 × 1 810 AC 1 360 × 2 300 AC 1 550 × 1 020
53 AC 1 510 × 1 810 AC 1 460 × 2 370 AC 1 530 × 1 380
54 AC 1 510 × 1 810 AC 1 460 × 2 370 AC 1 910 × 1 880
55 AC 1 510 × 1 810 AC 1 460 × 2 370 AC 2 110 × 1 680
56 AC 1 510 × 1 810 AC 1 530 × 1 380 AC 1 500 × 1 540
57 AC 1 510 × 1 810 AC 1 720 × 1 210 AC 1 530 × 1 380
58 AC 1 510 × 1 810 AC 1 860 × 1 490 AC 1 550 × 1 020
59 AC 1 510 × 1 810 AC 2 300 × 1 220 AC 1 260 × 2 300
60 AC 1 510 × 1 810 AC 1 550 × 1 020 AC 1 460 × 2 370
61 AC 1 510 × 1 810 AC 1 550 × 1 020 AC 1 910 × 1 880
62 AC 1 510 × 1 810 AC 1 550 × 1 020 AC 2 110 × 1 680
63 AC 1 530 × 1 380 AC 1 030 × 2 370 AC 1 550 × 1 020
64 AC 1 530 × 1 380 AC 1 470 × 1 480 AC 1 460 × 2 370
65 AC 1 530 × 1 380 AC 1 470 × 1 480 AC 1 500 × 1 540
66 AC 1 530 × 1 380 AC 1 470 × 1 480 AC 2 260 × 1 520
67 AC 1 530 × 1 380 AC 1 500 × 1 540 AC 1 510 × 1 810
68 AC 1 530 × 1 380 AC 1 510 × 1 810 AC 1 860 × 1 490
69 AC 1 530 × 1 380 AC 1 860 × 1 490 AC 2 000 × 1 400
70 AC 1 530 × 1 380 AC 2 030 × 1 240 AC 1 860 × 1 490
71 AC 1 530 × 1 380 AC 2 260 × 2 160 AC 1 470 × 1 480
72 AC 1 530 × 1 380 AC 1 550 × 1 020 AC 1 470 × 1 480
73 AC 1 530 × 1 380 AC 1 550 × 1 020 AC 1 510 × 1 810
74 AC 1 530 × 1 380 AC 1 550 × 1 020 AC 2 030 × 1 240
75 AC 1 680 × 1 080 AC 1 510 × 1 810 AC 1 720 × 1 210
76 AC 1 680 × 1 080 AC 1 720 × 1 210 AC 1 530 × 1 380
77 AC 1 680 × 1 080 AC 1 720 × 1 210 AC 1 800 × 1 200
78 AC 1 680 × 1 080 AC 1 720 × 1 210 AC 2 110 × 1 010
79 AC 1 680 × 1 080 AC 1 860 × 1 000 AC 1 720 × 1 210
80 AC 1 680 × 1 080 AC 1 860 × 1 000 AC 2 030 × 1 240
81 AC 1 680 × 1 080 AC 1 860 × 1 490 AC 1 720 × 1 210
82 AC 1 680 × 1 080 AC 2 260 × 2 160 AC 1 030 × 2 370
83 AC 1 680 × 1 080 AC 2 260 × 2 160 AC 2 200 × 1 200
84 AC 1 680 × 1 080 AC 2 300 × 1 220 AC 2 370 × 1 250
85 AC 1 680 × 1 080 AC 1 550 × 1 020 AC 1 720 × 1 210
86 AC 1 680 × 1 080 AC 1 550 × 1 020 AC 1 860 × 1 000
87 AC 1 720 × 1 210 AC 1 530 × 1 380 AC 1 470 × 1 480
88 AC 1 720 × 1 210 AC 1 530 × 1 380 AC 1 800 × 1 200
89 AC 1 720 × 1 210 AC 1 800 × 1 200 AC 1 030 × 2 370
90 AC 1 720 × 1 210 AC 1 800 × 1 200 AC 1 680 × 1 080
91 AC 1 720 × 1 210 AC 1 800 × 1 200 AC 1 910 × 1 880
92 AC 1 720 × 1 210 AC 1 800 × 1 200 AC 2 030 × 1 240
93 AC 1 720 × 1 210 AC 1 800 × 1 200 AC 2 110 × 1 680
94 AC 1 720 × 1 210 AC 1 800 × 1 200 AC 2 260 × 2 160
95 AC 1 720 × 1 210 AC 2 030 × 1 240 AC 1 860 × 1 490
96 AC 1 720 × 1 210 AC 2 110 × 1 010 AC 1 800 × 1 200
97 AC 1 800 × 1 200 AC 1 260 × 2 300 AC 2 370 × 1 250
98 AC 1 800 × 1 200 AC 1 910 × 1 880 AC 2 030 × 1 240
99 AC 1 800 × 1 200 AC 2 030 × 1 240 AC 2 200 × 1 200
100 AC 1 800 × 1 200 AC 2 110 × 1 680 AC 1 910 × 1 880
101 AC 1 800 × 1 200 AC 2 260 × 2 160 AC 1 030 × 2 370
102 AC 1 800 × 1 200 AC 2 260 × 2 160 AC 2 030 × 1 240
103 AC 1 800 × 1 200 AC 2 370 × 1 250 AC 1 330 × 2 370
104 AC 1 800 × 1 200 AC 2 370 × 1 250 AC 1 910 × 1 880
105 AC 1 860 × 1 000 AC 1 720 × 1 210 AC 2 110 × 1 010
106 AC 1 860 × 1 000 AC 1 720 × 1 210 AC 2 300 × 1 220
107 AC 1 860 × 1 000 AC 1 860 × 1 490 AC 2 000 × 1 400
108 AC 1 860 × 1 000 AC 2 110 × 1 010 AC 1 800 × 1 200
109 AC 1 860 × 1 000 AC 2 110 × 1 010 AC 2 260 × 2 160
110 AC 1 860 × 1 490 AC 1 030 × 2 370 AC 2 260 × 1 520

Table E.1 (cntd.): AC Board Preference Vectors
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Index Board 1 Board 2 Board 3

111 AC 1 860 × 1 490 AC 1 470 × 1 480 AC 2 260 × 1 520
112 AC 1 860 × 1 490 AC 1 720 × 1 210 AC 2 000 × 1 400
113 AC 1 860 × 1 490 AC 1 860 × 1 000 AC 2 110 × 1 010
114 AC 1 860 × 1 490 AC 1 910 × 1 880 AC 1 800 × 1 200
115 AC 1 860 × 1 490 AC 2 000 × 1 400 AC 1 280 × 1 300
116 AC 1 860 × 1 490 AC 2 000 × 1 400 AC 1 530 × 1 380
117 AC 1 860 × 1 490 AC 2 000 × 1 400 AC 2 260 × 1 520
118 AC 1 860 × 1 490 AC 2 000 × 1 400 AC 2 260 × 2 160
119 AC 1 860 × 1 490 AC 2 000 × 1 400 AC 2 370 × 1 250
120 AC 1 860 × 1 490 AC 2 000 × 1 400 AC 1 550 × 1 020
121 AC 1 860 × 1 490 AC 2 260 × 1 520 AC 2 110 × 1 680
122 AC 1 860 × 1 490 AC 2 260 × 2 160 AC 1 030 × 2 370
123 AC 1 860 × 1 490 AC 1 550 × 1 020 AC 2 260 × 1 520
124 AC 1 910 × 1 880 AC 1 030 × 2 370 AC 2 030 × 1 240
125 AC 1 910 × 1 880 AC 1 680 × 1 080 AC 1 860 × 1 000
126 AC 1 910 × 1 880 AC 1 860 × 1 000 AC 1 510 × 1 810
127 AC 1 910 × 1 880 AC 1 860 × 1 000 AC 1 720 × 1 210
128 AC 1 910 × 1 880 AC 1 860 × 1 000 AC 2 110 × 1 010
129 AC 1 910 × 1 880 AC 1 860 × 1 000 AC 2 300 × 1 710
130 AC 1 910 × 1 880 AC 1 860 × 1 490 AC 1 860 × 1 000
131 AC 1 910 × 1 880 AC 1 860 × 1 490 AC 2 000 × 1 400
132 AC 1 910 × 1 880 AC 2 030 × 1 240 AC 1 860 × 1 490
133 AC 1 910 × 1 880 AC 2 110 × 1 010 AC 2 260 × 2 160
134 AC 1 910 × 1 880 AC 2 260 × 2 160 AC 1 030 × 2 370
135 AC 1 910 × 1 880 AC 2 300 × 1 710 AC 2 260 × 2 160
136 AC 1 910 × 1 880 AC 1 550 × 1 020 AC 1 680 × 1 080
137 AC 2 000 × 1 400 AC 1 280 × 1 300 AC 2 260 × 1 520
138 AC 2 000 × 1 400 AC 2 260 × 1 520 AC 2 110 × 1 680
139 AC 2 000 × 1 400 AC 2 260 × 2 160 AC 2 260 × 1 520
140 AC 2 030 × 1 240 AC 1 720 × 1 210 AC 1 330 × 2 370
141 AC 2 030 × 1 240 AC 1 860 × 1 490 AC 2 000 × 1 400
142 AC 2 030 × 1 240 AC 2 000 × 1 400 AC 2 300 × 1 220
143 AC 2 030 × 1 240 AC 2 000 × 1 400 AC 2 370 × 1 250
144 AC 2 030 × 1 240 AC 2 200 × 1 200 AC 1 860 × 1 490
145 AC 2 030 × 1 240 AC 2 200 × 1 200 AC 2 000 × 1 400
146 AC 2 030 × 1 240 AC 2 200 × 1 200 AC 2 260 × 1 520
147 AC 2 030 × 1 240 AC 2 300 × 1 220 AC 2 370 × 1 250
148 AC 2 110 × 1 010 AC 2 030 × 1 240 AC 2 200 × 1 200
149 AC 2 110 × 1 010 AC 2 200 × 1 200 AC 2 300 × 1 220
150 AC 2 110 × 1 010 AC 2 260 × 1 520 AC 2 110 × 1 680
151 AC 2 110 × 1 010 AC 2 260 × 2 160 AC 1 030 × 2 370
152 AC 2 110 × 1 010 AC 2 260 × 2 160 AC 2 030 × 1 240
153 AC 2 110 × 1 010 AC 2 260 × 2 160 AC 2 200 × 1 200
154 AC 2 110 × 1 680 AC 1 030 × 2 370 AC 2 030 × 1 240
155 AC 2 110 × 1 680 AC 1 680 × 1 080 AC 2 260 × 2 160
156 AC 2 110 × 1 680 AC 1 910 × 1 880 AC 1 680 × 1 080
157 AC 2 110 × 1 680 AC 1 910 × 1 880 AC 1 860 × 1 000
158 AC 2 110 × 1 680 AC 1 910 × 1 880 AC 1 860 × 1 490
159 AC 2 110 × 1 680 AC 1 910 × 1 880 AC 2 260 × 2 160
160 AC 2 110 × 1 680 AC 1 910 × 1 880 AC 2 300 × 1 710
161 AC 2 110 × 1 680 AC 2 260 × 2 160 AC 1 030 × 2 370
162 AC 2 110 × 1 680 AC 2 260 × 2 160 AC 2 030 × 1 240
163 AC 2 110 × 1 680 AC 2 300 × 1 710 AC 1 500 × 1 540
164 AC 2 110 × 1 680 AC 2 300 × 1 710 AC 2 110 × 1 010
165 AC 2 110 × 1 680 AC 2 300 × 1 710 AC 2 260 × 2 160
166 AC 2 110 × 1 680 AC 1 550 × 1 020 AC 1 910 × 1 880
167 AC 2 200 × 1 200 AC 1 680 × 1 080 AC 2 300 × 1 220
168 AC 2 200 × 1 200 AC 2 110 × 1 010 AC 1 380 × 1 310
169 AC 2 200 × 1 200 AC 2 110 × 1 010 AC 2 300 × 1 220
170 AC 2 200 × 1 200 AC 2 110 × 1 680 AC 1 720 × 1 210
171 AC 2 200 × 1 200 AC 2 260 × 1 520 AC 1 720 × 1 210
172 AC 2 200 × 1 200 AC 2 300 × 1 220 AC 1 260 × 2 300
173 AC 2 200 × 1 200 AC 2 300 × 1 220 AC 2 370 × 1 250
174 AC 2 260 × 1 520 AC 1 260 × 2 300 AC 2 300 × 1 710
175 AC 2 260 × 1 520 AC 1 380 × 1 310 AC 2 300 × 1 710
176 AC 2 260 × 1 520 AC 1 500 × 1 540 AC 1 550 × 1 020
177 AC 2 260 × 1 520 AC 1 720 × 1 210 AC 2 300 × 1 220
178 AC 2 260 × 1 520 AC 1 860 × 1 490 AC 2 300 × 1 710
179 AC 2 260 × 1 520 AC 2 110 × 1 680 AC 1 260 × 2 300
180 AC 2 260 × 1 520 AC 2 110 × 1 680 AC 1 910 × 1 880

Table E.1 (cntd.): AC Board Preference Vectors
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Index Board 1 Board 2 Board 3

181 AC 2 260 × 1 520 AC 2 110 × 1 680 AC 2 300 × 1 710
182 AC 2 260 × 1 520 AC 2 200 × 1 200 AC 2 110 × 1 680
183 AC 2 260 × 1 520 AC 2 200 × 1 200 AC 2 300 × 1 220
184 AC 2 260 × 1 520 AC 2 300 × 1 710 AC 1 470 × 1 480
185 AC 2 260 × 1 520 AC 2 300 × 1 710 AC 1 530 × 1 380
186 AC 2 260 × 1 520 AC 2 300 × 1 710 AC 2 260 × 2 160
187 AC 2 260 × 1 520 AC 1 550 × 1 020 AC 2 110 × 1 680
188 AC 2 260 × 2 160 AC 1 030 × 2 370 AC 1 260 × 2 300
189 AC 2 260 × 2 160 AC 1 030 × 2 370 AC 1 280 × 1 300
190 AC 2 260 × 2 160 AC 1 030 × 2 370 AC 1 510 × 1 810
191 AC 2 260 × 2 160 AC 1 030 × 2 370 AC 2 030 × 1 240
192 AC 2 260 × 2 160 AC 1 030 × 2 370 AC 2 200 × 1 200
193 AC 2 260 × 2 160 AC 1 030 × 2 370 AC 2 260 × 1 520
194 AC 2 260 × 2 160 AC 1 260 × 2 300 AC 1 360 × 2 300
195 AC 2 260 × 2 160 AC 1 460 × 2 370 AC 2 300 × 1 710
196 AC 2 260 × 2 160 AC 1 470 × 1 480 AC 2 260 × 1 520
197 AC 2 260 × 2 160 AC 1 510 × 1 810 AC 1 260 × 2 300
198 AC 2 260 × 2 160 AC 2 030 × 1 240 AC 2 200 × 1 200
199 AC 2 260 × 2 160 AC 2 200 × 1 200 AC 1 510 × 1 810
200 AC 2 260 × 2 160 AC 2 200 × 1 200 AC 2 300 × 1 220
201 AC 2 260 × 2 160 AC 2 260 × 1 520 AC 1 260 × 2 300
202 AC 2 260 × 2 160 AC 2 260 × 1 520 AC 2 110 × 1 680
203 AC 2 260 × 2 160 AC 2 260 × 1 520 AC 2 300 × 1 710
204 AC 2 260 × 2 160 AC 2 300 × 1 220 AC 1 260 × 2 300
205 AC 2 260 × 2 160 AC 2 300 × 1 220 AC 2 370 × 1 250
206 AC 2 300 × 1 220 AC 1 260 × 2 300 AC 2 370 × 1 250
207 AC 2 300 × 1 220 AC 2 370 × 1 250 AC 1 280 × 1 300
208 AC 2 300 × 1 220 AC 2 370 × 1 250 AC 1 330 × 2 370
209 AC 2 300 × 1 220 AC 2 370 × 1 250 AC 1 910 × 1 880
210 AC 2 300 × 1 220 AC 2 370 × 1 250 AC 2 260 × 1 520
211 AC 2 300 × 1 220 AC 2 370 × 1 250 AC 2 260 × 2 160
212 AC 2 300 × 1 220 AC 2 370 × 1 250 AC 2 300 × 1 710
213 AC 2 300 × 1 710 AC 1 330 × 2 370 AC 1 460 × 2 370
214 AC 2 300 × 1 710 AC 1 470 × 1 480 AC 1 500 × 1 540
215 AC 2 300 × 1 710 AC 1 500 × 1 540 AC 1 510 × 1 810
216 AC 2 300 × 1 710 AC 1 500 × 1 540 AC 2 260 × 2 160
217 AC 2 300 × 1 710 AC 1 510 × 1 810 AC 1 260 × 2 300
218 AC 2 300 × 1 710 AC 1 510 × 1 810 AC 2 260 × 2 160
219 AC 2 300 × 1 710 AC 1 510 × 1 810 AC 2 300 × 1 220
220 AC 2 300 × 1 710 AC 1 530 × 1 380 AC 1 470 × 1 480
221 AC 2 300 × 1 710 AC 2 110 × 1 010 AC 2 260 × 2 160
222 AC 2 300 × 1 710 AC 2 110 × 1 680 AC 1 910 × 1 880
223 AC 2 300 × 1 710 AC 2 260 × 2 160 AC 1 510 × 1 810
224 AC 2 300 × 1 710 AC 2 260 × 2 160 AC 2 200 × 1 200
225 AC 2 300 × 1 710 AC 2 260 × 2 160 AC 2 300 × 1 220
226 AC 2 300 × 1 710 AC 2 300 × 1 220 AC 2 370 × 1 250
227 AC 2 370 × 1 250 AC 1 280 × 1 300 AC 1 380 × 1 310
228 AC 2 370 × 1 250 AC 1 280 × 1 300 AC 2 260 × 1 520
229 AC 2 370 × 1 250 AC 1 330 × 2 370 AC 1 280 × 1 300
230 AC 2 370 × 1 250 AC 1 720 × 1 210 AC 1 800 × 1 200
231 AC 2 370 × 1 250 AC 1 910 × 1 880 AC 2 030 × 1 240
232 AC 2 370 × 1 250 AC 2 260 × 1 520 AC 2 300 × 1 710

Table E.1 (cntd.): AC Board Preference Vectors
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Index Board 1 Board 2 Board 3

1 DWB 1480 × 1 310 DWB 1410 × 1 940 DWB 1530 × 1 370
2 DWB 1480 × 1 310 DWB 1530 × 1 370 DWB 1780 × 1 620
3 DWB 1480 × 1 310 DWB 1530 × 1 370 DWB 1270 × 1 700
4 DWB 1480 × 1 310 DWB 1530 × 1 370 DWB 1410 × 1 940
5 DWB 1480 × 1 310 DWB 1530 × 1 370 DWB 1670 × 1 010
6 DWB 1480 × 1 310 DWB 1530 × 1 370 DWB 2030 × 1 080
7 DWB 1480 × 1 310 DWB 1530 × 1 370 DWB 1870 × 1 350
8 DWB 1480 × 1 310 DWB 1530 × 1 370 DWB 2300 × 2 180
9 DWB 1480 × 1 310 DWB 2010 × 1 460 DWB 1530 × 1 370
10 DWB 1780 × 1 620 DWB 1820 × 2 090 DWB 1870 × 1 350
11 DWB 1780 × 1 620 DWB 1670 × 1 010 DWB 2150 × 1 640
12 DWB 1780 × 1 620 DWB 2010 × 1 460 DWB 1670 × 1 010
13 DWB 1780 × 1 620 DWB 2010 × 1 460 DWB 2150 × 1 640
14 DWB 1780 × 1 620 DWB 2010 × 1 460 DWB 2270 × 1 430
15 DWB 1780 × 1 620 DWB 2010 × 1 460 DWB 2300 × 2 180
16 DWB 1780 × 1 620 DWB 2150 × 1 640 DWB 1820 × 2 090
17 DWB 1820 × 2 090 DWB 1480 × 1 310 DWB 1530 × 1 370
18 DWB 1820 × 2 090 DWB 1780 × 1 620 DWB 2010 × 1 460
19 DWB 1820 × 2 090 DWB 1050 × 1 980 DWB 1270 × 1 700
20 DWB 1820 × 2 090 DWB 1050 × 1 980 DWB 2030 × 1 080
21 DWB 1820 × 2 090 DWB 1050 × 1 980 DWB 2330 × 2 000
22 DWB 1820 × 2 090 DWB 1530 × 1 370 DWB 2030 × 1 080
23 DWB 1820 × 2 090 DWB 2030 × 1 080 DWB 2330 × 2 000
24 DWB 1820 × 2 090 DWB 2030 × 1 080 DWB 2300 × 2 180
25 DWB 1820 × 2 090 DWB 2330 × 2 000 DWB 2300 × 2 180
26 DWB 1820 × 2 090 DWB 1870 × 1 350 DWB 2150 × 1 640
27 DWB 1820 × 2 090 DWB 2410 × 1 690 DWB 2330 × 2 000
28 DWB 1820 × 2 090 DWB 2300 × 2 180 DWB 2300 × 2 180
29 DWB 1050 × 1 980 DWB 2010 × 1 460 DWB 1170 × 1 310
30 DWB 1050 × 1 980 DWB 2030 × 1 080 DWB 2330 × 2 000
31 DWB 1050 × 1 980 DWB 2330 × 2 000 DWB 2300 × 2 180
32 DWB 1230 × 1 420 DWB 1480 × 1 310 DWB 1530 × 1 370
33 DWB 1230 × 1 420 DWB 1480 × 1 310 DWB 2410 × 1 690
34 DWB 1230 × 1 420 DWB 1270 × 1 700 DWB 1410 × 1 940
35 DWB 1230 × 1 420 DWB 1410 × 1 940 DWB 1480 × 1 310
36 DWB 1230 × 1 420 DWB 1530 × 1 370 DWB 1270 × 1 700
37 DWB 1230 × 1 420 DWB 2010 × 1 460 DWB 1410 × 1 940
38 DWB 1230 × 1 420 DWB 2010 × 1 460 DWB 1870 × 1 350
39 DWB 1230 × 1 420 DWB 2010 × 1 460 DWB 2410 × 1 690
40 DWB 1230 × 1 420 DWB 2410 × 1 690 DWB 1270 × 1 700
41 DWB 1230 × 1 420 DWB 2410 × 1 690 DWB 1410 × 1 940
42 DWB 1230 × 1 420 DWB 2410 × 1 690 DWB 1530 × 1 370
43 DWB 1270 × 1 700 DWB 1820 × 2 090 DWB 1410 × 1 940
44 DWB 1270 × 1 700 DWB 1410 × 1 940 DWB 1780 × 1 620
45 DWB 1270 × 1 700 DWB 1410 × 1 940 DWB 1670 × 1 010
46 DWB 1170 × 1 310 DWB 1230 × 1 420 DWB 1480 × 1 310
47 DWB 1170 × 1 310 DWB 1230 × 1 420 DWB 1820 × 2 090
48 DWB 1170 × 1 310 DWB 2330 × 2 000 DWB 2270 × 1 430
49 DWB 1170 × 1 310 DWB 2330 × 2 000 DWB 2300 × 2 180
50 DWB 1170 × 1 310 DWB 2270 × 1 430 DWB 1230 × 1 420
51 DWB 1410 × 1 940 DWB 1480 × 1 310 DWB 1530 × 1 370
52 DWB 1410 × 1 940 DWB 1780 × 1 620 DWB 1480 × 1 310
53 DWB 1410 × 1 940 DWB 1780 × 1 620 DWB 1670 × 1 010
54 DWB 1410 × 1 940 DWB 1780 × 1 620 DWB 2010 × 1 460
55 DWB 1410 × 1 940 DWB 1780 × 1 620 DWB 2150 × 1 640
56 DWB 1410 × 1 940 DWB 1820 × 2 090 DWB 2330 × 2 000
57 DWB 1410 × 1 940 DWB 1670 × 1 010 DWB 1820 × 2 090
58 DWB 1410 × 1 940 DWB 1670 × 1 010 DWB 1230 × 1 420
59 DWB 1410 × 1 940 DWB 1670 × 1 010 DWB 2150 × 1 640
60 DWB 1530 × 1 370 DWB 1780 × 1 620 DWB 2010 × 1 460
61 DWB 1530 × 1 370 DWB 1820 × 2 090 DWB 1780 × 1 620
62 DWB 1530 × 1 370 DWB 1270 × 1 700 DWB 1410 × 1 940
63 DWB 1530 × 1 370 DWB 1270 × 1 700 DWB 1870 × 1 350
64 DWB 1530 × 1 370 DWB 1410 × 1 940 DWB 1780 × 1 620
65 DWB 1530 × 1 370 DWB 2030 × 1 080 DWB 2300 × 2 180
66 DWB 1530 × 1 370 DWB 1870 × 1 350 DWB 1780 × 1 620
67 DWB 1530 × 1 370 DWB 1870 × 1 350 DWB 1820 × 2 090
68 DWB 1530 × 1 370 DWB 1870 × 1 350 DWB 1410 × 1 940
69 DWB 1530 × 1 370 DWB 2300 × 2 180 DWB 1870 × 1 350
70 DWB 1670 × 1 010 DWB 1820 × 2 090 DWB 1480 × 1 310

Table E.2: A list of the preference vector index and composition of all DWB board
preference vectors.
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Index Board 1 Board 2 Board 3

71 DWB 1670 × 1 010 DWB 1820 × 2 090 DWB 1780 × 1 620
72 DWB 1670 × 1 010 DWB 1820 × 2 090 DWB 1050 × 1 980
73 DWB 1670 × 1 010 DWB 1820 × 2 090 DWB 1530 × 1 370
74 DWB 1670 × 1 010 DWB 1820 × 2 090 DWB 2030 × 1 080
75 DWB 1670 × 1 010 DWB 1820 × 2 090 DWB 2410 × 1 690
76 DWB 1670 × 1 010 DWB 1230 × 1 420 DWB 1820 × 2 090
77 DWB 1670 × 1 010 DWB 1410 × 1 940 DWB 1820 × 2 090
78 DWB 1670 × 1 010 DWB 1530 × 1 370 DWB 2030 × 1 080
79 DWB 1670 × 1 010 DWB 2150 × 1 640 DWB 1820 × 2 090
80 DWB 2010 × 1 460 DWB 1170 × 1 310 DWB 2270 × 1 430
81 DWB 2010 × 1 460 DWB 2150 × 1 640 DWB 1820 × 2 090
82 DWB 2010 × 1 460 DWB 2150 × 1 640 DWB 2410 × 1 690
83 DWB 2010 × 1 460 DWB 1870 × 1 350 DWB 2150 × 1 640
84 DWB 2010 × 1 460 DWB 2270 × 1 430 DWB 1230 × 1 420
85 DWB 2010 × 1 460 DWB 2270 × 1 430 DWB 2150 × 1 640
86 DWB 2010 × 1 460 DWB 2270 × 1 430 DWB 2300 × 2 180
87 DWB 2010 × 1 460 DWB 2300 × 2 180 DWB 1170 × 1 310
88 DWB 2010 × 1 460 DWB 2300 × 2 180 DWB 2150 × 1 640
89 DWB 2010 × 1 460 DWB 2300 × 2 180 DWB 2410 × 1 690
90 DWB 2150 × 1 640 DWB 1820 × 2 090 DWB 2410 × 1 690
91 DWB 2150 × 1 640 DWB 2030 × 1 080 DWB 2010 × 1 460
92 DWB 2150 × 1 640 DWB 2330 × 2 000 DWB 2010 × 1 460
93 DWB 2150 × 1 640 DWB 2410 × 1 690 DWB 1050 × 1 980
94 DWB 2150 × 1 640 DWB 2410 × 1 690 DWB 1410 × 1 940
95 DWB 2150 × 1 640 DWB 2410 × 1 690 DWB 2030 × 1 080
96 DWB 2150 × 1 640 DWB 2410 × 1 690 DWB 2330 × 2 000
97 DWB 2150 × 1 640 DWB 2300 × 2 180 DWB 2410 × 1 690
98 DWB 2030 × 1 080 DWB 2150 × 1 640 DWB 2300 × 2 180
99 DWB 2030 × 1 080 DWB 2330 × 2 000 DWB 2150 × 1 640
100 DWB 2030 × 1 080 DWB 2330 × 2 000 DWB 2300 × 2 180
101 DWB 2030 × 1 080 DWB 1870 × 1 350 DWB 2010 × 1 460
102 DWB 2030 × 1 080 DWB 2300 × 2 180 DWB 2010 × 1 460
103 DWB 2030 × 1 080 DWB 2300 × 2 180 DWB 1870 × 1 350
104 DWB 2030 × 1 080 DWB 2300 × 2 180 DWB 2270 × 1 430
105 DWB 2330 × 2 000 DWB 1170 × 1 310 DWB 1670 × 1 010
106 DWB 2330 × 2 000 DWB 2270 × 1 430 DWB 2300 × 2 180
107 DWB 2330 × 2 000 DWB 2300 × 2 180 DWB 2300 × 2 180
108 DWB 2330 × 2 000 DWB 2300 × 2 180 DWB 1820 × 2 090
109 DWB 2330 × 2 000 DWB 2300 × 2 180 DWB 1170 × 1 310
110 DWB 2330 × 2 000 DWB 2300 × 2 180 DWB 1410 × 1 940
111 DWB 2330 × 2 000 DWB 2300 × 2 180 DWB 1670 × 1 010
112 DWB 2330 × 2 000 DWB 2300 × 2 180 DWB 2270 × 1 430
113 DWB 2330 × 2 000 DWB 2300 × 2 180 DWB 2410 × 1 690
114 DWB 1870 × 1 350 DWB 1780 × 1 620 DWB 2010 × 1 460
115 DWB 1870 × 1 350 DWB 1820 × 2 090 DWB 1780 × 1 620
116 DWB 1870 × 1 350 DWB 1820 × 2 090 DWB 1050 × 1 980
117 DWB 1870 × 1 350 DWB 1820 × 2 090 DWB 2010 × 1 460
118 DWB 1870 × 1 350 DWB 2010 × 1 460 DWB 1170 × 1 310
119 DWB 1870 × 1 350 DWB 2010 × 1 460 DWB 2270 × 1 430
120 DWB 1870 × 1 350 DWB 2150 × 1 640 DWB 2030 × 1 080
121 DWB 1870 × 1 350 DWB 2410 × 1 690 DWB 1780 × 1 620
122 DWB 2270 × 1 430 DWB 1230 × 1 420 DWB 2150 × 1 640
123 DWB 2270 × 1 430 DWB 1230 × 1 420 DWB 2410 × 1 690
124 DWB 2270 × 1 430 DWB 2150 × 1 640 DWB 2410 × 1 690
125 DWB 2270 × 1 430 DWB 2330 × 2 000 DWB 2150 × 1 640
126 DWB 2270 × 1 430 DWB 2410 × 1 690 DWB 1270 × 1 700
127 DWB 2270 × 1 430 DWB 2410 × 1 690 DWB 2330 × 2 000
128 DWB 2270 × 1 430 DWB 2300 × 2 180 DWB 1230 × 1 420
129 DWB 2410 × 1 690 DWB 2410 × 1 690 DWB 2410 × 1 690
130 DWB 2410 × 1 690 DWB 1780 × 1 620 DWB 1670 × 1 010
131 DWB 2410 × 1 690 DWB 1780 × 1 620 DWB 2010 × 1 460
132 DWB 2410 × 1 690 DWB 1780 × 1 620 DWB 2150 × 1 640
133 DWB 2410 × 1 690 DWB 1780 × 1 620 DWB 2330 × 2 000
134 DWB 2410 × 1 690 DWB 1050 × 1 980 DWB 1270 × 1 700
135 DWB 2410 × 1 690 DWB 1270 × 1 700 DWB 1410 × 1 940
136 DWB 2410 × 1 690 DWB 1270 × 1 700 DWB 1670 × 1 010
137 DWB 2410 × 1 690 DWB 1270 × 1 700 DWB 2330 × 2 000
138 DWB 2410 × 1 690 DWB 2030 × 1 080 DWB 2330 × 2 000
139 DWB 2410 × 1 690 DWB 2330 × 2 000 DWB 2330 × 2 000
140 DWB 2410 × 1 690 DWB 2330 × 2 000 DWB 2270 × 1 430

Table E.2 (cntd.): DWB Board Preference Vectors
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Index Board 1 Board 2 Board 3

141 DWB 2410 × 1 690 DWB 2330 × 2 000 DWB 2300 × 2 180
142 DWB 2300 × 2 180 DWB 2300 × 2 180 DWB 2300 × 2 180
143 DWB 2300 × 2 180 DWB 1820 × 2 090 DWB 1820 × 2 090
144 DWB 2300 × 2 180 DWB 1230 × 1 420 DWB 2410 × 1 690
145 DWB 2300 × 2 180 DWB 1170 × 1 310 DWB 1230 × 1 420
146 DWB 2300 × 2 180 DWB 1170 × 1 310 DWB 2270 × 1 430
147 DWB 2300 × 2 180 DWB 2150 × 1 640 DWB 2410 × 1 690
148 DWB 2300 × 2 180 DWB 1870 × 1 350 DWB 1780 × 1 620
149 DWB 2300 × 2 180 DWB 2270 × 1 430 DWB 2150 × 1 640
150 DWB 2300 × 2 180 DWB 2270 × 1 430 DWB 2410 × 1 690
151 DWB 2300 × 2 180 DWB 2410 × 1 690 DWB 1270 × 1 700
152 DWB 2300 × 2 180 DWB 2410 × 1 690 DWB 2330 × 2 000
153 DWB 2300 × 2 180 DWB 2410 × 1 690 DWB 2270 × 1 430

Table E.2 (cntd.): DWB Board Preference Vectors
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Appendix F

Multiple Period Optimisation
Results

Board Type Week 1 Week 2 Week 3 Week 4
AC 1 030 × 2 370 (500, 1 300) (100, 800) (200, 800) (600, 1 200)
AC 1 260 × 2 300 (300, 400) (500, 1 000) (400, 800) (400, 900)
AC 1 280 × 1 300 (200, 600) (100, 200) (500, 900) (400, 1 000)
AC 1 330 × 2 370 (600, 900) (600, 1 000) (700, 900) (800, 1 100)
AC 1 360 × 2 300 (500, 1 000) (100, 400) (100, 500) (300, 800)
AC 1 380 × 1 310 (900, 1 100) (100, 900) (1 400, 1 900) (1 000, 1 500)
AC 1 460 × 2 370 (500, 900) (700, 1 200) (600, 1 400) (700, 1 000)
AC 1 470 × 1 480 (1 300, 1 500) (1 100, 1 900) (1 000, 1 600) (1 100, 1 600)
AC 1 500 × 1 540 (500, 700) (1 000, 1 100) (800, 900) (200, 600)
AC 1 510 × 1 810 (1 000, 1 100) (1 300, 1 500) (600, 1 900) (600, 1 500)
AC 1 530 × 1 380 (100, 1 100) (500, 1 500) (300, 700) (300, 1 900)
AC 1 550 × 1 020 (400, 1 300) (1 500, 1 600) (400, 800) (600, 1 200)
AC 1 680 × 1 080 (900, 1 000) (1 100, 1 600) (1 200, 1 500) (1 100, 1 800)
AC 1 720 × 1 210 (500, 1 300) (1 500, 1 600) (500, 1 100) (400, 1 100)
AC 1 800 × 1 200 (1 800, 1 900) (1 600, 1 700) (400, 1 000) (1 100, 1 700)
AC 1 860 × 1 000 (1 000, 1 400) (500, 1 100) (400, 1 300) (900, 1 100)
AC 1 860 × 1 490 (700, 900) (200, 1 100) (1 400, 1 900) (500, 700)
AC 1 910 × 1 880 (100, 300) (300, 1 800) (700, 1 500) (1 400, 1 900)
AC 2 000 × 1 400 (200, 600) (300, 500) (100, 1 800) (100, 300)
AC 2 030 × 1 240 (1 100, 1 400) (100, 1 400) (500, 600) (300,900)
AC 2 110 × 1 010 (1 500, 1 600) (600, 1 500) (700, 1 100) (100, 200)
AC 2 110 × 1 680 (100, 900) (300, 1 300) (500, 1 300) (300, 800)
AC 2 200 × 1 200 (100, 600) (300, 1 200) (500, 800) (600, 900)
AC 2 260 × 1 520 (1 000, 1 300) (1 100, 1 200) (100, 200) (300, 500)
AC 2 260 × 2 160 (1 200, 1 400) (100, 1 400) (600, 1 600) (1 500, 1 800)
AC 2 300 × 1 220 (1 200, 1 800) (700, 900) (400, 1 000) (200, 500)
AC 2 300 × 1 710 (300, 1 000) (800, 1 200) (700, 1 000) (500, 1 000)
AC 2 370 × 1 250 (200, 700) (100, 700) (200, 800) (200, 900)

Table F.1: Results of a Dynamic Optimisation Simulation for a four week period, for
the 28 AC cardboard types. The replenishment paramters for each week are given in the
format (s, S), where s represents the re–order level and S the order–to level.
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Board Type Week 1 Week 2 Week 3 Week 4
DWB 1480 × 1 530 (200, 600) (200, 600) (500, 700) (200, 700)
DWB 1780 × 2 150 (300, 500) (100, 400) (600, 800) (700, 900)
DWB 1820 × 2 300 (100, 600) (200, 300) (500, 900) (700, 800)
DWB 1050 × 1 820 (500, 800) (100, 600) (300, 500) (500, 700)
DWB 1230 × 1 270 (300, 800) (200, 500) (600, 700) (200, 700)
DWB 1270 × 1 410 (300, 400) (100, 700) (800, 900) (100, 700)
DWB 1170 × 1 230 (400, 900) (300, 700) (100, 300) (100, 600)
DWB 1410 × 1 820 (100, 900) (100, 500) (500, 700) (800, 900)
DWB 1530 × 1 780 (100, 500) (500, 700) (700, 800) (400, 800)
DWB 1670 × 2 030 (300, 800) (400, 900) (100, 600) (700, 800)
DWB 2010 × 2 150 (400, 700) (500, 800) (500, 600) (500, 600)
DWB 2150 × 2 410 (200, 300) (500, 700) (200, 900) (400, 700)
DWB 2030 × 2 270 (400, 600) (100, 500) (300, 800) (100, 300)
DWB 2330 × 1 820 (400, 700) (700, 800) (100, 400) (500, 800)
DWB 1870 × 2 010 (400, 700) (300, 400) (200, 700) (100, 800)
DWB 2270 × 2 410 (100, 400) (100, 700) (500, 900) (400, 800)
DWB 2410 × 1 270 (400, 500) (400, 500) (200, 900) (200, 400)
DWB 2300 × 2 410 (700, 800) (400, 900) (100, 800) (300, 900)

Table F.2: Results of a Dynamic Optimisation Simulation for a four week period, for the
18 DWB cardboard types. The replenishment paramters for each week are given in the
format (s, S), where s represents the re–order level and S the order–to level.



Appendix G

Instructions for using Compact Disc

This appendix contains an description of the contents of the compact disc attached to
this thesis, and brief instructions for the use of this disc. The disc contains two files,
both in Microsoft Excel worksheet format. The first file, named “Data from Clickabox
Workstickets” comprises one sheet listing all the worksticket data as stored on a data
server by Clickabox. The second file, named “Tables”, comprises four sheets, namely
TransitionProbAC (containing the data from the transition probability table for AC
board types), TransitionProbDWB (containing the data from the transition probability
table for DWB board types), FactorProbAC (containing the data from the sheet–to–
board conversion factor table for AC board types) and FactorProbDWB (containing the
data from the sheet–to–board conversion factor table for DWB board types).
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